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We have used empirical mode decomposition (EMD) method, which is especially well
fitted for analyzing time-series data representing nonstationary and nonlinear processes.
This method could decompose any time-varying data into a finite set of functions called
“intrinsic mode functions” (IMFs). The EMD analysis successively extracts the IMFs with
the highest local temporal frequencies in a recursive way. The extracted IMFs represent a
set of successive low-pass spatial filters based entirely on the properties exhibited by the
data. The IMFs are mutually orthogonal and more effective in isolating physical processes
of various time scales. The results showed that most of the IMFs have normal distribution.
Therefore, the energy density distribution of IMF samples satisfies χ2-distribution which
is statistically significant. This study suggested that the recent global warming along with
decadal climate variability contributes not only to the more extreme warm events, but
also to more frequent, long lasting drought and flood.

Copyright © 2006 Md. Khademul Islam Molla et al. This is an open access article distrib-
uted under the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

Several linear statistical models have been applied to climatic data (Rajagopalan et al.
[19, 20], Harrison and Larkin [11], and Wunsch [27]), but the results are not conclusive
due to the high sensitivity of model results to model parameters (Rajagopalan et al. [19,
20] and Harrison and Larkin [11]), especially when stochastic processes are taken into
account (Wunsch [27]).

A new nonlinear technique, empirical mode decomposition (EMD), has recently been
pioneered by Huang et al. [13] for adaptively representing nonstationary time-series data.
Although it proved remarkably effective (Huang et al. [13] and Wu et al. [26]), the tech-
nique is faced with the difficulty of being essentially defined by an algorithm and therefore
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does not admit an analytical formulation which would allow for a theoretical analysis and
performance evaluation.

Spatial rainfall data contain information of a broad range of spatial scales (Pegram
and Clothier [18]; Harries et al. [10] and Turner et al. [23]). The technique employed is
a two-dimensional generalization of the one-dimensional EMD technique introduced by
Huang et al. [13]. In a single dimension, EMD analysis produces a set of intrinsic mode
functions (IMFs) that are very nearly orthogonal. The key contribution of Sinclair and
Pegram [22] paper is to introduce the concept of 2D EMD to the hydrometeorological
literature as a tool for the analysis of spatio-temporal rainfall data. The EMD algorithm
copes with stationary by ignoring the concept, embracing nonstationary as a practical
reality. Although EMD is relatively new data analysis technique, its power and simplicity
have encouraged its application in different fields.

The El Nino and the southern oscillation phenomenon (ENSO) is the primary driver
of interannual climate variability and has a large economic and social impact over the
universe (Glantz et al. [8]). Fedorov and Philander [6] demonstrated that mean fluctu-
ations of decadal timescale do contribute significantly to the later unusual ENSO events
and suggested that global warming cannot be ruled out as a suspect (Wu et al. 2002).

Chiew et al. [3] examine the one-dimensional EMD of several annual stream flow
time series to search for significant trends in the data, using bootstrapping to test the
statistical significance of identified trends. The technique has been extensively used in
ocean wave data analysis (Huang et al. [12]; Hwang et al. [15]) as well as in the analysis of
polar ice cover (Gloersen and Huang, [9]). EMD has also been applied in the analysis of
seismological data by Zhang et al. [28] and also has been used to diagnose heart beat rate
fluctuations (Balocchi et al. [1]). Also some used in signal image processing (Flandrin
et al. [7]).

Global climate change is one of the most controversial issues to the scientific commu-
nity. Some of the most important data associated with global climate change is rainfall.
Global warming is one of the most serious global environmental issues facing mankind.
Climate is a fundamental component of the Earth’s natural system. Effect of global warm-
ing is already visible. The global mean temperature has increased by 0.6 ◦C over the last
century and many organisms and ecosystems have experienced changes. There is a per-
ception that extreme natural disasters such as floods, droughts, and heat waves have be-
come more frequent. This change in climate plays an important role in the Earth’s sus-
tainability.

2. Data and methodology

2.1. Rainfall data. All the weather parameters were measured with instruments speci-
fied by India Meteorological Department, Government of India. Daily rainfall data were
collected from the Agricultural Experimental Farm, Indian Statistical Institute, Giridih,
Jharkhand for the years 1989 to 2004. Rainfall was measured with IMD specified manual
and automatic rain gauges. Onset of monsoon during different years was identified as
the week which received more than 20 mm of rain in 1 or 2 consecutive days, provided
that the probability of at least 10 mm of rain in the subsequent week is more than 0.7
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(Virmani [24]). Similarly, the date of withdrawal of monsoon is defined as the date up to
which a rainfall of at least 30 mm has been received in a week with no subsequent rainfall
for at least 3 consecutive weeks towards the end the monsoon season (Shanker et al. [21]).

