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1. Introduction

It is well known that the basins of attraction of different roots have fractal boundaries
when Newton’s method is used to determine the complex roots of polynomials. The sim-
plest example was given by Cayley in 1879 [2]; it is the case for the equation

z3− 1= 0. (1.1)

The works of Cayley have been taken then by the French mathematician Julia [6] to found
a theory on sets that will carry his name. The survey of this type of sets has been thrown
back there after 1975 by another French mathematician, Mandelbrot [7], with the help
of computers and melting; that is what is known by the fractal geometry. In this work we
are going to give another approach precisely to Cayley’s problem; we are going to study
the case where an algorithm of the generalized conjugate gradient (GCG) is used and
one is going to show that the qualitative and geometric aspects of the basins of attraction
for each solution of (1.1) depend on certain parameters, sometimes, driving to beautiful
fractal structures. We consider the nonlinear equation

f (z)= 0, (1.2)

where f is complex function with variable z. To solve (1.2), we can use the conjugate
gradient method (CG) defined by a recurrent sequence of form

zk+1 = zk + λkdk (1.3)
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and the search direction dk is defined by

d0 =− f
(
z0
)
, dk =− f

(
zk
)

+βkdk−1, k > 0. (1.4)

The case where f is linear, parameters (λk,βk) are well defined and permit a convergence
of the method (1.3)–(1.4) in few iterations. In the nonlinear case, the choice of these
parameters is not obvious. The well-know formulas for βk are Fletcher-Reeves (FR) [4, 5]
and Plolak-Ribière (PR) [9], and they are given by

βFRk =
∣
∣ f
(
zk
)∣∣2

∣
∣ f
(
zk−1

)∣∣2 , (1.5)

βPRk = Re
(
f
(
zk
)[
f
(
zk
)− f

(
zk−1

)])

∣
∣ f
(
zk−1

)∣∣2 , (1.6)

where z denotes conjugate of z, Re(z) = (1/2)(z + z), and |z|2 = z · z. The choice of step
length λk is delicate because it is obtained by solving the equation f (zk + λkdk)= 0, which
is absurd. Therefore we prefer to take λk as approximal solution of problem

min
λ>0

∣
∣ f
(
zk + λdk

)∣∣2
; (1.7)

it is called an inexact line search [8], and several methods are proposed among them:
Wolfe line search (W-L.S.) and given by: if one puts θ(λ) ≡ | f (zk + λdk)|2 and θ′(λ) ≡
(d/dλ)θ(λ), the step length λk > 0 satisfies the following conditions:

θ
(
λk
)≤m1θ

′(0)λk + θ(0), θ′
(
λk
)≥m2θ

′(0), (1.8)

with 0 <m1 <m2 < 1.
Note that in the case where f would be nonlinear, results of convergence (and counter

example) are rare. It has been established in [9, 10] the convergence of the two versions
FR and PR with a chosen step length after solving exactly the problem (1.7). In [1] Al-
Baali proved a global convergence of FR method with strong Wolfe line searches, that
is,

θ
(
λk
)≤m1θ

′(0)λk + θ(0),
∣
∣θ′
(
λk
)∣∣≤−m2θ

′(0). (1.9)

2. Notations and definitions

We denote by C the complex plan, R a real line, andM nonempty open subset of C
n
(n=

1,2, . . .), where C= C∪{∞}.
Let us consider the complex mapping

zk+1 = g
(
zk,β

)≡ g
(
zk
)
, (2.1)

where g :M→M is holomorphic function and β is complex parameter.
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Definition 2.1. A point ω ∈M is a fixed point of g if

g(ω)= ω. (2.2)

ω is attracting if

∣
∣
∣
∣
d

dz
g(z)

∣
∣
∣
∣
z=ω

< 1. (2.3)

ω is repelling if

∣
∣
∣
∣
d

dz
g(z)

∣
∣
∣
∣
z=ω

> 1. (2.4)

Definition 2.2. The basin of attraction �(ω) of an attractive fixed point ω ∈M, associated
with a function g, is defined by

