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A stochastic generalization of the Ricker discrete population model is studied under the
assumption that noise impacts the population reproduction rate. The obtained results
demonstrate that the demographic-type stochastic noise increases the risk of the pop-
ulation extinction. In particular, the paper establishes conditions on the noise intensity
under which the population will extinct even if the corresponding population with no
noise survives.
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1. Introduction

The stability of stochastic difference equations has been investigated in numerous papers
(see, e.g., [8, 13–19]). In this paper a martingale-based technique [13] is applied to a
stochastic version of the well-known Ricker population model [12]:

xn+1 = ae−bxnxn, n= 0,1,2, . . . . (1.1)

The Ricker model (1.1) provides a classic description of an isolated single-species pop-
ulation in the inhibiting environment, which only produces offspring at a specific time
each year. It is very popular in biological literature because of its remarkable dynamics
and good correspondence with various experimental data (especially, for fish popula-
tions) [4, 11]. As shown in [6], a nonlinear integral population model with distributed
delay and intra-species competition can be reduced to model (1.1) in the case of a single-
time seasonal reproduction. It is well known that when the parameter a increases from 0,
the qualitative behavior of model (1.1) changes from a single zero stationary state through
a stable nonzero stationary state to oscillations (stable cycles) with increasing periods, in-
stability, and quasi-chaotic dynamics (see, e.g., [11] and the references therein).
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2 Stability analysis of stochastic Ricker population model

While the Ricker model is interesting by itself, there is a number of its stochastic ver-
sions where one of the parameters a and b (or both) is of stochastic nature (see [1–
3, 7, 10], and others). As noticed in [1], the stochasticity of the parameter a reflects
the internal demographic factors of a population whereas the variation of the parame-
ter b represents the effect of the natural environment. Paper [10] establishes conditions
of growth dynamics in a stochastic Ricker model. The stability (including ergodicity) of
the Ricker model with environmental stochasticity has been explored in [1–3], using the
theory of discrete-time Markov chains.

In this paper, we apply the martingale theory to the following generalization of the
Ricker model (1.1) with demographic stochasticity:

xn+1 = xne
−bxn(an + σnξn+1

)
, n= 0,1,2, . . . , (1.2)

where ξn+1 are independent random variables such that Eξn+1 = 0 and Eξ2
n+1 = ηn+1. We

assume that b > 0 is nonrandom and the following inequality is almost sure valid for all
n∈N:

0 < an + σnξn+1. (1.3)

Two main results on almost sure asymptotic stability of the solution to (1.2) are ob-
tained. The stability is understood in the standard sense of striving the solution to zero.
In the population model (1.2) and similar ones, it means that the population is driven
to extinction [4, 5, 11]. The first result is established for the situation when the corre-
sponding deterministic population disappears (the corresponding system without noise
is stable). It is shown that the presence of stochastic noise does not change the situation.
The second result deals with the case when the corresponding deterministic system is not
necessary stable. Then we establish the restrictions on the noise intensity which stabilizes
the system. We also obtain a result about the lower limit of the solution to (1.2) for a
general noise. The last section contains concluding remarks. Possible generalizations are
also discussed.

2. Preliminary definitions and facts

Let (Ω,�,{�n}n∈N,P) be a complete filtered probability space and {ξi}i∈N be a sequence
of independent random variables with Eξi = 0. We assume that the filtration {�n}n∈N is
naturally generated: �n = σ{ξi : i = 0,1, . . . ,n}, and use the standard abbreviation “a.s.”
for the term “almost sure” with respect to the fixed probability measure P.

Among all the sequences {Xn}n∈N of the random variables we distinguish those for
which Xn are �n-measured for all n∈N.

Definition 2.1. A stochastic sequence {Xn}n∈N is said to be an �n-martingale, if E|Xn| <∞
and E(Xn |�n−1)= Xn−1 a.s. for all n∈N.

Definition 2.2. A stochastic sequence {Xn}n∈N is said to be an �n-submartingale, if
E|Xn| <∞ and E(Xn |�n−1)≥ Xn−1 a.s. for all n∈N.

Definition 2.3. A stochastic sequence {ξn}n∈N is said to be an �n-martingale-difference, if
E|ξn| <∞ and E(ξn |�n−1)= 0 a.s. for all n∈N.
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The partial sum of martingale differences leads to the following martingale (and con-
versely):

Xn =
n∑

k=1

ξk is a martingale⇐⇒ ξk is a martingale difference. (2.1)

More details on the exploited stochastic notations and concepts can be found in [9,
20]. The following simple but important martingales will be used in this paper.

