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We consider a simplified bidirectional associated memory (BAM) neural network model
with four neurons and multiple time delays. The global existence of periodic solutions bi-
furcating from Hopf bifurcations is investigated by applying the global Hopf bifurcation
theorem due to Wu and Bendixson’s criterion for high-dimensional ordinary differential
equations due to Li and Muldowney. It is shown that the local Hopf bifurcation implies
the global Hopf bifurcation after the second critical value of the sum of two delays. Nu-
merical simulations supporting the theoretical analysis are also included.

Copyright © 2006 X.-P. Yan and W.-T. Li. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In this paper, we consider the global existence of periodic solutions bifurcating from the
Hopf bifurcations to the simplified bidirectional associated memory (BAM) neural net-
work model with four neurons and two differential transmission delays:

u̇1(t)=−μ1u1(t) + c21 f1
(
u2
(
t− τ2

))
+ c31 f1

(
u3
(
t− τ2

))
+ c41 f1

(
u4
(
t− τ2

))
,

u̇2(t)=−μ2u2(t) + c12 f2
(
u1
(
t− τ1

))
,

u̇3(t)=−μ3u3(t) + c13 f3
(
u1
(
t− τ1

))
,

u̇4(t)=−μ4u4(t) + c14 f4
(
u1
(
t− τ1

))
,

(1.1)

which implies that there is only one neuron on the I-layer whose state and decay rate are,
respectively, u1(t) and μ1 and three neurons on the J-layer whose states and decay rates
are, respectively, uk(t) and μk (k = 2,3,4), the time delay from the I-layer to another J-
layer is τ1, while the delay from the J-layer back to the I-layer is τ2, the connected weights

Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2006, Article ID 57254, Pages 1–18
DOI 10.1155/DDNS/2006/57254

http://dx.doi.org/10.1155/S1026022606572541


2 A BAM neural network with delays

(x1, f1) I-layer

τ1 τ2 τ1 τ2
τ1 τ2

(x2, f2) (x3, f3) (x4, f4)

J-layer

Figure 1.1. Graph of the architecture of the model (1.1).

and the activation function from the neuron uk to u1 are, respectively, ck1 and f1, and
from u1 to uk are c1k and fk (k = 2,3,4), respectively (see Figure 1.1).

It is well known that periodic solutions can arise through the Hopf bifurcation in
delay differential equations. For the existence of local periodic solutions bifurcating form
Hopf bifurcations in delayed neural networks, we refer to [1, 2, 4, 3, 9, 10]. Recently, Yan
and Li [12] considered the system (1.1) and obtained sufficient conditions ensuring the
absolute stability, conditional stability of the zero equilibrium, and the existence of Hopf
bifurcations by using the results due to Ruan and Wei [7] and some analysis techniques.
Furthermore, by applying the normal form theory and the center manifold theorem due
to Hassard et al. [5], we also obtained the formulae determining the direction and stability
of the Hopf bifurcation.

In general, the periodic solutions bifurcating from Hopf bifurcations are local. It is well
known that the study on dynamical systems not only involve a local dynamics, but also
involve a global one. In particular, the global existence of periodic solutions, which can
arise through the local Hopf bifurcation in delayed systems, is of great interest. Recently,
Wei and Li [8] established the global existence of a tri-neuron ring model with delays.
But up to now, to the best of our knowledge, there are no results on the global existence
of periodic solutions of the neural networks with four or more neurons and delays.

Based on the results obtained by Yan and Li [12] regarding the existence of periodic
solutions bifurcating from local Hopf bifurcations of (1.1), the purpose of this paper
is to investigate the global existence of multiple periodic solutions for (1.1) by using a
global Hopf bifurcation result on functional differential equations due to Wu [11] and
the Bendixsons criterion for higher-dimensional ordinary differential equations due to Li
and Muldowney [6].

This paper is organized as follows. In Section 2, we introduce the local Hopf bifurca-
tion results of the model (1.1) obtained by Yan and Li [12]. In Section 3, we show that the
local Hopf bifurcation of system (1.1) implies the global Hopf bifurcation after the sec-
ond critical value of the sum of two delays by using a global Hopf bifurcation theorem due
to Wu [11] and a Bendixson’s criterion for high-dimensional ordinary differential equa-
tions due to Li and Muldowney [6]. In Section 4, the model (1.1) with special activation
functions fk(u) = tanh(u) (k = 1,2,3,4) is studied and some numerical simulations are
presented.
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2. Results on local Hopf bifurcations

In this section, we will list some results in [12] to establish the global existence of the
nonconstant periodic solutions.

Throughout this section, we make the following hypothesis on the activation functions
fk (k = 1,2,3,4).

(H1) fk ∈ C1(R,R), fk(0) = 0, and the origin (0,0,0,0) is the unique equilibrium of
system (1.1).

Under the assumption (H1), let uk(t) (k = 1,2,3,4) be defined, respectively, by u1(t)=
x1 (t− τ1), uk(t)= xk(t) (k = 2,3,4), and τ = τ1 + τ2. Then system (1.1) reduces to

u̇1(t)=−μ1u1(t) + c21 f1
(
u2(t− τ)

)
+ c31 f1

(
u3(t− τ)

)
+ c41 f1

(
u4(t− τ)

)
,

u̇2(t)=−μ2u2(t) + c12 f2
(
u1(t)

)
,

u̇3(t)=−μ3u3(t) + c13 f3
(
u1(t)

)
,

u̇4(t)=−μ4u4(t) + c14 f4
(
u1(t)

)
.