�(ω)=
{
z ∈M : gk(z)−−−→

k→∞
ω
}
. (2.5)

Definition 2.3. Let ω ∈M be an attractive fixed point of g, then the disk of convergence
�(z,β) associated with the map (2.1) is defined by

�(z,β)=
{
β ∈ C : gk(z,β)−−−→

k→∞
ω
}
. (2.6)

In the literature [3], if g(z)= z2 +β andM= C, the closure of �(0,β) is not other than
a Mandelbrot set and ∂�(ω) is the Julia set, (∂� denotes a boundary of �).

Definition 2.4. Let �zI ,zS be a cone in C generated by the complex zI , and zS is defined by

�zI ,zS =
{
νzI + ξzS; ν > 0, ξ > 0

}
. (2.7)

3. Generalized conjugate gradient method (GCG)

Instead of choosing the reals (λk,βk) at every iteration of the CG method, we fix the real or
complex parameters, and the sequences (3.1) may be generalized in the following form:

�λ,β :

⎧
⎨

⎩

zk+1 = zk + λwk,

wk+1 =− f
(
zk + λwk

)
+βwk,

(3.1)

where (zk,wk,λ,β) ∈ C4, w0 = 0, and thus (3.1) is called generalized conjugate gradient
method (GCG).

3.1. Convergence analysis. We verify that the map (3.1) would admit some stationary
points if λ 
= 0 and such points (z∗,0) verify f (z∗)= 0; the Jacobian matrix is given by

J�λ,β(z,w)=
[

1 λ
− f ′(z+ λw) −λ f ′(z+ λw) +β

]

; (3.2)
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hence at stationary points (z∗,0), we have

J�λ,β

(
z∗,0

)=
[

1 λ
− f ′

(
z∗
) −λ f ′(z∗)+β

]

. (3.3)

The eigenvalues μ1 ≡ μ1(z∗,λ,β) and μ2 ≡ μ2(z∗,λ,β) of J�λ,β(z∗,0) are

μ1 = 1
2

[

1− λ f ′
(
z∗
)

+β+
√(

1− λ f ′
(
z∗
)

+β
)2− 4β

]

,

μ2 = 1
2

[

1− λ f ′
(
z∗
)

+β−
√(

1− λ f ′
(
z∗
)

+β
)2− 4β

]

.

(3.4)

Proposition 3.1. If GCG method converge, then

∣
∣1− λ f ′

(
z∗
)

+β
∣
∣ < 2,

∣
∣β
∣
∣ < 1. (3.5)

Proof. If |β| > 1 or |1− λ f ′(z∗) + β| > 2, then we deduce that (z∗,0) is repulsive. Indeed
let us put |μ|max =max(|μ1|,|μ2|); it follows that

|β| = ∣∣det
(
J�λ,β

(
z∗,0

))∣∣= ∣∣μ1
∣
∣ ·∣∣μ2

∣
∣≤ |μ|2max,

∣
∣1− λ f ′

(
z∗) +β

∣
∣= ∣∣Tr

(
J�λ,β(z∗,0)

)∣∣= ∣∣μ1 +μ2
∣
∣≤ 2|μ|max.

(3.6)

�

Unfortunately, the conditions (3.5) are not sufficient, for example if we take 1−λ f ′(z∗)
+β = 1 and β = 3/4, we obtain μ1 = (1/2)(1 + i

√
2)=⇒ |μ1| =

√
3/2 > 1. Nevertheless, we

can find some strict conditions as in the following case.

Proposition 3.2. Let f : C→ C be holomorphic function and z∗ a solution of f (z) = 0,
then if |β| < γ2 and |1− λ f ′(z∗)| < γ− γ2, where γ ≤ 2/

√
5 + 1 (inverse of gold number),

the fixed point (z∗,0) is attractive for �λ,β.

Therefore in neighborhood of z∗, GCG method generates a sequence {zk}k=0,1,2... such
that zk → z∗.