Example 2.4. Let {xn}n∈N be a sequence of independent random variables, E[xn] = 0,
E|xn| <∞, �n = σ{ξi : i= 0,1, . . . ,n}. Let also {yn}n∈N, E|yn| <∞, be a sequence of �n-
measurable random variables. Then

(a) Zn =
∑n

i=1 xi is an �n-martingale and xn is an �n-martingale difference;
(b) Un =

∑n
i=1 yi−1xi is an �n-martingale and yn−1xn is an �n-martingale difference.

Definition 2.5. A stochastic sequence {An}n∈N is said to be increasing if An−An−1 ≥ 0 a.s.
for all n∈N.

Lemma 2.6. Let {Xn}n∈N be an increasing stochastic sequence with E|Xn| <∞ for all n∈N.
Then {Xn}n∈N is a submartingale.

The next statement is a version of the Doob decomposition theorem (see, e.g., [20]).

Theorem 2.7. Let {Yn}n∈N be an �n-submartingale. Then there exist an �n-martingale
{Mn}n∈N and an increasing �n−1-measurable stochastic sequence {An}n∈N such that a.s. for
every n= 1,2, . . . , the Doob decomposition takes place:

Yn =Mn +An. (2.2)

Decomposition (2.2) is unique.

The following lemma can be obtained from Theorem 2.7 (see [15] for details).

Lemma 2.8. Let {ξn}n∈N be an �n-martingale-difference. Then an �n-martingale-differ-
ence {μn}n∈N and a positive �n−1-measurable stochastic sequence {ηn}n∈N exist and a.s. for
every n= 1,2, . . . ,

ξ2
n = μn +ηn. (2.3)

If ξn are independent, then for all n≥ 0,

ηn = E
(
ξ2
n

)
, μn = ξ2

n −E
(
ξ2
n

)
. (2.4)

To establish the asymptotic stability, we need to apply one of the well-known martin-
gale convergence theorems (e.g., [9, 20]).

Lemma 2.9. Let {Yn}n∈N be a nonnegative �n-submartingale, and let

Yn =An +mn (2.5)
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be its Doob decomposition. Then a.s.

{
A∞ <∞}⊆ {Yn −→

}
. (2.6)

Here by {Yn →} = {ω ∈ Ω : Yn(ω) →} we denote the set of all ω ∈ Ω for which
limt→+∞Yn(ω) exists and is finite.

The next lemma is a version of the convergence theorem for semimartingale inequali-
ties, which is convenient for this paper.

Lemma 2.10. Let {Zn}n∈N be a nonnegative �n-measurable process, E|Zn| <∞ for all n∈
N, and

Zn ≤ Zn−1 +un− vn + νn, n= 1,2, . . . , (2.7)

where {νn}n∈N is an �n-martingale difference, {un}n∈N, {vn}n∈N are nonnegative �n−1-
measurable processes, E|un|,E|vn| <∞ for all n∈N.

Then
{ ∞∑

n=1

un <∞
}

⊆
{ ∞∑

n=1

vn <∞
}
⋂{

Zn −→
}
. (2.8)

Proof. We have

Zn = Zn−1 +un− vn + νn−
(
Zn−1 +un− vn + νn−Zn

)= Zn−1 +un− vn + νn−wn,
(2.9)

where

wn = Zn−1 +un− vn + νn−Zn ≥ 0 (2.10)

is an �n-measurable. Since the sequence Wn =
∑n

i=1wi is increasing and �n-measurable
with E|Wn| ≤

∑n
i=1E|wi| <∞ for all n∈N, we conclude from Lemma 2.6 that {Wn}n∈N

is an �n-submartingale. Applying Theorem 2.7, we obtain the following representation
for Wn:

Wn = Cn +M(1)
n , (2.11)

with an �n-martingale {M(1)
n }n∈N and the increasing �n−1-measurable process {Cn}n∈N.

From the last equality and (2.9), we obtain that

Zn = Z0 +Un−
(
Vn +Cn

)
+
(
Mn−M(1)

n

)
, (2.12)

where Un =
∑n

i=1ui, Vn =
∑n

i=1 vi, Mn =
∑n

i=1 νi. The substitution of M̄n =Mn−M(1)
n and

Ūn = Z0 +Un into (2.12) for all n∈N leads to

Zn +
(
Vn +Cn

)= Ūn + M̄n = Yn. (2.13)

The stochastic sequence {Yn}n∈N, defined by (2.13), is a nonnegative �n-submartingale
with the unique decomposition Yn = Ūn + M̄n into the sum of the �n-martingale
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{M̄n}n∈N and the �n−1-measurable increasing sequence {Ūn}n∈N. Using Lemma 2.9, we
conclude that a.s.