(2.1)

The linearized system of (2.1) at the equilibrium (0,0,0,0) is

u̇1(t)=−μ1u1(t) +α21u2(t− τ) +α31u3(t− τ) +α41u4(t− τ),

u̇2(t)=−μ2u2(t) +α12u1(t),

u̇3(t)=−μ3u3(t) +α13u1(t),

u̇4(t)=−μ4u4(t) +α14u1(t),

(2.2)

where αk1 = ck1 f
′

1 (0) (k = 2,3,4) and α1l = c1l f
′
l (0) (l = 2,3,4), and the corresponding

characteristic equation of system (2.2) is

det

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ+μ1 −α21e−λτ −α31e−λτ −α41e−λτ

−α12 λ+μ2 0 0

−α13 0 λ+μ3 0

−α14 0 0 λ+μ4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 0, (2.3)

that is,

λ4 +
(
μ1 +μ2 +μ3 +μ4

)
λ3 +

(
μ1μ2 +μ1μ3 +μ1μ4 +μ2μ3 +μ2μ4 +μ3μ4

)
λ2

+
(
μ1μ2μ3 +μ1μ2μ4 +μ1μ3μ4 +μ2μ3μ4

)
λ+μ1μ2μ3μ4

− {(α12α21 +α13α31 +α14α41
)
λ2

+
[
α12α21

(
μ3 +μ4

)
+α13α31

(
μ2 +μ4

)
+α14α41

(
μ2 +μ3

)]
λ

+α12α21μ3μ4 +α13α31μ2μ4 +α14α41μ2μ3
}
e−λτ = 0.

(2.4)
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Set

a3 = μ1 +μ2 +μ3 +μ4 > 0,

a2 = μ1μ2 +μ1μ3 +μ1μ4 +μ2μ3 +μ2μ4 +μ3μ4 > 0,

a1 = μ1μ2μ3 +μ1μ2μ4 +μ1μ3μ4 +μ2μ3μ4 > 0,

a0 = μ1μ2μ3μ4 > 0,

b2 =−
(
α12α21 +α13α31 +α14α41

)
,

b1 =−
[
α12α21

(
μ3 +μ4

)
+α13α31

(
μ2 +μ4

)
+α14α41

(
μ2 +μ3

)]
,

b0 =−
(
α12α21μ3μ4 +α13α31μ2μ4 +α14α41μ2μ3

)

(2.5)

and

a= a2
3− 2a2 = μ2

1 +μ2
2 +μ2

3 +μ2
4 > 0,

b= 2a0 + a2
2− 2a1a3− b2

2

= μ2
1μ

2
2 +μ2

1μ
2
3 +μ2

1μ
2
4 +μ2

2μ
2
3 +μ2

2μ
2
4 +μ2

3μ
2
4−

(
α12α21 +α13α31 +α14α41

)2
,

c = a2
1− 2a0a2 + 2b0b2− b2

1 = μ2
1μ

2
2μ

2
3 +μ2

1μ
2
2μ

2
4 +μ2

1μ
2
3μ

2
4 +μ2

2μ
2
3μ

2
4

+ 2
(
α12α21 +α13α31 +α14α41

)(
α12α21μ3μ4 +α13α31μ2μ4 +α14α41μ2μ3

)

− [α12α21
(
μ3 +μ4

)
+α13α31

(
μ2 +μ4

)
+α14α41

(
μ2 +μ3

)]2
,

d = a2
0− b2

0 = μ2
1μ

2
2μ

2
3μ

2
4−

(
α12α21μ3μ4 +α13α31μ2μ4 +α14α41μ2μ3

)2
,

(2.6)

and assume that ak, bl (k = 0,1,2,3; l = 0,1,2) satisfy the condition (H2).
(H2) a0 + b0 > 0, a1 + b1 > 0, a3 > 0, and

a3
[(
a1 + b1

)(
a2 + b2

)− a3
(
a0 + b0

)]
>
(
a1 + b1

)2
. (2.7)

Let

h(z)= z4 + az3 + bz2 + cz+d, (2.8)

and define

p = 8b− 3a2

16
, q = a3− 4ab+ 8c

32
, D0 = q2

4
+
p3

27
. (2.9)
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Then, from the sign of D0, we have

z∗1 =−
a

4
+ 3

√

−q

2
+
√
D0 + 3

√

−q

2
−
√
D0 if D0 > 0,

z∗2 =max
{
− a

4
− 2 3

√
q

2
,−a

4
+ 3

√
q

2

}
if D0 = 0,

z∗3 =max
{
r∗1 ,r∗2 ,r∗3

}
if D0 < 0,

(2.10)

where

r∗1 =−
a

4
+ 2Re{α}, r∗2 =−

a

4
+ 2Re{αε}, r∗3 =−

a

4
+ 2Re{αε}, (2.11)

and α is one of the cubic roots of the complex number −q/2 +
√
D0 and ε = −1/2 +

(
√

3/2)i.
In the following, we assume that the following condition holds:
(H3) (i) z∗1 > 0 and h(z∗1 ) < 0 when D0 > 0;

(ii) z∗2 > 0 and h(z∗2 ) < 0 when D0 = 0;
(iii) z∗3 > 0 and h(z∗3 ) < 0 when D0 < 0.

Under the hypothesis (H3), the equation h(z)= 0 has at least one positive root z0, and
denote ω0 =√z0. Define

τj = 1
ω0

[
arccos

(
Δ1

Δ

)
+ 2 jπ

]
, j = 0,1,2, . . . , (2.12)

where

Δ1 = b2ω
6
0 +
(
a3b1− a2b2− b0

)
ω4

0 +
(
a0b2 + a2b0− a1b1

)
ω2

0− a0b0,

Δ= b2
2ω

4
0 +
(
b2

1− 2b0b2
)
ω2

0 + b2
0.

(2.13)

From [12, Theorem 3.1], we have the following result.