2.2. Empirical mode decomposition method. The empirical mode decomposition
(EMD) is recently developed which is specifically designed to analyze the nonlinear and
nonstationary properties of a time-series data (Huang et al. [13]; Gloersen and Huang
[9]). There is a straightforward assumption for EMD; all the data must consist of simple
intrinsic mode of oscillations. The modes, defined by the EMD method called intrinsic
mode functions (IMFs). Figure 2.1 showed the flowchart of IMF computation. EMD nat-
urally separates nonlinear oscillatory patterns of higher frequencies from those of lower
frequencies and trend. EMD is very efficient for time-series data (Coughlin and Tung
[5]). EMD method separates time-series into intrinsic oscillations using local temporal
and structural characteristics of the data. This analysis allows describing the statistical
confidence of the study results. The time-series rainfall data is decomposed into locally
orthogonal modes using the EMD method (Huang et al. [13]).

There exist many algorithmic approaches of EMD (Flandrin et al. [7]; Ivan and
Richard [16]). Time-series data x(t) can be decomposed by EMD as follows:

(1) identify the extrema (both maxima and minima) of data x(t);
(2) generate the upper and lower envelopes h(t) and l(t), respectively, by connecting

the maxima and minima points separately with cubic spline interpolation;
(3) determine the local mean m1(t)= (h(t) + l(t))/2;
(4) IMF should have zero local mean, subtract out m1 from x(t)

g1(t)= x(t)−m1(t); (2.1)

(5) test whether g1(t) is an IMF or not;
(6) repeat steps 1 to 5 and end up with an IMF g1(t).

Once the first IMF is derived, define C1(t) = g1(t), this is the finest temporal scale in
the time-series data, that is, the shortest period component of the data x(t). To find all
the IMFs, generate the residue r1(t) of the data by subtracting out C1(t) from the data as

r1(t)= x(t)−C1(t). (2.2)

The residue now contains information about the components for longer period; it is
treated as the new data and is resifted to find additional components.

The sifting process will be continued until it meets a stopping criterion as in Flandrin
et al. [7] yielding the subsequent IMFs as well as residues and the result is

r1(t)−C2(t)= r2(t), r2(t)−C3(t)= r3(t), . . . , rn−1(t)−Cn(t)= rn(t), (2.3)

where rn(t) becomes a constant, a monotonic function, or a function with only maxima
and one minima from which no more IMF can be derived, Huang et al. [14]. At the end
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IMF Ck(t) = gj(t) Ck(t)

Yes

m(t) ∼ 0 No

rk(t) = rk−1(t)− Ck(t)

Compute mean envelope m(t)

Upper and lower envelope fits by
spline interpolation

Local maxima and minima extraction

gj+1(t) = gj(t)−m(t)

x(t) = r(t)

Figure 2.1. Sifting scheme in the empirical mode decomposition.

of the decomposition the signal x(t) is represented as

x(t)=
n∑

i=1

Ci(t) + rn(t), (2.4)

where n is the number of IMFs and rn(t) is the final residue. Within the entire decompo-
sition, it takes maximum of 810 iterations to generate an IMF.

The IMFs are interpreted as the basis vectors representing the data (Wu and Huang
[25]). The EMD can also be treated as dyadic filter bank (Flandrin et al. [7]; Wu and
Huang [25]). Each IMF is considered as a bandpass filter (Flandrin et al. [7]); the mean
period of any IMF component almost exactly doubles that of the previous one, the Fourier
spectra of the IMF components are identical in shape as well as cover the same area on
a semilogarithmic period scale (Wu and Huang [25]). It can effectively be applied to the
data without harmonics, whereas any harmonic analysis (Fourier, wavelet and so on)
would end up in the same context with a much less compact and physically less meaning-
ful decomposition (Chang et al. [2]). The focus in this study will be mainly on the most
recent climate records. The data analysis is performed by self-written Matlab programs.
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3. Results of EMD analysis and discussion

The data of this investigation has no certainty to contain the harmonic components and
EMD is the best-suited method to analyze. The 15-year daily rainfall data and the decom-
posed intrinsic mode functions (IMFs) are shown in Figure 3.1. The EMD method is very
effective on a climate data, the IMFs components are normally distributed and also the
energy density of IMF is χ2-distribution. This result is consistent with the findings of Wu
and Huang [25]. The results are statistically significant of information content for IMF
components.