Ω1 =
{
Ū∞ <∞}⊆ {Yn −→

}
. (2.14)

It means that limn→∞Yn exists a.s. on Ω1 and therefore Yn is a.s. bounded from above on
Ω1. From the left-hand side of (2.13), we have another representation for Yn:

Yn = Zn +
(
Vn +Cn

)
. (2.15)

Since Yn is a.s. bounded above on Ω1 and the process Zn is nonnegative, the process
Vn + Cn is also a.s. bounded above on Ω1. Since Vn and Cn are increasing, there exist
the finite limits limn→∞Vn and limn→∞Cn a.s. on Ω1. Therefore, the limit limn→∞Zn also
exists a.s. on Ω1. The lemma is proven. �

3. Almost sure asymptotic stability of the stochastic Ricker model

3.1. Case 0 < an < 1. In the case 0 < an < 1, any solution to the deterministic equation
(1.1) monotonically tends to zero [11]. Let us are prove that then model (1.2) is also
asymptotically stable. Hence, if the dynamic system (1.1) is asymptotically stable, then
any noise of the form e−bxiσiξi+1 cannot change the situation and (1.3) is the only required
condition to guarantee the positiveness of the solution (with the initial condition x0 > 0).

Theorem 3.1. Suppose that condition (1.3) holds and

∞∑

i=1

(
ai− 1

)=−∞, 0 < ai < 1, ∀i∈N. (3.1)

Let xn be a solution to (1.2) with an arbitrary initial value x0 > 0. Then a.s.

lim
n→∞xn = 0. (3.2)

Proof. A solution to (1.2) can be represented as

xn+1 = x0

n∏

i=0

e−bxi
(
ai + σiξi+1

)
. (3.3)

Using (1.3), it proves that xn > 0 for all n ∈ N if x0 > 0. The opposite statement is also
true: xn < 0 for all n∈N if x0 < 0. Equation (1.2) can be rewritten as

xn+1− xn = xn
(
ane

−bxn − 1
)

+ e−bxnxnσnξn+1. (3.4)

Using the positiveness of xn and an, the difference xn+1− xn can be estimated as

xn+1− xn ≤−xn
(
1− an

)
+ e−bxnxnσnξn+1 (3.5)

for all n≥ 1. Since an < 1 and xn > 0 for all n∈N, we apply Lemma 2.10 with

Zn = xn, un ≡ 0, vn = xn−1
(
1− an−1

)
, νn ≡ e−bxn−1xn−1σn−1ξn, (3.6)
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and obtain that limn→∞ xn a.s. exists and a.s.

∞∑

i=1

xi
(
1− ai

)
<∞. (3.7)

To prove that a.s. limn→∞ xn = 0, we assume the opposite: limn→∞ xn(ω) ≥ c(ω) > 0 for
ω ∈Ω1, Ω1 ⊂Ω, P{Ω1} > 0. Then, the a.s. finite N =N(ω) exists such that for all n≥N ,
and for ω ∈Ω1 we have

∞∑

i=N
xi(ω)

(
1− ai

)≥ c(ω)
∞∑

i=N

(
1− ai

)−→∞ (3.8)

that contradicts our assumption. Hence, the theorem is proven. �

3.2. Case an ≥ 1. In the case an ≥ 1 the zero equilibrium state of the original determin-
istic equation is unstable, the population grows and may possess a positive equilibrium
state (e.g., [6, 11]). Let us estimate the lower limit of the solution to the stochastic equa-
tion (1.2).

Theorem 3.2. Suppose that condition (1.3) holds, an ≥ 1 for all n > 0, and limn→∞ lnan
exists. Let xn be a solution to (1.2) with an arbitrary initial value x0 > 0. Then a.s.