Lemma 2.1. Let ak, bl (k = 0,1,2,3; l = 0,1,2); a, b, c, d, and τj be defined, respectively, by
(2.5), (2.6), and (2.12). Suppose that (H1) and (H2) are satisfied, and that d < 0 or d ≥ 0
and one of the conditions in (H3) holds. In addition, the positive root z0 of (2.5) satisfies
h′(z0) �= 0. Then the equilibrium (0,0,0,0) of (2.1) is asymptotically stable when τ ∈ [0,τ0),
and unstable when τ > τ0. Moreover, at τ = τj , j = 0,1,2, . . . ,±iω0 is a pair of simple imag-
inary roots of (2.5), and (2.1) undergoes Hopf bifurcation near (0,0,0,0).

3. Global existence of periodic solutions

In this section, we will investigate the global existence of periodic solutions bifurcating
from the equilibrium (0,0,0,0) of system (2.1) when τ = τj ( j = 0,1,2, . . .) by applying
a global Hopf bifurcation result due to Wu [11] and a Bendixson’s criterion for high-
dimensional ordinary differential equations due to Li and Muldowney [6].

Throughout this section, we need to impose the following condition on fk.
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(H4) fk ∈ C2(R,R) and there exists a constant L > 0 such that

∣
∣ fk(u)

∣
∣≤ L ∀u∈R, k = 1,2,3,4. (3.1)

LetX = C([−τ,0],R4) and let ut = (u(1)
t ,u(2)

t ,u(3)
t ,u(4)

t )T ∈ X be defined as ut(s)= u(t+
s) for t ≥ 0 and s∈ [−τ,0]. Then system (2.1) can be rewritten as the following functional
differential equation:

u̇(t)= F
(
ut,τ, p

)
(3.2)

parameterized by two real parameters (τ, p) ∈ R+×R+, where R+ = [0,∞). It is obvious
that (3.2) has a unique equilibrium (0,0,0,0) under the assumption (H1) and easy to see
that the mapping F : X×R+×R+ is completely continuous under the condition (H4). If
we restrict F to the subspace of constant functions u, then F is identified withR4 and thus
we obtain a mapping F̂ = F|R4×R+×R+ :R4×R+×R+ →R4.

Let u0 ∈ X be the constant mapping with value u0 ∈R4. The point (u0,τ0, p0) is called
a stationary solution of (3.2) if F(u0,τ0, p0) = 0. From the assumption (H4) we know
easily that the following condition regarding the mapping F̂ holds.

(A1) F̂ ∈ C2(R4×R+×R+,R4).
It follows from system (2.1) and (H2) that

detDuF̂(0,τ, p)= det

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−μ1 α21 α31 α41

α12 −μ2 0 0

α13 0 −μ3 0

α14 0 0 −μ4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= μ1μ2μ3μ4−
(
α12α21μ3μ4 +α13α31μ2μ4 +α14α41μ2μ3

)= a0 + b0 > 0.
(3.3)

Therefore, we have the following property on the linear operator DuF̂(u,τ, p).
(A2) DuF̂(u,τ, p) is an isomorphism at the zero equilibrium, (τ, p)∈R+×R+.
From (A1), (A2), and the implicit function theorem, for the stationary solution (0,τj ,

2π/ω0), j = 0,1,2, . . ., there exist ε0 > 0 and a C1 mapping y : Bε0 (τj ,2π/ω0)→ R4 such

that F̂(y(τ, p),τ, p)= 0 for (τ, p)∈ Bε0 (τj ,2π/ω0)= (τj− ε0,τj + ε0)× (2π/ω0− ε0,2π/ω0

+ ε0).
Furthermore, it is easy to observe that the following result is true.
(A3) F(ϕ,τ, p) is differential with respect to ϕ.
The characteristic matrix of (3.2) at a stationary solution (u,τ0, p0), where u = (u(1),

u(2),u(3),u(4))T ∈R4, is taken as the following form:

�(u,τ, p)(λ)= λI −DϕF
(
u,τ0, p0

)(
eλ·I

)
, (3.4)
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that is,

� (u,τ, p)(λ)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ+μ1 −c21 f
′

1

(
u(2))e−λτ −c31 f

′
1

(
u(3))e−λτ −c41 f

′
1

(
u(4))e−λτ

−c12 f
′

2

(
u(1)) λ+μ2 0 0

−c13 f
′

3

(
u(1)) 0 λ+μ3 0

−c14 f
′

4

(
u(1)) 0 0 λ+μ4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(3.5)

and the zeros of det�(u,τ, p)(λ) = 0 are called the characteristic roots. Note that (A2)
implies that λ= 0 is not a characteristic root of equilibrium of (3.2). Clearly, the charac-
teristic matrix�(y(τ, p),τ, p)(λ) is continuous in (τ, p,λ)∈ Bε0 (τj ,2p/ω0)×C.

A stationary solution (u0,τ0, p0) of (3.2) is called a center if det�(u,τ0, p0)(i(2mπ/p0))
= 0 for some positive integer m or the equation det�(u,τ0, p0)(λ)= 0 has purely imag-
inary characteristic roots of the form i(2mπ/p0) for some positive integer m. A center
(u0,τ0, p0) is said to be isolated if it is the only center in some neighborhood of (u0,τ0, p0).
From (3.5), we can see

det�(0,τ, p)(λ)=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ+μ1 −α21e−λτ −α31e−λτ −α41e−λτ

−α12 λ+μ2 0 0

−α13 0 λ+μ3 0

−α14 0 0 λ+μ4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 0. (3.6)

Note that (3.6) is the same as (2.3) and (2.4), therefore, it is easily to see that

(
0,τj ,

2π
ω0

)
, j = 0,1,2, . . . , (3.7)

is an isolated center, and there exist ε ∈ (0,ε0), δ ∈ (0,ε0), and a smooth curve λ : (τj −
δ,τj + δ) → C such that det�(0,τ,2π/ω0)(λ(τ)) = 0, |λ(τ)− iω0| < ε, for all τ ∈ [τj −
δ,τj + δ] and

λ
(
τj
)= iω0, Re

dλ

dτ

∣
∣
∣
∣
τ=τj

�= 0, (3.8)

provided that dh(ω2
0)/dz �= 0, where h(z) is defined by (2.8).

