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We describe a method for finding monotone solutions of some classes of difference equa-
tions converging to the corresponding equilibria. The method enables us to confirm three
conjectures posed by the present author in a talk, which are extensions of three conjec-
tures by M. R. S. Kulenović and G. Ladas, Dynamics of Second Order Rational Difference
Equations. With Open Problems and Conjectures. Chapman and Hall/CRC, 2002. It is in-
teresting that the method, in some cases, can be applied also when the parameters are
variable.

Copyright © 2006 Stevo Stević. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Recently there has been a great interest in studying nonlinear difference equations of or-
der greater than one. Many of these equations stem from mathematical biology, economy,
population dynamics , and so forth (see, e.g., [5, 7–9, 11, 14] and the references therein).
An interesting problem in the theory of difference equations is finding monotone solu-
tions. This paper is devoted to this problem.

Motivated by [8, Conjectures 5.4.6 and 6.10.3] in a talk (see, [16]) we posed the fol-
lowing three conjectures. The first one concerns a generalization of (1.2).

Conjecture 1.1. Show that for every p >−1, the following equation:

xn+1 = p+
xn−k

∑k−1
i=0 αixn−i

, n= 0,1, . . . , (1.1)

where k ∈N, αi ≥ 0, i= 0, . . . ,k− 1, and
∑k−1

i=0 αi = 1, has a positive solution which remains
above the equilibrium x̄1 = p+ 1 for all n≥−k.
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In [6] DeVault et al. investigate the behavior of the positive solutions of the difference
equation

xn+1 = p+
xn−k
xn

, n= 0,1, . . . , (1.2)

where p > 0 and k ∈N is fixed. Among other things they have proved that all nonoscillatory
solutions of (1.2) converge to the positive equilibrium x̄ = p+ 1.

Based on this observation they have posed the following open problem.

Open problem 1.2. Do there exist nonoscillatory solutions of (1.2)?
The following conjectures are generalizations of [8, Conjectures 5.4.6 and 6.10.3].

Conjecture 1.3. Show that the following equation:

xn+1 = 1 + xn−k
∑k−1

i=0 αixn−i
, n= 0,1, . . . , (1.3)

where k ∈ N, αi ≥ 0, i = 0, . . . , k− 1, and
∑k−1

i=0 αi = 1, has a nontrivial positive solution
which decreases to the equilibrium x2 = (1 +

√
5)/2.

Conjecture 1.4. Show that the following equation:

xn+1 = α+ xn−k
1 +
∑k−1

i=0 αixn−i
, n= 0,1, . . . , (1.4)

where k ∈N, α > 0, αi ≥ 0, i = 0, . . . ,k− 1, and
∑k−1

i=0 αi = 1, has a positive solution which
decreases to the equilibrium x3 =√α.

Our aim in this paper is to confirm the above mentioned conjectures.
The linearized equation for (1.1), respectively, (1.3) and (1.4), about the correspond-

ing positive equilibrium x̄i, i∈ {1,2,3}, is

(p+ 1)yn+1 +α0yn + ···+αk−1yn−k+1− yn−k = 0, (1.5)

x̄2
(
yn+1 +α0yn + ···+αk−1yn−k+1

)− yn−k = 0, (1.6)

(
1 +
√
α
)
yn+1 +

√
α
(
α0yn + ···+αk−1yn−k+1

)− yn−k = 0. (1.7)

The characteristic polynomial associated with (1.5), respectively, (1.6) and (1.7), is

p1(t)= (p+ 1)tk+1 +α0t
k + ···+αk−1t− 1= 0, (1.8)

p2(t)= x̄2(tk+1 +α0t
k + ···+αk−1t)− 1= 0, (1.9)

p3(t)= (1 +
√
α)tk+1 +

√
α
(
α0t

k + ···+αk−1t
)− 1= 0. (1.10)

Since p1(0) = −1 < 0, p1(1) = p + 1, and p′1(t) = (p + 1)(k + 1)tk + α0ktk−1 + ··· +
αk−1 > 0 for t ∈ (0,1], it follows that for each p > −1, there is a unique positive root t1
of the polynomial (1.8) belonging to the interval (0,1).
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Similarly, it can be shown that (1.9) and (1.10) have also a unique positive roots t2 and
t3 in the interval (0,1).