Proof. Denote α= |1− λ f ′(z∗) +β|, for |β| < γ2 and |1− λ f ′(z∗)| < γ− γ2, we can have
α < γ.

For i= 1,2, we have then

2
∣
∣μi
∣
∣≤ α+

√
α2− 4β < γ

(
1 +
√

5
)≤ 2 (3.7)

and thus

∣
∣μi
∣
∣ < 1, i= 1,2. (3.8)
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�

Remark 3.3. We can use |1− λ f ′(z∗)| < γ− γ2 as a condition to satisfy for convergence
of GCG, however if λ > 0 (the case of a linear search), it is necessary that

f ′
(
z∗
)∈�zI ,zS (3.9)

with zI = δ− iΔ and zS = δ + iΔ, where δ = 1− (γ− γ2)3/2 and Δ= (γ− γ2)
√

1− (γ− γ2).

But, as we will see further the condition (3.9) is still not true.

4. Application to Cayley’s problem

Cayley asked about the problem of characterization of the basins of attraction of zeroes
for the cubic complex polynomial

f (z)= z3− 1. (4.1)

The three roots of the equation f (z)= 0 are

zk = e(2/3)(k−1)πi, k = 1,2,3. (4.2)

Let us begin to analyze an equivalent problem that consists in minimizing the square of
the following residual:

min
z∈C

∣
∣ f (z)

∣
∣2
. (4.3)

To solve the problem (4.3), return to solve the following nonlinear equation:

f ′(z) · f (z)= 0. (4.4)

Apply the GC method on this last equation, we obtain the following sequence in C:

zk+1 = zk + λk

[
− f ′(z) · f (z) +

βk
λk−1

(
zk − zk−1

)
]

, (4.5)

with β0 = 0, and for k > 0, we choose between βFR
k and βPR

k in accordance with (1.5) or
(1.6), and λk is obtained by line search. Results of numerical test (Figure 4.1) confirm the
superiority of the PR method on FR method [7]. Note that we can not apply the analysis
for Section 3 to (4.5), because the complex function f ′ · f is not holomorphic.On the
other hand, | f |2 is locally convex and the theory developed in [1, 4, 8, 9] assures the local
convergence.
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Figure 4.1. Basins of attraction for z3 − 1 = 0. (a)–(b) Using CG-PR method and W-L.S. (c)–(d)
Using CG-FR method and W-L.S.

Now the residual is used only to do a line search, the sequence (4.5) will take the
following form:

zk+1 = zk + λk

[
1− z3 +

βk
λk−1

(
zk − zk−1

)]
. (4.6)

In Figure 4.2, we show the basins of solutions of z3 − 1 = 0 with the process (4.6) and
β ≡ βk chosen making use FR or PR and Wolfe line search.
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Figure 4.2. Basins of attraction for z3− 1= 0 using (4.6). (a) PR method and W-L.S. (b) FR method
and W-L.S.
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Figure 4.3. Basins of attraction of z1 using (4.6). (a) With PR method and λ = 0.4. (b) With FR
method and λ= 0.1.

If we choose β according to PR or FR and for any λ ≡ λk > 0 arbitrary small (Figure
4.3), we remark that we can obtain a local convergence for (4.6) method.

The local convergence is possible with different line searches and varying β in the range
(0,1) (Figure 4.4).

It is necessary to note that contrarily to the method (4.5), where there is coexistence
of three basins �(z1), �(z2), and �(z3), in Figures 4.2, 4.3, and 4.4, we show that only
�(z1) is nonempty. Indeed f ′(z1)= 3∈�zI ,zS , which implies a local convergence for the
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Figure 4.4. Basins of attraction of z1 using (4.6) and W-L.S. with: (a) β = 0.1, (b) β= 0.2, (c) β = 0.3,
(d) β = 0.7.