3.1. Instantaneous frequency. The instantaneous frequency (IF) represents the signal’s
frequency at every time instance. IF is defined as the rate of change of the phase angle
at the analysis time instant of the analytic version of the signal. Every IMF is a real val-
ued signal and analytic signal method (Cooke [4]) is used to calculate the instantaneous
frequency of the IMFs.

The analytic (complex) signal corresponding to a real signal ith IMF Ci(t) is defined
as

zi(t)= Ci(t) + jH
[
Ci(t)

]= ai(t)e jθi(t), (3.1)

where H[·] is the Hilbert transform operator, ai(t) and θi(t) are instantaneous amplitude
and phase, respectively, of the ith IMF. The Hilbert transform provides a phase shift of
±π/2 to all frequency components, whilst leaving the magnitudes unchanged (Cooke
[4]). For any arbitrary time-series X(t), the Hilbert transform Y(t) is defined as

Y(t)= 1
π
P
∫
X(t′)
t− t′

dt′, (3.2)

where P indicates the Cauchy principal value. With the definition, X(t) and Y(t) form
a complex conjugate yielding the analytic signal Z(t)= X(t) + jY(t). The analytic signal
is advantageous in determining the instantaneous quantities such as energy, phase, and
frequency. So the corresponding instantaneous frequency of the ith IMF can easily be
derived as

ωi(t)= dθi(t)
dt

. (3.3)

Using (3.1) and (3.3), the analytic signal associated with each of the IMFs and thus the
instantaneous frequency of each of them is calculated. The overall effect of IF of all IMFs
can be efficiently used as the time-frequency representation of the time domain signal.

3.2. Hilbert spectrum. Hilbert spectrum describes the joint distribution of the ampli-
tude and frequency content of the signal as a function of time. After performing the
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Figure 3.1. EMD of rainfall data, (a) 15-year daily rainfall (mm), (b) decomposed fourteen IMF com-
ponents and the final residue.
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Figure 3.2. Hilbert amplitude spectrum (or simply Hilbert spectrum) of the decomposed rainfall data
using 256 frequency bins. The amplitude is in dB.

Hilbert transform on each IMF component, the data can be expressed as

x(t)=
n∑

i=1

ai(t)e j
∫
ωi(t)dt, (3.4)

where only the n IMFs are taken into consideration leaving the residue (Huang et al.
[13]). This expression enables to represent the amplitude and instantaneous frequency as
a function of time in a three-dimensional plot. This frequency-time distribution of am-
plitude is designated as Hilbert amplitude spectrum H(ω, t) or simply Hilbert spectrum.

To build H(ω, t), the instantaneous frequency of each IMF is first scaled according to
the given number of frequency bins. Figure 3.2 represents the Hilbert spectrum (HS) of
the rainfall data as shown in Figure 3.1 using 256 frequency bins.

The HS can visualize the data in time and frequency scales at the same time. Regarding
the rainfall data, HS makes clear analysis about the distribution and amount of frequent
and nonfrequent rainfall at any time over the entire data length. This type of analysis is
very much influential in the study of global warming.

There are various forms to present the Hilbert spectrum, the popular form is the color
map presentation as shown in Figure 3.2. Any point in the color map presentation cor-
responds to the energy in dB (determined by the color bar placed at the right side of the
HS) at any specific time and frequency.

In this study, the visualization is more preferable than the further processing of the
Hilbert spectrum. The smoothened version of the original HS of Figure 3.2 with 3× 3
Gaussian filter is shown in Figure 3.3. It appears with more visualization ability of data
characteristics in the time-frequency domain than the original one. To improve appear-
ance capability of visual information, the entire time series is divided into two halves
and its corresponding HSs are shown in Figure 3.4. Now the data characteristic in the
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Figure 3.3. Hilbert spectrum of the decomposed rainfall data using 256 frequency bins after 3× 3
Gaussian filtering. The amplitude is in dB.

time-frequency domain becomes more understandable than any one of the previous rep-
resentations.

3.3. Marginal Hilbert spectra. The marginal spectrum defines a measure of total energy
contribution from each frequency value. It represents the cumulated amplitude over the
entire data length in a probabilistic sense. As we have already derived the Hilbert spectrum
H(ω, t), the marginal spectrum h(ω) can be easily defined as

h(ω)=
∫

t
H(ω, t)dt. (3.5)

Figure 3.5 shows the marginal Hilbert spectrum (solid line) as well as the Fourier spec-
trum (dotted line). These two spectra actually offer different meaning. In Fourier spec-
trum, the existence of energy at any frequency ω means a component of a sine or a cosine
wave persisted through the time span of the data.