This fact motivated us to believe that there are solutions of (1.1), (1.3), and (1.4) which
have the following asymptotics:

xn = x̄+ atni + o
(
tni
)
, (1.11)

where a ∈ R and ti, i ∈ {1,2,3}, are the above mentioned roots of polynomials (1.5),
(1.6), and (1.7), respectively .

We solve the open problem, showing that such solutions exist, developing Berg’s idea
in [2] which are based on asymptotics. Asymptotics for solutions of difference equations
has been investigated for a long time by L. Berg and S. Stević, see, for example, [1–4, 10–
15] and the reference therein. We solve it by constructing two appropriate sequences yn
and zn with

yn ≤ xn ≤ zn (1.12)

for sufficiently large n. In [1, 2], some methods can be found for the construction of these
bounds, see, also [3, 4].

From (1.11) and results in Berg’s paper [2], we expect that for k ≥ 2 such solutions
have the first four members in their asymptotics in the following form:

ϕn = x̄+ atn + bt2n + ct3n. (1.13)

2. The inclusion theorem

We need the following result in the proof of the main theorem. The proof of the result is
similar to that of [2, Theorem 1].

Theorem 2.1. Let f : Ik+2 → I be a continuous and nondecreasing function in each argu-
ment on the interval I ⊂R, and let (yn) and (zn) be sequences with yn < zn for n≥ n0 and
such that

yn−k ≤ f
(
n, yn−k+1, . . . , yn+1

)
, f

(
n,zn−k+1, . . . ,zn+1

)≤ zn−k, (2.1)

for n > n0 + k− 1.
Then there is a solution of the following difference equation:

xn−k = f
(
n,xn−k+1, . . . ,xn+1

)
, (2.2)

with property (1.12) for n≥ n0.

Proof. Let N be an arbitrary integer such that N > n0 + k− 1. The solution (xn) of (2.2)
with given initial values xN ,xN+1, . . . ,xN+k satisfying (1.12) for n ∈ {N ,N + 1, . . . ,N + k}
can be continued by (2.2) to all n < N . Inequalities (2.1) and the monotonic character
of f imply that (1.12) holds for all n ∈ {n0, . . . ,N + k}. Let AN be the set of all (k + 1)-
tuples (xn0 , . . . ,xn0+k) such that there exist solutions (xn) of (2.2) with these initial values
satisfying (1.12) for all n ∈ {n0, . . . ,N + k}. It is clear that AN is a closed nonempty set
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for every N > n0 + k− 1, and that AN+1 ⊂ AN . It follows that the set A = ∩∞n=n0+kAN is a
nonempty subset ofRk+1 and that if (xn0 , . . . ,xn0+k)∈A, then the corresponding solutions
of (2.2) satisfy (1.12) for all n≥ n0, as desired. �

3. The main result

In this section we prove the main result of this paper, which confirms Conjectures 1.1,
1.3, and 1.4.

Theorem 3.1. The following statements are true:
(a) let αi ≥ 0, i= 0, . . . ,k− 1,

∑k−1
i=0 αi = 1, and p >−1. Then (1.1) has a positive solution

which remains above the equilibrium x̄1 = p+ 1;
(b) let αi ≥ 0, i= 0, . . . ,k− 1,

∑k−1
i=0 αi = 1. Then (1.3) has a nontrivial positive solution

which decreases to the equilibrium x̄2;
(c) let α > 0, αi ≥ 0, i = 0, . . . ,k− 1,

∑k−1
i=0 αi = 1. Then (1.4) has a nontrivial positive

solution which decreases to the equilibrium x̄3 =√α.