For the above ε > 0, we define the set

Ωε,2π/ω0 =
{

(v, p) : 0 < v < ε,
∣
∣
∣
∣p−

2π
ω0

∣
∣
∣
∣ < ε

}
. (3.9)

It is easily to verify on [τj − δ,τj + δ]× ∂Ωε,2π/ω0 that the following condition holds.
(A4) det�(0,τ, p)(v + (2π/p)i) = 0 if and only if v = 0, τ = τj , and p = 2π/ω0, j =

0,1,2, . . . .
Furthermore, the conditions (A5) and (A6) in [11] are obvious.
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In the following, we define

H±
(

0,τj ,
2π
ω0

)
(v, p)= det�

(
0,τj ± δ,

2π
ω0

)(
v+ i

2π
p

)
, (3.10)

then from (A4) we know that H±(0,τj ,2π/ω0) �= 0 on ∂Ωε,2π/ω0 . Thus, the first crossing
number γ(0,τj ,2π/ω0) of the isolated center (0,τj ,2π/ω0) can be defined as in the follow-
ing form:

γ
(

0,τj ,
2π
ω0

)
= degB

(
H−

(
0,τj ,

2π
ω0

)
,0,Ωε,2π/ω0

)

−degB

(
H+
(

0,τj ,
2π
ω0

)
,0,Ωε,2π/ω0

)
,

(3.11)

then γ(0,τj ,2π/ω0) = 1(−1) provided that dh(ω2
0)/dz > 0(< 0), where h(z) is defined by

(2.8).
In what follows, we define

Σ= Cl
{

(z,τ, p)∈ X×R+×R+ : z is a p-periodic solution of (3.2)
}

,

N = {(z,τ, p) : F(z,τ, p)= 0
}

,
(3.12)

and let C(0,τj ,2π/ω0) denote the connected component of (0,τj ,2π/ω0) in Σ.
From the above discussion, we have

∑

(z,τ,p)∈C(0,τj ,2π/ω0)∩N
γ(z,τ, p) �= 0, (3.13)

if dh(ω2
0)/dz �= 0. Thus the connected component C(0,τj ,2π/ω0) through (0,τj ,2π/ω0)

in Σ is nonempty. Since the first crossing number of the unique equilibrium (0,0,0,0) is
not equal to zero, by [11, Theorem 3.3], we conclude that C(0,τj ,2π/ω0) is unbounded.
We thus have proved the following lemma.

Lemma 3.1. C(0,τj ,2π/ω0) is unbounded for each center (0,τj ,2π/ω0) if dh(ω2
0)/dz �= 0.

Lemma 3.2. Assume that the condition (H2) holds. Then all solutions of system (2.1) are
uniformly bounded.

Proof. Let � =∑4
j=2L(|a1 j|+ |aj1|). Then all solutions of system (2.1) satisfy the differ-

ential inequalities of the form

−μkxk(t)− � ≤ ẋk(t)≤−μkxk(t) + �, k = 1,2,3,4. (3.14)

From these inequalities, one can easily obtain

− �

μk
+
(
xk(0) +

�

μk

)
e−μkt ≤ xk(t)≤ �

μk
+
(
xk(0)− �

μk

)
e−μkt. (3.15)
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Noticing that μk > 0, it follows that

− �

μk
−
∣
∣
∣
∣xk(0) +

�

μk

∣
∣
∣
∣≤ xk(t)≤ �

μk
+
∣
∣
∣
∣xk(0)− �

μk

∣
∣
∣
∣ ∀t ≥ 0. (3.16)

Thus we know that all solutions of system (2.1) are uniformly bounded. This completes
the proof of Lemma 3.2. �

In the sequel, by applying a high-dimensional Bendixson’s criterion due to Li and Mul-
downey [6], we obtain sufficient conditions ensuring that system (2.1) with τ = 0 has no
nonconstant periodic solutions.

We first recall the definition of a kth exterior power or multiplicative compound of a
matrix.

Definition 3.3. Let A be an n×m matrix of real or complex numbers. Let ar1,...,rk ,l1,...,lk be
the minor of A determined by the rows (r1, . . . ,rk) and the columns (l1, . . . , lk), 1 ≤ r1 <
r2 . . . < rk ≤ n, 1 ≤ l1 < l2 . . . < lk ≤m. The kth multiplicative compound matrix A(k) of A

is the
(
n
k

)
×
(
m
k

)
matrix whose entries, written in lexicographic order, are ar1,...,rk ,l1,...,lk .

When n=m, the additive compound matrices are defined in the following way.

Definition 3.4. Let A be an n× n matrix. The kth additive compound A[k] of A is the(
n
k

)
×
(
n
k

)
matrix given by

A[k] =D(I +hA)(k)
∣
∣
h=0, (3.17)

where D denotes the derivative with respect to h.

If B = A[k] , the following formula for br,l can be deduced from (3.17). For any integer

r = 1, . . . ,
(
n
k

)
, let (r) = (r1,r2, . . . ,rk) be the rth member in the lexicographic ordering of

all k-tuples of integers such that 1≤ r1 < r2 < ··· < rk ≤ n. Then

br,l =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ar1,r1 + ···+ ark ,rk if (r)= (l),

(−1)s+tars,lt if exactly one entry rs in (r) does not appear in (l)

and lt does not appear in (r),

0 if (r) differs from (l) in two or more entries.