0≤ liminf
n→∞ xn ≤ lim

n→∞
lnan
b

. (3.9)

Proof. Suppose that (3.9) is incorrect, then there exist a set Ω1 ∈Ω and a.s. finite random
variables δ = δ(ω) > 0 and N =N(ω) such that P(Ω1) > 0 and for n≥N(ω), ω ∈Ω1,

xn(ω)≥ lnan
b

+ δ(ω). (3.10)

Then, for any ω ∈Ω1 and n≥N(ω), we have

eb(xn(ω)−δ(ω)) ≥ an, 1− ane
−bxn(ω) ≥ 1− e−δ(ω)b = ε(ω) > 0. (3.11)

Since the solution xn to (1.2) is nonnegative, we get

xn(ω)
(
1− ane

−bxn(ω))≥ 0 (3.12)

for any n≥N(ω) and ω∈Ω1. Let us take

χ(u)=
⎧
⎨

⎩
1, if u > 0,

0, otherwise,
(3.13)

and rewrite (3.4) as follows:

xn+1− xn = xn
(
ane

−bxn − 1
)
χ
[
ane

−bxn − 1
]

− xn
(
1− ane

−bxn)χ
[
1− ane

−bxn]+ e−bxnxnσnξn+1.
(3.14)
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We choose

Zn = xn,

un = xn−1
(
an−1e

−bxn−1 − 1
)
χ
[
an−1e

−bxn−1 − 1
]
,

vn = xn−1
(
1− an−1e

−bxn−1
)
χ
[
1− an−1e

−bxn−1
]
,

νn = e−bxn−1xn−1σn−1ξn.

(3.15)

Noticing that un ≡ 0 on Ω1 for n≥N(ω) + 1, we obtain

∞∑

i=1

ui(ω)=
N(ω)∑

i=1

ui(ω) <∞ (3.16)

a.s. on Ω1. Therefore, we can apply Lemma 2.10 and prove that limn→∞ xn(ω) exists on
ω ∈Ω1 and for ω ∈Ω1,

∞ >
∞∑

i=1

vi(ω)=
∞∑

i=1

xi−1(ω)
(
1− ai−1e

−bxi−1(ω))χ
[
1− ai−1e

−bxi−1(ω)]

≥
∞∑

i=N(ω)+1

xi−1(ω)
(
1− ai−1e

−bxi−1(ω)).

(3.17)

However, for ω ∈Ω1,

∞∑

i=N(ω)+1

xi−1(ω)
(
1− ai−1e

−bxi−1(ω))

≥ ε(ω)
∞∑

i=N(ω)+1

xi−1(ω)≥ ε(ω)
∞∑

i=N(ω)+1

(
lnai−1

b
+ δ(ω)

)
≥ ε(ω)

∞∑

i=N(ω)+1

δ(ω)=∞,

(3.18)

that contradicts (3.17). It means that the assumption (3.10) is not correct and (3.9) holds
true. �

Remark 3.3. At an ≡ a > 1, the deterministic model (1.1) has the nontrivial equilibrium
state

X∗ = lna
b

. (3.19)

Hence, Theorem 3.2 extends the result of Theorem 3.1 in the sense that the demographic
stochastic noise cannot improve the population growth of the deterministic Ricker model.
Indeed, at any n a solution xn to (1.2) will take the values lower than X∗ infinite number
of times. If the reproduction rate an tends to its bifurcation value 1,

lim
n→∞an = 1, (3.20)
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we can treat the result of Theorem 3.2 in the following way: there exists the sequence of
years {nk}k∈N such that the population size xnk in these years tends to zero:

lim
k→∞

xnk = 0. (3.21)

3.3. Case of a large noise. The next theorem explores the case when the noise in (1.2) is
large enough and can bring a population to extinction even if the corresponding popula-
tion without noise does not disappear.

Theorem 3.4. Suppose that there exist L∈R and γ ∈ (0,1) such that for all n∈N, a.s.

0 < an + σnξn+1 ≤ L, (3.22)

1− an +
(1− γ)

2(2 +L)2−γ σ
2
nηn ≥ 0, (3.23)

∞∑

i=1

(
1− ai

)
+

(1− γ)
2(2 +L)2−γ

∞∑

i=1

σ2
i ηi =∞. (3.24)

Let xn be a solution to (1.2) with an arbitrary initial condition x0. Then

lim
n→∞xn = 0. (3.25)

Proof. To estimate the difference

x
γ
n+1− x

γ
n = x

γ
ne−γbxn

(
an + σnξn+1

)γ − x
γ
n, (3.26)

we apply the Taylor expansion of the function y = (1 +u)γ up to the third term

(1 +u)γ = 1 + γu+
γ(γ− 1)

2
(1 + θ)γ−2u2, (3.27)

with θ is between 0 and u. We rewrite

(
an + σnξn+1

)γ = (1 + [(an− 1) + σnξn+1]
)γ

(3.28)

and choose u= (an− 1) + σnξn+1. Using (3.22), we obtain that

|u| = ∣∣(an− 1
)

+ σnξn+1
∣
∣≤max{1,L− 1}, 1 + θ ≤ 1 + |u| ≤ 2 +L,

1
2(1 + θ)2−γ ≥

1
2(2 +L)2−γ ,

γ(γ− 1)
2(1 + θ)2−γ ≤

γ(γ− 1)
2(2 +L)2−γ .