solution z1 (according to Proposition 3.2). On the other hand, an analytical study of real
functions (λ,β)→ |μ1(z1,λ,β)|− 1 and (λ,β)→ |μ1(z2,λ,β)|− 1 (see Figure 4.5(b)) shows
that |μ1(z1,λ,β)| > 1 and |μ1(z2,λ,β)| > 1 for λ > 0 and β ∈ R; then the points z2 and z3

are repulsive in this case.
This fact is confirmed by the bifurcation diagram of GCG method (Figure 4.6); but

adding to that it shows the existence of convergence zone for solutions z2 and z3 if λ < 0.
If values (λ,β) are in convergence area of the diagram in Figure 4.6, the result will be

that the basins of attraction of the roots z2 and z3 are nonempty, and we remark clearly
the fractal structure (Figure 4.7).
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Figure 4.5. (a) The cone �zI ,zS . (b) Function graph (λ,β)→ |μ1(zi,λ,β)|− 1 (i= 1,2).
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Figure 4.6. Bifurcations diagram of GCG method in (λ,β)-plane with the following starting points:
(a)–(b) z0 =−1.2 + i · 0.1, (c)–(d) z0 =−1.2− i · 0.1.
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Figure 4.7. Basin of attraction for z3− 1= 0 using GCG method with λ=−0.2 and β=−0.2.

−1.2 0 1.2
−1.2

0

1.2

βx

βy
z1

z2
z3

(a)

−1.2 0 1.2
−1.2

0

1.2

βx

βy

0-5
5-10
10-15
15-20
20-25
25-30
30-35
35-40
40-45
45-50
50-65
65-70
70-75
75-80
80-85
85-90
90-95
95-100
> 100

(b)

Figure 4.8. Disks of convergence �(−1.2 + i,β) with W-L.S.

Take β = βx + i ·βy , according to bifurcation diagram in the parametric plane (βx,βy),
from GCG method, with or without line search, one can detect convergence areas for the
three roots z1,z2, and z3 in a disk �(z0,β) centered in (0,0) and of radius strictly lower
than 1 (Figures 4.8, 4.9), which confirms Proposition 3.1.

Exploiting the diagram in Figures 4.9(b), 4.9(c), 4.9(e), and 4.9(f), we can find that
values for each basin of attraction �(z1), �(z2), and �(z3) are nonempty (Figure 4.10).

The same thing if we fix λ and β, we can obtain basins of attraction �(z1),�(z2), and
�(z3) with fractal boundary (Figure 4.11).

In Figure 4.12, we explore one of fractal structure’s features that is the self-similarity.
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Figure 4.9. Disks of convergence: (a)–(b) �(1.2− i,β) with W-L.S., (c)–(d) �(0.0,β) with λ = 0.2,
(e)–(f) �(0.5 + i,β) with λ=−0.2− i · 0.1.
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Figure 4.10. Basin of attraction for z3 − 1 = 0 using GCG method and W-L.S. with: (a)–(b) β =
0.360 + i · 0.840, (c)–(d) β = 0.716 + i · 0.5724, (e)–(f) β= 0.456 + i · 0.728.
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Figure 4.11. Basin of attraction for z3− 1= 0 using GCG method with: (a)–(b) λ=−0.2 + i · 0.1 and
β =−0.1 + i · 0.1, (c)–(d) λ=−0.2 + i · 0.1 and β =−0.1− i · 0.1, (e)–(f) λ= β = 0.1.
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Figure 4.12. Basin of attraction for z3 − 1= 0 using GCG method: (a) λ= β =−0.2 + i · 0.1, (b) en-
largement of the part framed in (a), (c) λ= β =−0.2, (d) enlargement of the part framed in (c).

Appendix

(i) Numerical tests are done from implementations in FORTRAN90 with graphic
mode.

(ii) For basins of attraction and bifurcations diagrams, we have used a graphic reso-
lution of 600× 600 pixels.

(iii) The maximal iteration number nmax is fixed to 150 iterations for GC and GCG.
(iv) For line search, the maximal iteration number nLS

max is fixed to 50 iterations with
these values of parameters: λ0 = 1.0, m1 = 0.3, m2 = 0.7.
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