(3.18)

In the extreme cases when k = 1 and k = n, we have A[1] = A and A[n] = tr(A). When
n= 4, for the 2nd additive compound matrix A[2] of A, we have

A[2] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a11 + a22 a23 a24 −a13 −a14 0

a32 a11 + a33 a34 a12 0 −a14

a42 a43 a11 + a44 0 a12 a13

−a31 a21 0 a22 + a33 a34 −a24

−a41 0 a21 a43 a22 + a44 a23

0 −a41 a31 −a42 a32 a33 + a44

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.19)
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For any finite n, the system of ordinary differential equations

u̇= g(u), u∈Rn, g ∈ C1, (3.20)

whose second compound equation with respect to a solution u(t,x0)∈Ω, where Ω⊆Rn

is an open set, is defined as

ż(t)=
(
∂g

∂u

(
u
(
t,x0

))
)[2]

z(t), (3.21)

where ((∂g/∂u)(u(t,x0)))[2] is the second additive compound matrix of the Jacobian ma-
trix of vector function g(u) at u(t,x0).

Lemma 3.5 [6]. Let Ω⊆Rn be a simply connected region. Assume that the family of linear
systems

z′(t)=
(
∂g

∂u

(
u
(
t,x0

)))[2]

z(t), x ∈Ω, (3.22)

is qui-uniformly asymptotically stable. Then
(i) Ω contains no simple closed invariant curves including periodic orbits, homoclinic,

heterclinic cycles,
(ii) each semi-orbit in Ω converges to a single equilibrium.
In particular, if Ω is positively invariant and contains a unique equilibrium x, then x is

globally asymptotically stable in Ω.

We now consider system (2.1) with τ = 0, that is,

u̇1(t)=−μ1u1(t) + c21 f1
(
u2(t)

)
+ c31 f1

(
u3(t)

)
+ c41 f1

(
u4(t)

)
,

u̇2(t)=−μ2u2(t) + c12 f2
(
u1(t)

)
,

u̇3(t)=−μ3u3(t) + c13 f3
(
u1(t)

)
,

u̇4(t)=−μ4u4(t) + c14 f4
(
u1(t)

)
.

(3.23)

Denote

g
(
u1,u2,u3,u4

)=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−μ1u1 + c21 f1
(
u2
)

+ c31 f1
(
u3
)

+ c41 f1
(
u4
)

−μ2u2 + c12 f2
(
u1
)

−μ3u3 + c13 f3
(
u1
)

−μ4u4 + c14 f4
(
u1
)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.24)
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Then, we have

∂g

∂u
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−μ1 c21 f
′

1

(
u2
)

c31 f
′

1

(
u3
)

c41 f
′

1

(
u4
)

c12 f
′

2

(
u1
) −μ2 0 0

c13 f
′

3

(
u1
)

0 −μ3 0

c14 f
′

4

(
u1
)

0 0 −μ4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.25)

and, in view of (3.19),

(
∂g

∂u

)[2]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−(μ1 +μ2
)

0 0 −c31 f
′

1

(
u3
) −c41 f

′
1

(
u4
)

0

0 −(μ1 +μ3
)

0 c21 f
′

1

(
u2
)

0 −c41 f
′

1

(
u4
)

0 0 −(μ1 +μ4
)

0 c21 f
′

1

(
u2
)

c31 f
′

1

(
u3
)

−c13 f
′

3

(
u1
)

c12 f
′

2

(
u1
)

0 −(μ2 +μ3
)

0 0

−c14 f
′

4

(
u1
)

0 c12 f
′

2

(
u1
)

0 −(μ2 +μ4
)

0

0 −c14 f
′

4

(
u1
)

c13 f
′

3

(
u1
)

0 0 −(μ3 +μ4
)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(3.26)

Therefore, the second compound system

(
ż1, ż2, ż3, ż4, ż5, ż6

)T =
(
∂g

∂u

)[2](
z1,z2,z3,z4,z5,z6

)T
(3.27)

is

ż1 =−
(
μ1 +μ2

)
z1− c31 f

′
1

(
u3(t)

)
z4− c41 f

′
1

(
u4(t)

)
z5,

ż2 =−
(
μ1 +μ3

)
z2 + c21 f

′
1

(
u2(t)

)
z4− c41 f

′
1

(
u4(t)

)
z6,

ż3 =−
(
μ1 +μ4

)
z3 + c21 f

′
1

(
u2(t)

)
z5 + c31 f

′
1

(
u3(t)

)
z6,

ż4 =−
(
μ2 +μ3

)
z4− c13 f

′
3

(
u1(t)

)
z1 + c12 f

′
2

(
u1(t)

)
z2,

ż5 =−
(
μ2 +μ4

)
z5− c14 f

′
4

(
u1(t)

)
z1 + c12 f

′
2

(
u1(t)

)
z3,

ż6 =−
(
μ3 +μ4

)
z6− c14 f

′
4

(
u1(t)

)
z2 + c13 f

′
3

(
u1(t)

)
z3,

(3.28)

where u(t)= (u1(t),u2(t),u3(t),u4(t))T is a solution of the system (3.20) with u(0)= u0 ∈
R4. Set

W(z)=max
{
κl
∣
∣zl
∣
∣ : l = 1,2, . . . ,6

}
, (3.29)
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where κl > 0 (l = 1,2, . . . ,6) are constants. Then direct calculation leads to the following
inequalities:

d+

dt
κ1
∣
∣z1
∣
∣≤−(μ1 +μ2

)
κ1
∣
∣z1
∣
∣+

κ1

κ4

∣
∣c31 f

′
1

(
u3(t)

)∣∣κ4
∣
∣z4
∣
∣+

κ1

κ5

∣
∣c41 f

′
1

(
u4(t)

)∣∣κ5
∣
∣z5
∣
∣,

d+

dt
κ2
∣
∣z2
∣
∣≤−(μ1 +μ3

)
κ2
∣
∣z2
∣
∣+

κ2

κ4

∣
∣c21 f

′
1

(
u2(t)