(3.29)
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Then

x
γ
n+1− x

γ
n = x

γ
ne−γbxn

(

1 + γ
(
an− 1

)
+

γ(γ− 1)
2(2 + θ)2−γ

[(
an− 1

)
+ σnξn+1

]2
)

− x
γ
n

≤ x
γ
ne−γbxn

(

1 + γ
(
an− 1

)
+

γ(γ− 1)
2(2 +L)2−γ

[(
an− 1

)
+ σnξn+1

]2
)

− x
γ
n

= x
γ
ne−γbxn

(

1 + γ
(
an− 1

)
+

γ(γ− 1)
2(2 +L)2−γ

[(
an− 1

)2
+ σ2

nηn+1
]
)

+ μ̃n+1− x
γ
n

≤ x
γ
ne−γbxn

(

− γ
(
1− an

)− γ(1− γ)
2(2 +L)2−γ σ

2
nηn+1

)

+ x
γ
n
(
e−γbxn − 1

)
+ μ̃n+1

≤−xγneγbxn
(

γ
(
1− an

)
+

γ(1− γ)
2(2 +L)2−γ σ

2
nηn+1

)

+ μ̃n+1,

(3.30)

where

μ̃n+1 = γx
γ
neγbxn

(

σnξn+1 +
(γ− 1)

2(2 +L)2−γ
[
2(an− 1)σnξn+1 + σ2

nμn+1
]
)

. (3.31)

Then, for all n∈N,

x
γ
n+1− x

γ
n ≤−xγneγbxn

(

γ
(
1− an

)
+

γ(1− γ)
2(2 +L)2−γ σ

2
nηn+1

)

+ μ̃n+1. (3.32)

Since xn > 0 for all n ∈ N, the first term in the right-hand side of (3.32) is nonpositive.
Hence we can apply Lemma 2.10 to inequality (3.32) with

Zn = x
γ
n, un ≡ 0, vn = x

γ
n−1e

γbxn−1

(

γ
(
1− an−1

)
+

γ(1− γ)
2(2 +L)2−γ σ

2
n−1ηn

)

,

νn = μ̃n,

(3.33)

and obtain that a.s. limn→∞ xn exists and a.s.

n∑

i=1

x
γ
i e
−γbxi

(

1− ai +
(1− γ)

2(2 + θ)2−γ σ
2
i ηi+1

)

<∞. (3.34)

To prove that limn→∞ xn = 0, we assume the opposite: limn→∞ xn(ω) > 0 for ω∈Ω1, Ω1 ⊂
Ω, P{Ω1} > 0. Then there exist a.s. finite numbers N = N(ω) > 0 and ζ = ζ(ω) > 0 such
that for n≥N and ω ∈Ω1,

xn(ω)e−γbxn(ω) ≥ ζ(ω). (3.35)
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Applying (3.24), we obtain a contradiction to (3.34): on Ω1,

n∑

i=N(ω)

xi(ω)e−γbxi(ω)
((

1− ai
)

+
(1− γ)

2(2 +L)2−γ σ
2
i ηi+1

)

≥ ζ(ω)
n∑

i=N(ω)

(
(
1− ai

)
+

(1− γ)
2(2 +L)2−γ σ

2
i ηi+1

)
−→∞, when n−→∞.

(3.36)

It proves the theorem. �

Remark 3.5. If an ≥ 1 and limn→∞ an = 1, then Theorem 3.2 helps to eliminate condition
(3.24). Indeed, in this case Theorem 3.2 states that liminfn→∞ xn = 0. From the proof of
Theorem 3.4 it is clear that we need only condition (3.23) for the existence of limn→∞ xn.
If it is valid, then limn→∞ xn = 0.