However, in marginal Hilbert spectrum, the energy at the frequency ω means there is
a higher likelihood that an oscillation with such a frequency exists. Comparing the two
spectra in Figure 3.5, the Fourier spectrum is merely representing the nature of harmonic
analysis without considering the existence of harmonics in the data; whereas, the mar-
ginal Hilbert spectrum appears as nonharmonic, data adaptive spectral distribution. It
is also representing the real nature of data, for example, the marginal energy is decreas-
ing with the increase of frequency as visualized in Hilbert spectrum. Since there is a less
guarantee of having harmonics in the fully discrete rainfall data, EMD is more suited in
analysis than using any other harmonic analysis method (e.g., Fourier, wavelet, and so
on).
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Figure 3.4. (a) Hilbert spectrum with 3× 3 Gaussian filtering of a part of the rainfall data (1989 to
1997 for better visualization) using 256 frequency bins. The amplitude is in dB. (b) Hilbert spectrum
with 3× 3 Gaussian filtering of a part of the rainfall data (1997 to 2004 for better visualization) using
256 frequency bins. The amplitude is in dB.

3.4. Probability distribution function of the IMF components. The study which exam-
ines the probability distribution of an individual IMF (C1 to C14) is shown in Figure 3.6.
The probability density function for each IMF is approximately normally distributed,
which is evident from the superimposed fitted normal distribution function. From the
large sample theory, this fit is expected from central limit theorem.
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Figure 3.5. Comparison of marginal Hilbert spectrum with Fourier spectrum.

Definitely the deviation from the normal distribution function grows as the mode
number increases, Figure 3.6. This is because, in the higher-frequency modes, the IMFs
contain a smaller number of oscillations; therefore, the number of events decreases and
the distribution becomes less smooth. When sample size is large, the IMFs of the higher-
frequency modes will have more oscillations and the distribution will follow the normal
distribution according to the central limit theorem. The energy of the probability den-
sity function theory for a time series that has a normal distribution should have a χ2-
distribution (Papoulies [17]). IMFs isolate physical processes of various time scales and
also give the temporal variation with the processes in their entirety without resorting to
the linear assumptions. The IMFs can show the nonlinear distortion of the waveform lo-
cally as discussed by Huang et al. [13] and Wu et al. [26]. Finally, IMFs can be effectively
used to construct the time-frequency distribution in the form of a Hilbert spectrum,
which offers details of the time variation of the underlying processes.

3.5. Completeness and orthogonality of the decomposition. A new technique for ana-
lyzing the special scaling structure of rainfall fields has been discussed. An EMD analysis
in linearly decomposes the spatially distributed rainfall data into a set of intrinsic mode
functions, which are approximate by mutually orthogonal and sum back to the original
data.

The sum of all the IMF components reconstructs the original data as shown in Figure
3.7. Considering the entire data length, the maximum difference between the original
and reconstructed data is of the order 10−14 as shown in Figure 3.7. Now it becomes clear
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Figure 3.6. Probability distribution functions of the IMF components.
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Figure 3.7. The reconstructed rainfall data and the error with the original data.

that EMD is a lossless decomposition and the completeness of the decomposition is thus
demonstrated.

To measure the efficiency of the decomposition the orthogonality of the decomposi-
tion should also be checked. The elements should be locally orthogonal to each other. The
higher orthogonality corresponds to less amount of information leakage (cross terms of
the data between the components) between the elements. The amount of leakage usually
depends on the length of data as well as the decomposition method (Huang et al. [13]).
To check the orthogonality of IMFs from the EMD, an overall index of orthogonality, IO,
is defined (Chang et al. [2]) as

IO= 1
T

∑

t

1
x2(t)

(n+1∑

l

n+1∑

m

Cl(t) ·Cm(t)

)
, (3.6)

where l and m stand for the indices of IMFs. The residue is also included to evaluate the
IO and that is why l and m are extended to n+ 1 instead of n. In the decomposition of the
above-described rainfall data the overall IO value is only 0.00025.
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Figure 3.8. The values of the indices of orthogonality between all possible pairs of IMFs.