)∣∣κ4
∣
∣z4
∣
∣+

κ2

κ6

∣
∣c41 f

′
1

(
u4(t)

)∣∣κ6
∣
∣z6
∣
∣,

d+

dt
κ3
∣
∣z3
∣
∣≤−(μ1 +μ4

)
κ3
∣
∣z3
∣
∣+

κ3

κ5

∣
∣c21 f

′
1

(
u2(t)

)∣∣κ5
∣
∣z5
∣
∣+

κ3

κ6

∣
∣c31 f

′
1

(
u3(t)

)∣∣κ6
∣
∣z6
∣
∣,

d+

dt
κ4
∣
∣z4
∣
∣≤−(μ2 +μ3

)
κ4
∣
∣z4
∣
∣+

κ4

κ1

∣
∣c13 f

′
3

(
u1(t)

)∣∣κ1
∣
∣z1
∣
∣+

κ4

κ2

∣
∣c12 f

′
2

(
u1(t)

)∣∣κ2
∣
∣z2
∣
∣,

d+

dt
κ5
∣
∣z5
∣
∣≤−(μ2 +μ4

)
κ5
∣
∣z5
∣
∣+

κ5

κ1

∣
∣c14 f

′
4

(
u1(t)

)∣∣κ1
∣
∣z1
∣
∣+

κ5

κ3

∣
∣c12 f

′
2

(
u1(t)

)∣∣κ3
∣
∣z3
∣
∣,

d+

dt
κ6
∣
∣z6
∣
∣≤−(μ3 +μ4

)
κ6
∣
∣z6
∣
∣+

κ6

κ2

∣
∣c14 f

′
4

(
u1(t)

)∣∣κ2
∣
∣z2
∣
∣+

κ6

κ3

∣
∣c13 f

′
3

(
u1(t)

)∣∣κ3
∣
∣z3
∣
∣,

(3.30)

where d+/dt denotes the upper right-hand derivative. Consequently, we have

d+

dt
W
(
z(t)

)≤ ρ(t)W
(
z(t)

)
, (3.31)

with

ρ(t)=max
{
− (μ1 +μ2

)
+
κ1

κ4

∣
∣c31 f

′
1

(
u3(t)

)∣∣+
κ1

κ5

∣
∣c41 f

′
1

(
u4(t)

)∣∣,

− (μ1 +μ3
)

+
κ2

κ4

∣
∣c21 f

′
1

(
u2(t)

)∣∣+
κ2

κ6

∣
∣c41 f

′
1

(
u4(t)

)∣∣,

− (μ1 +μ4
)

+
κ3

κ5

∣
∣c21 f

′
1

(
u2(t)

)∣∣+
κ3

κ6

∣
∣c31 f

′
1

(
u3(t)

)∣∣,

− (μ2 +μ3
)

+
κ4

κ1

∣
∣c13 f

′
3

(
u1(t)

)∣∣+
κ4

κ2

∣
∣c12 f

′
2

(
u1(t)

)∣∣,

− (μ2 +μ4
)

+
κ5

κ1

∣
∣c14 f

′
4

(
u1(t)

)∣∣+
κ5

κ3

∣
∣c12 f

′
2

(
u1(t)

)∣∣,

− (μ3 +μ4
)

+
κ6

κ2

∣
∣c14 f

′
4

(
u1(t)

)∣∣+
κ6

κ3

∣
∣c13 f

′
3

(
u1(t)

)∣∣
}
.

(3.32)

For the sake of convenience of discussion, we further make the following hypothesis.
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(H5) There exist constants κl > 0 (l = 1,2, . . . ,6) such that

sup
u∈R

{
− (μ1 +μ2

)
+
κ1

κ4

∣
∣c31 f

′
1 (u)

∣
∣+

κ1

κ5

∣
∣c41 f

′
1 (u)

∣
∣,

− (μ1 +μ3
)

+
κ2

κ4

∣
∣c21 f

′
1 (u)

∣
∣+

κ2

κ6

∣
∣c41 f

′
1 (u)

∣
∣,

− (μ1 +μ4
)

+
κ3

κ5

∣
∣c21 f

′
1 (u)

∣
∣+

κ3

κ6

∣
∣c31 f

′
1 (u)

∣
∣,

− (μ2 +μ3
)

+
κ4

κ1

∣
∣c13 f

′
3 (u)

∣
∣+

κ4

κ2

∣
∣c12 f

′
2 (u)

∣
∣,

− (μ2 +μ4
)

+
κ5

κ1

∣
∣c14 f

′
4 (u)

∣
∣+

κ5

κ3

∣
∣c12 f

′
2 (u)

∣
∣,

− (μ3 +μ4
)

+
κ6

κ2

∣
∣c14 f

′
4 (u)

∣
∣+

κ6

κ3

∣
∣c13 f

′
3 (u)

∣
∣
}
< 0.

(3.33)

Thus, we have the following result.

Lemma 3.6. If the hypotheses (H1), (H2), and (H5) hold, then the system (3.23) has no
nonconstant periodic solution. Furthermore, the unique equilibrium (0,0,0,0) is globally
asymptotically stable in R4.

Indeed, in this case, by the boundedness of solution to (3.23), there exists δ > 0 such
that ρ(t)≤−δ < 0, and thus

W
(
z(t)

)≤W
(
z(s)

)
e−δ(t−s), t ≥ s≥ 0. (3.34)

This shows that the second compound system (3.28) is qui-uniform asymptotically stable,
and from Lemma 3.5, the results of Lemma 3.6 can be obtained.

Lemma 3.7. If the conditions (H1), (H2), and (H5) hold, then the periods of the periodic
solution of the (2.1) are uniformly bounded.