Proof. (a) Note that (1.2) can be written in the following equivalent form:

F
(
xn−k, . . . ,xn,xn+1

)= (xn+1− p
)(
α0xn + ···+αk−1xn−k+1

)− xn−k = 0. (3.1)

We expect that solutions of (1.2) have asymptotic approximation (1.13). Thus, we calcu-
late F(ϕn−k, . . . ,ϕn,ϕn+1). We have

F = (1 + atn+1 + bt2(n+1) + ct3(n+1))

× (p+ 1 + aα0t
n + ···+ aαk−1t

n−k+1 + bα0t
2n + ···+ bαk−1t

2(n−k+1) + �
(
t3n))

− (p+ 1 + atn−k + bt2(n−k) + ct3(n−k))

= atn
(

(p+ 1)t+α0 + ···+
αk−1

tk−1
− t−k

)

+ t2n
(

b
(

α0 + ···+
αk−1

t2(k−1)

)

+ a2t
(

α0 + ···+
αk−1

tk−1

)

+ b(p+ 1)t2− bt−2k
)

+ �
(
t3n).

(3.2)

Let

D1(t)= (p+ 1)t+α0 + ···+
αk−1

tk−1
− 1
tk
. (3.3)

Choose t ∈ (0,1) such that D1(t) = 0, and a,b ∈ R, a �= 0, such that the coefficients in
(3.2) are equal to zero. D1(t)= 0 implies that t = t1 (see, Section 1). Further we obtain

b =− a2t1
(
α0 + ···+αk−1t

−k+1
1

)

(p+ 1)t2
1 +α0 + ···+ (αk−1)/t2(k−1)

1 − t−2k
1

=−a2t1
(
α0 + ···+αk−1t

−k+1
1

)

D1
(
t2
1

) . (3.4)
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If ϕ̂n = p+ 1 + atn1 + qt2n
1 , we obtain

F
(
ϕ̂n−k, . . . , ϕ̂n, ϕ̂n+1

)∼ (qD1
(
t2
1

)
+ a2t1

(
α0 + ···+αk−1t

−k+1
1

))
t2n
1 . (3.5)

Let

Ht1 (q)= qD1
(
t2
1

)
+ a2t1

(
α0 + ···+αk−1t

−k+1
1

)
. (3.6)

We have

D′1(t)= p+ 1 +
k

tk+1
− α1

t2
−···− (k− 1)αk−1

tk
. (3.7)

Hence, when t ∈ (0,1), it follows that

D′1(t) > p+ 1 +
k

tk+1
− α1 + ···+ (k− 1)αk−1

tk+1

> p+ 1 +
k

tk+1
− (k− 1)

∑k1
i=1αi

tk+1
> p+ 1 +

1
tk+1

> 0.

(3.8)

From this, since D1(t1) = 0, and t2
1 < t1, we have that D1(t2

1) < 0. Thus, we obtain that
there are q1 < b and q2 > b such that Ht1 (q1) > 0 and Ht2 (q2) < 0.

With the notations

yn = p+ 1 + atn1 + q1t
2n
1 , zn = p+ 1 + atn1 + q2t

2n
1 , (3.9)

we get

F
(
yn−k, . . . , yn, yn+1

)∼ (q1D1
(
t2
1

)
+ a2t1

(
α0 + ···+αk−1t

−k+1
1

))
t2n
1 > 0,

F
(
zn−k, . . . ,zn,zn+1

)∼ (q2D1
(
t2
1) + a2t1

(
α0 + ···+αk−1t

−k+1
1

))
t2n
1 < 0.

(3.10)

These relations show that the inequalities in (1.12) are satisfied for sufficiently large n,
where f = F + xn−k and F is given by (3.1). Applying Theorem 2.1 it follows that there
is a solution of (1.1) with the asymptotics xn = ϕ̂n + o

(
t2n
1

)
, in particular, the solution of

(1.1) converges monotonically to the positive equilibrium x̄1 = p + 1, when p > −1 and
n≥ n0. Hence, the solution xn+n0+k converges monotonically for n≥−k.