The orthogonality can also be measured for any pair of components Cl and Cm as

IOl,m = 1
T

∑

t

Cl(t) ·Cm(t)
C2
l (t) +C2

m(t)
. (3.7)

A set of perfect orthogonal IMF components will give zero values of IO and IOl,m. In
practice, the accepted solution for those with IO and IOl,m are smaller than 0.100.

The orthogonality values between all possible pairs of IMF components are shown as
the contour map in Figure 3.8. The color value (indicated by the color bar) in the contour
map represents the index on orthogonality between the corresponding pair (obtained
from x- and y-axes) of IMF components. It is noted that the maximum value of the
indices of orthogonality is of the order 8× 10−5 which is very much less than the proposed
value of 0.100. By observing the completeness and orthogonality, the study concluded
that the EMD method is well fitted to analyze the mentioned rainfall data.

3.6. Degree of stationarity test. EMD as well as Hilbert spectrum is more suitable for
nonstationary data. If h(ω) is the marginal Hilbert spectrum, the mean marginal spec-
trum μ(ω)= (1/T)h(ω). Then the degree of stationarity (DS) is defined as

Ds(ω)= 1
T

∫

t

(
1− H(ω, t)

μ(ω)

)2

dt. (3.8)

It gives the measure of the degree of stationarity at any frequency over the entire data
set and it produces the zero value for a stationary process or data set. With a stationary
data set, the Hilbert spectrum is not a function of time; it will consist of only horizontal
contour lines. The DS of the rainfall data is shown in Figure 3.9 with 256 frequency bins
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Figure 3.9. Degree of stationarity of the rainfall data (with 256 frequency bins).

Table 3.1. Some valuable parameters of IMF components.

IMF Mean period % of energy % of variance No. of iteration

C1 0.1659 14.4535 26.4186 810

C2 0.1211 10.7613 14.3364 789

C3 0.0888 10.6405 16.4239 796

C4 0.0658 9.0848 10.2414 682

C5 0.0501 8.8845 8.8665 553

C6 0.0364 7.1759 5.3736 229

C7 0.0243 7.0227 5.9021 31

C8 0.0146 5.4684 3.0393 82

C9 0.0091 5.1021 2.4954 14

C10 0.0045 5.8461 3.1122 15

C11 0.0023 6.1588 3.0762 13

C12 0.0012 2.4761 0.4754 6

C13 0.0007 0.8026 0.0491 5

C14 0.0004 1.5317 0.1634 6

(same as the number used in Hilbert spectrum). As the index showed, the data are highly
nonstationary especially for the high-frequency components. Also from the scenario by
observing the Hilbert spectrum, there exists more regularity in the data at the lower fre-
quency range and less in the higher-frequency bins. This provides a qualitative measure
of the degree of stationary. The quantitative measure of DS ensures that the rainfall data
is nonstationary and EMD is more suited for analyzing the data.

3.7. Parameters of IMF components and its properties. Some other properties of the
IMF components can also be useful to understand easily the analysis method of 15-year
rainfall data. The parameters values computed from the rainfall data are listed in Table
3.1. The mean period (calculated as the total number of extrema divided by the number
of data samples) serves the information that how the EMD works as the filter bank in
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data analysis. The percentage of energy content represents how much energy of the data is
contained by each IMF components and the variance offers the amount of information by
corresponding IMF. Finally the number of iteration required to compute individual IMF
provides the idea about the computational cost of the analysis. The empirical findings are
almost identical to those reported by Flandrin et al. [7].

4. Conclusions

This study plays a vital role for analyzing the properties of nonlinear and nonstation-
ary daily rainfall time-series data. This study focuses on the relation between the rainfall
variability and global warming using EMD data analyzing method. The results showed
that most of the IMFs have normal distribution. Therefore, the energy density distribu-
tion of an IMF samples satisfies χ2-distribution. An EMD analysis linearly decomposes
the spatially distributed rainfall data into a set of intrinsic mode functions, which are ap-
proximate by mutually orthogonal and sum back to the original data. The EMD analysis
successively extracts the IMFs starting with the highest local spatial frequencies in a re-
cursive way, which is effectively a set of successive low-pass spatial filters based entirely
on the properties exhibited by the data. The IMFs are more effective in isolating phys-
ical processes of various time scales and also statistically significant. The major peak of
frequencies also appears to be located around the peaks of the decadal variability. The re-
sults of this study indicate that this may be the response to decadal climate variability and
global warming. The EMD is a new approach to many researchers in climate research.
This study suggests that the recent global warming along with decadal climate variability
contributes not only to the more extreme warm events, but also to more frequent, long
lasting drought and flood.
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