Proof. Suppose u(t)= (u1(t),u2(t),u3(t),u4(t))T is a τ-periodic solution of system (2.1),
then u(t) is a τ-periodic solution of the ordinary differential equation system (3.23) with
a unique equilibrium u = 0. By Lemma 3.6, system (3.23) has no nonconstant periodic
solutions. Therefore, system (2.1) has no nonconstant τ-periodic solution and thus the
proof is complete. �

In the following we state and prove our main result in this section.

Theorem 3.8. Suppose that the conditions (H1)–(H5) hold. Then for each τ >τj , j=1,2, . . .,
system (2.1) has at least j nonconstant periodic solutions.

Proof. It is sufficient to prove that the connected component C(0,τj ,2π/ω0) onto τ-space
is [τ,∞) for each j ≥ 1, where τ ≤ τj .
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From the discussion in Section 2, we have

2π
ω0

< τj for j > 0. (3.35)

From Lemma 3.6, we know that system (2.1) with τ = 0 has no nontrivial periodic solu-
tion. Consequently, the projection of C(0,τj ,2π/ω0) onto τ-space is away from zero.

Suppose that the projection of C(0,τj ,2π/ω0) onto τ-space is bounded, that is, there
exists τ∗ > 0 such that the projection of C(0,τj ,2π/ω0) onto τ-space is contained in in-
terval (0,τ∗). Since 2π/ω0 < τj and applying Lemma 3.7, one can obtain 0 < p < τ∗ for
(u(t),τ, p) ∈ C(0,τj ,2π/ω0). Therefore, the projection of C(0,τj ,2π/ω0) onto p-space is
also bounded. Thus, we get together with Lemma 3.2 that the connected component
C(0,τj ,2π/ω0) is bounded. This contradicts with Lemma 3.1 and the proof is complete.

�

4. An example and numerical simulations

4.1. An example. Consider the four-neuron BAM neural network with two delays de-
scribed by the following functional differential equations:

ẋ1(t)=−μx1(t) + c21 f
(
x2
(
t− τ2

))
+ c31 f

(
x3
(
t− τ2

))
+ c41 f

(
x4
(
t− τ2

))
,

ẋ2(t)=−μx2(t) + c12 f
(
x1
(
t− τ1

))
,

ẋ3(t)=−μx3(t) + c13 f
(
x1
(
t− τ1

))
,

ẋ4(t)=−μx4(t) + c14 f
(
x1
(
t− τ1

))
,

(4.1)

with μ > 0, ck1 (k = 2,3,4) > 0, and c1l (l = 2,3,4) < 0. In addition, the activation function
f satisfies the following condition.

(H6) f ∈ C2(R,R), f (0)= 0, and (0,0,0,0) is the unique equilibrium of (4.1).
(H7) There are positive constants L > 0 such that | f (x)| ≤ L for all x ∈R, and

μ4 <
(
c12c21 + c13c31 + c14c41

)2
f ′4(0) < 2μ4. (4.2)

(H8) (|c21|+ |c31|)| f ′(x)| < 2μ, (|c21|+ |c41|)| f ′(x)| < 2μ, (|c31|+ |c41|)| f ′(x)| < 2μ,
(|c12|+ |c13|)| f ′(x)| < 2μ, (|c12|+ |c14|)| f ′(x)| < 2μ, (|c13|+ |c14|)| f ′(x)| < 2μ,
for x ∈R.

Under the assumption (H7), the following equation:

z4 + az3 + bz2 + cz+d = 0 (4.3)

has only one positive z0 since

a= 4μ2 > 0,

b = 6μ4− (c12c21 + c13c31 + c14c41
)2
f ′4(0) > 0,

c = 4μ6− 2μ2(c12c21 + c13c31 + c14c41
)2
f ′4(0) > 0,

d = μ8−μ4(c12c21 + c13c31 + c14c41
)2
f ′4(0) < 0.

(4.4)
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Let ω0 =√z0 and define

τj = 1
ω0

{

arccos

(
μ2−ω2

0(
c12c21 + c13c31 + c14c41

)
f ′2(0)

)

+ 2 jπ

}

, j = 0,1, . . . . (4.5)

Set τ = τ1 + τ2 and take κ1 = κ2 = ··· = κ6 > 0 in (H4). From Theorem 3.8, we have
the following result for system (4.1).

Theorem 4.1. Suppose that (H6)–(H8) are satisfied. Then system (4.1) has at least j non-
constant periodic solutions when τ > τj , j ≥ 1.

In particular, when μ = 1 and f (u) = tanh(u) in system (4.1), we have the following
corollary.

Corollary 4.2. For the BAM neural network model with four neurons,

ẋ1(t)=−x1(t) + c21 tanh
(
x2
(
t− τ2

))
+ c31 tanh

(
x3
(
t− τ2

))
+ c41 tanh

(
x4
(
t− τ2

))
,

ẋ2(t)=−x2(t) + c12 tanh
(
x1
(
t− τ1

))
,

ẋ3(t)=−x3(t) + c13 tanh
(
x1
(
t− τ1

))
,

ẋ4(t)=−x4(t) + c14 tanh
(
x1
(
t− τ1

))
,

(4.6)

if |c21|+ |c31| < 2, |c21|+ |c41| < 2, |c31|+ |c41| < 2, |c12|+ |c13| < 2, |c12|+ |c14| < 2, |c13|+
|c14| < 2, and

1 <
(
c12c21 + c13c31 + c14c41

)2
< 2 (4.7)

is satisfied. Then system (4.6) has at least j nonconstant periodic solutions when τ > τj ,
j ≥ 1, and τj is defined in (4.5) with f ′(0)= 1.