(b) Equation (1.3) can be written in the following equivalent form:

F
(
xn−k, . . . ,xn,xn+1

)= xn+1
(
α0xn + ···+αk−1xn−k+1

)− (1 + xn−k
)= 0. (3.11)
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Now we calculate F(ϕn−k, . . . ,ϕn,ϕn+1). We have

F = (x̄2 + atn+1 + bt2(n+1) + ct3(n+1))

× (x̄2 + aα0t
n + ···+ aαk−1t

n−k+1 + bα0t
2n + ···+ bαk−1t

2(n−k+1) + �
(
t3n))

− (1 + x̄2 + atn−k + bt2(n−k) + ct3(n−k))

= atn
(

x̄2t+ x̄2

(

α0 + ···+
αk−1

tk−1

)

− 1
tk

)

+ t2n
(

x̄2b
(

α0 + ···+
αk−1

t2(k−1)

)

+ a2t
(

α0 + ···+
αk−1

tk−1

)

+ x̄2bt
2− bt−2k

)

+ �
(
t3n).

(3.12)

Let

D2(t)= x̄2t+ x̄2

(

α0 + ···+
αk−1

tk−1

)

− t−k = p2(t)
tk

. (3.13)

Choose t ∈ (0,1) such that D2(t) = 0, and a,b ∈ R,a �= 0, such that the coefficients in
(3.12) are equal to zero. Since D2(t)= 0 is equivalent to p2(t)= 0, we have that t = t2, and
consequently

b =− a2t2
(
α0 + ···+αk−1t

−k+1
2

)

x̄2t
2
2 + x̄2

(
α0 + ···+ (αk−1)/t2(k−1)

2

)− t−2k
2

=−a2t2
(
α0 + ···+αk−1t

−k+1
2

)

D2
(
t2
2

) . (3.14)

If ϕ̂n = x̄2 + atn2 + qt2n
2 , we obtain

F
(
ϕ̂n−k, . . . , ϕ̂n, ϕ̂n+1

)∼ (qD2
(
t2
2

)
+ a2t2

(
α0 + ···+αk−1t

−k+1
2

))
t2n
2 . (3.15)

Let

Ht2 (q)= qD2
(
t2
2

)
+ a2t2

(
α0 + ···+αk−1t

−k+1
2

)
. (3.16)

Since

p′2(t)= x̄2
(
(k+ 1)tk + kα0t

k−1 + ···+αk−1
)
> 0, (3.17)

when t ∈ (0,1), and since p2(t2) = 0, and t2
2 < t2, we have that p2(t2

2) < 0, which implies
D2(t2

2) < 0. Thus, we obtain that there are q3 < b and q4 > b such that Ht2 (q3) > 0 and
Ht2 (q4) < 0.

With the notations

yn = x̄2 + atn2 + q3t
2n
2 , zn = x̄2 + atn2 + q4t

2n
2 , (3.18)

we get

F
(
yn−k, . . . , yn, yn+1

)∼Ht2

(
q3
)
t2n
2 > 0,

F
(
zn−k, . . . ,zn,zn+1

)∼Ht2

(
q4
)
t2n
2 < 0.

(3.19)
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These relations show that the inequalities in (1.12) are satisfied for sufficiently large n,
where f = F + xn−k and F is given by (3.11). Applying Theorem 2.1 it follows that there
is a solution of (1.3) with the asymptotics xn = ϕ̂n + o(t2n

2 ). This solution obviously con-
verges monotonically to the positive equilibrium x̄2 = (

√
5 + 1)/2, for n ≥ n1. A suitable

shift of xn is decreasing for all n≥−k.
(c) Equation (1.4) can be written in the following equivalent form:

F
(
xn−k, . . . ,xn,xn+1

)= xn+1
(
1 +α0xn + ···+αk−1xn−k+1

)− (α+ xn−k
)= 0. (3.20)

We have

F = (x̄3 + atn+1 + bt2(n+1) + ct3(n+1))