In particular, it means that in the case an ≥ 1, limn→∞ an = 1, the intensity of the noise
that stabilizes (1.2) can be smaller than in the general case. For example, let us choose

an = 1 +
1
n2

, P
{
ξn = 1

}= 1
2

, P
{
ξn =−1

}= 1
2

, σn = 8
n

, (3.37)

for all n∈N. Then Eξn = 0, Eξ2
n = 1, for all n∈N, and

0 < 1 +
1
n2
− 8
n
≤ an + σnξn ≤ 1 +

1
n2

+
8
n
≤ 2 (3.38)

for sufficiently large n. Taking L= 2 and γ = 1/2, we prove that condition (3.23) is valid:

1− an +
(1− γ)

2(2 +L)2−γ σ
2
nηn+1 =− 1

n2
+

1
2243/2

26

n2
= 1

n2
> 0. (3.39)

However, condition (3.24) is not true.

Remark 3.6. Conditions (3.23), (3.24) hold true, in particular, when the reproduction
rates ai are small:

ai ≤ 1, ∀i∈N,
∞∑

i=1

(
1− ai

)=∞. (3.40)

This case reflects a deteriorating deterministic system and is trivial. Then (3.23) and
(3.24) are valid for any noise. It means that Theorem 3.1 is a partial case of Theorem 3.4.

If the sign of ai− 1 is unknown, then the deterministic population with no noise can
grow (in particular, when all an ≥ 1 [11]). Then Theorem 3.4 can provide the restrictions
on the reproduction rates ai and the noise intensities σn, ηn when the stochastic popula-
tion does not grow but disappears.

One can see that condition (3.23) is valid for some γ ∈ (0,1) if for all n∈N a.s.

an ≤ 1 + kσ2
nηn = 1 +Δn, (3.41)
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where k < 1/(2(2 + L)2). Indeed, since 2k(2 + L)2 < 1 and limγ→0(1− γ)(2 + L)γ = 1, we
can find γ0 ∈ (0,1) such that for γ ∈ (0,γ0),

(1− γ)(2 +L)γ > 2k(2 +L)2. (3.42)

Then

1− an +
(1− γ)

2(2 +L)2−γ σ
2
nηn ≥−kσ2

nηn +
(1− γ)(2 +L)γ

2(2 +L)2
σ2
nηn ≥ 0. (3.43)

If we strengthen condition (3.41) to an < 1 +Δn− ε for a small ε > 0, then condition (3.24)
is also true. Instead of the constant ε, we can take εn = 1/n or any other εn such that the
series

∑∞
n=1 εn =∞.

Let us consider (3.41). One can see that Δn > 0 for any an, σn, ηn. Hence, there always
exists a domain (1,1 +Δn] of the parameter an such that the population with no noise
survives but the stochastically perturbed population extinguishes. More specific condi-
tions for the threshold value Δn can be obtained from (3.41) or simulated numerically. In
this paper we restrict ourselves with the fundamental fact that such a domain exists and
depends on the noise intensities ηn and σn.

In the stationary case an ≡ a, σn ≡ σ , ηn ≡ η, the only condition

a < 1 +
1

2(2 +L)2
σ2η, where L= a+ σmax

n∈N
{∣∣ξn+1

∣
∣}, (3.44)

is enough to satisfy Theorem 3.4.

4. Concluding remarks

From the biological point of view, the paper analyzes and clarifies the fundamental fact
that certain types of stochastic noise cannot improve the population growth. In fact, it
increases the risk of population extinction. We have obtained the exact conditions (3.23)
and (3.24) when the demographic-type stochastic noise causes a population to extin-
guish, which otherwise would exist and grow. These conditions set certain relationships
between the population reproduction rates and the intensities of the stochastic noise.

The applied importance of these results depends on the applicability of the Ricker
model to real-life biological populations. An important open issue is the color of the
stochastic noise experimentally observed in populations. In model (1.2) (as well as in [1–
3] and many other investigations), the values in two consecutive steps are assumed to be
independent, which results in the “white noise.” However, some observations show that
the population fluctuations can be positively autocorrelated. Recent results (see [10] and
the references therein) have demonstrated that the suggestion of “red” (an autoregressive
process) or “pink” environment can either increase or decrease the population extinction
risk depending on the model structure.

The authors are going to extend the above results to the equation with multistep delays
in the environmental feedback [6]:

xn+1 = xne
−∑k

j=0 bjxn− j
(
an + σnξn+1

)
, (4.1)
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where k ∈ N is some fixed number, bj ≥ 0 for all i = 0,1, . . . ,k, and ξn+1 are positively
autocorrelated, and also to the continuous-time case of Ito type integral equations with
distributed delays.
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