4.2. Numerical simulations. In this subsection, we give numerical simulations support-
ing our theoretical analysis. As an example, we consider the following system:

ẋ1(t)=−2x1(t) + 2tanh
(
x2
(
t− τ2

))
+ tanh

(
x3
(
t− τ2

))
+ tanh

(
x4
(
t− τ2

))
,

ẋ2(t)=−2x2(t)− tanh
(
x1
(
t− τ1

))
,

ẋ3(t)=−2x3(t)− 2tanh
(
x1
(
t− τ1

))
,

ẋ4(t)=−2x4(t)− tanh
(
x1
(
t− τ1

))
,

(4.8)



16 A BAM neural network with delays

0 100 200 300 400 500 600

t

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x1

0 100 200 300 400 500 600

t

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x2

0 100 200 300 400 500 600

t

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x3

0 100 200 300 400 500 600

t

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x4

Figure 4.1. The trajectories graphs of system (4.8) with τ1 = 5.45, τ2 = 6.55, and initial data x1(t) =
x2(t)= x3(t)= x4(t)= 0.2, t ∈ [−6.55,0].

which has a unique equilibrium (0,0,0,0). It follows from (4.4) that a = 16, b = 71, c =
56, d =−144 since f ′(0)= tanh′(0)= 1. Thus, in this case,

h(z)= z4 + 16z3 + 71z2 + 56z− 144, (4.9)

it is easy to see that equation h(z)= 0 has only a positive root z0 = 1, and so ω0 = 1. From
(4.5), we have

τj = arccos
(
− 3

5

)
+ 2 jπ, j = 0,1, . . . . (4.10)

Clearly, conditions (H6)–(H8) hold. Therefore, from Theorem 4.1, system (4.8) has at
least j nonconstant periodic solutions when τ > τj , j ≥ 1. From (4.10) , we can com-
pute τ0 = 2.2143, τ1 = 8.4975, τ2 = 14.7807, τ3 = 21.0639, τ4 = 27.3470, τ4 = 33.6302.
The simulations consistently show global existence of periodic solution: existence of large
amplitude periodic solutions for values of τ = τ1 + τ2 far away from τj . That the delays
are chosen as τ1 = 5.45, τ = 6.55 such that τ = τ1 + τ2 is between the two Hopf bifurcation
values τ1 = 8.4975 and τ2 = 14.7807 is shown in Figure 4.1 and the case that τ1 = 15.46
and τ2 = 16.78 is shown in Figure 4.2.



X.-P. Yan and W.-T. Li 17

0 100 200 300 400 500 600

t

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x1

0 100 200 300 400 500 600

t

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x2

0 100 200 300 400 500 600

t

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x3

0 100 200 300 400 500 600

t

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x4

Figure 4.2. The trajectories graphs of system (4.8) with τ1 = 15.46, τ2 = 16.78, and initial data x1(t)=
x2(t)= x3(t)= x4(t)= 0.2, t ∈ [−16.78,0].

Acknowledgment

This research was supported by the NNSF of China (10571078) and the Teaching and Re-
search Award Program for Outstanding Young Teachers in Higher Education Institutions
of the Ministry of Education of China.

References

[1] S. A. Campbell, S. Ruan, and J. Wei, Qualitative analysis of a neural network model with multiple
time delays, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering
9 (1999), no. 8, 1585–1595.

[2] T. Faria, On a planar system modelling a neuron network with memory, Journal of Differential
Equations 168 (2000), no. 1, 129–149.

[3] K. Gopalsamy and X.-Z. He, Delay-independent stability in bidirectional associative memory net-
works, IEEE Transactions on Neural Networks 5 (1994), no. 6, 998–1002.

[4] K. Gopalsamy and I. Leung, Delay induced periodicity in a neural netlet of excitation and inhibi-
tion, Physica D: Nonlinear Phenomena 89 (1996), no. 3-4, 395–426.

[5] B. D. Hassard, N. D. Kazarinoff, and Y. H. Wan, Theory and Applications of Hopf Bifurcation,
London Mathematical Society Lecture Note Series, vol. 41, Cambridge University Press, Cam-
bridge, 1981.

[6] Y. Li and J. S. Muldowney, On Bendixson’s criterion, Journal of Differential Equations 106 (1993),
no. 1, 27–39.



18 A BAM neural network with delays

[7] S. Ruan and J. Wei, On the zeros of a third degree exponential polynomial with applications to a
delayed model for the control of testosterone secretion, IMA Journal of Mathematics Applied in
Medicine and Biology 18 (2001), no. 1, 41–52.

[8] J. Wei and M. Y. Li, Global existence of periodic solutions in a tri-neuron network model with delays,
Physica D: Nonlinear Phenomena 198 (2004), no. 1-2, 106–119.

[9] J. Wei and S. Ruan, Stability and bifurcation in a neural network model with two delays, Physica
D: Nonlinear Phenomena 130 (1999), no. 3-4, 255–272.

[10] J. Wei and M. G. Velarde, Bifurcation analysis and existence of periodic solutions in a simple neural
network with delays, Chaos 14 (2004), no. 3, 940–953.

[11] J. Wu, Symmetric functional-differential equations and neural networks with memory, Transac-
tions of the American Mathematical Society 350 (1998), no. 12, 4799–4838.

[12] X.-P. Yan and W.-T. Li, Stability and bifurcation in a simplified four-neuron BAM neural network
with multiple delays, Discrete Dynamics in Nature and Society 2006 (2006), Article ID 32529,
1–29.

Xiang-Ping Yan: School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China;
School of Mathematics, Physics, and Software Engineering, Lanzhou Jiaotong University,
Lanzhou 730070, China
E-mail address: yanxp@mail.lzjtu.cn

Wan-Tong Li: School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China
E-mail address: wtli@lzu.edu.cn

mailto:yanxp@mail.lzjtu.cn
mailto:wtli@lzu.edu.cn

	1. Introduction
	2. Results on local Hopf bifurcations
	3. Global existence of periodic solutions
	4. An example and numerical simulations
	4.1. An example
	4.2. Numerical simulations

	Acknowledgment
	References