× (1 + x̄3 + aα0t
n + ···+ aαk−1t

n−k+1 + bα0t
2n + ···+ bαk−1t

2(n−k+1) + �
(
t3n))

− (α+ x̄3 + atn−k + bt2(n−k) + ct3(n−k))

= atn
(
(
1 + x̄3

)
t+ x̄3

(

α0 + ···+
αk−1

tk−1

)

− t−k
)

+ t2n
(

x̄3b
(

α0 + ···+
αk−1

t2(k−1)

)

+ a2t
(

α0 + ···+
αk−1

tk−1

)

+
(
1 + x̄3

)
bt2− bt−2k

)

+ �
(
t3n).

(3.21)

Let

D3(t)= (1 + x̄3
)
t+ x̄3

(

α0 + ···+
αk−1

tk−1

)

− t−k = p3(t)
tk

. (3.22)

Choose t ∈ (0,1) such that D3(t) = 0, and a,b ∈ R, a �= 0, such that the coefficients in
(3.21) are equal to zero.

Since

p′3(t)= (1 +
√
α
)
(k+ 1)tk +

√
α
(
kα0t

k−1 + ···+αk−1
)
> 0, (3.23)

when t ∈ (0,1], and D3(t) = 0 is equivalent to p3(t) = 0, we have that t = t3. From this
and (3.21) it follows that

b =− a2t3
(
α0 + ···+αk−1t

−k+1
3

)

(
1 +
√
α
)
t2
3 +
√
α
(
α0 + ···+ (αk−1)/t2(k−1)

3

)− t−2k
3

=−a2t3
(
α0 + ···+αk−1t

−k+1
3

)

D3
(
t2
3

) .

(3.24)

If ϕ̂n =√α+ atn3 + qt2n
3 , we obtain

F
(
ϕ̂n−k, . . . , ϕ̂n, ϕ̂n+1

)∼ (qD3
(
t2
3

)
+ a2t3

(
α0 + ···+αk−1t

−k+1
3

))
t2n
3 . (3.25)

Let

Ht3 (q)= qD3
(
t2
3

)
+ a2t3

(
α0 + ···+αk−1t

−k+1
3

)
. (3.26)
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Since D3(t3) = 0, and t2
3 < t3, we have that D3(t2

3) < 0. Thus, we obtain that there are
q5 < b and q6 > b such that Ht3 (q5) > 0 and Ht3 (q6) < 0.

With the notations

yn =
√
α+ atn3 + q5t

2n
3 , zn =

√
α+ atn3 + q6t

2n
3 , (3.27)

we get

F
(
yn−k, . . . , yn, yn+1

)∼Ht3

(
q5
)
t2n
3 > 0, F

(
zn−k, . . . ,zn,zn+1

)∼Ht3

(
q6
)
t2n
3 < 0. (3.28)

These relations show that the inequalities in (1.12) are satisfied for sufficiently large n,
where f = F + xn−k and F is given by (3.20). Hence, there is a solution of (1.4) with
the asymptotics xn = ϕ̂n + o

(
t2n
3

)
. The result follows similarly to the above mentioned

cases. �

From Theorem 3.1(a) with α0 = 1 and αi = 0, i �= 0, we get the following corollary.

Corollary 3.2. There is a nonoscillatory solution of (1.2).

Remark 3.3. Since a∈R \ {0} is an arbitrary parameter, by Theorem 3.1 we find a set of
nonoscillatory solutions of (1.1), (1.3), and (1.4) converging to the corresponding posi-
tive equilibria.

Remark 3.4. Note that using (1.13) better asymptotics for these solutions can be obtained,
that is, xn = ϕn + o(t3n

i ), i∈ {1,2,3}, where b is given by (3.4), (3.14), or (3.24), and c can
be found equating to zero the coefficient nearby t3n.

Remark 3.5. From the proof of Theorem 3.1, we see that we can assume that the parame-
ter p in (1.1) can be replaced by a nondecreasing sequence with the following asymptotics:
pn = p+ o(t2n

1 ).
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