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We studied families of discrete dynamical systems obtained by using iteration functions
given by weighted power mean in order to understand the role of hyperrapid convergence
in nonlinear maps. Our interest resides in concepts related to the velocity of convergence.
We introduce new concepts regarding the time of convergence and we provide an order-
ing of these families according to their dependence on parameters.
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1. Introduction

The arithmetico-geometrical algorithm is well known for the numerical evaluation of
elliptic functions and integrals [8]. The algorithm starts with two numbers (x0, y0) and
successive numbers (xn, yn), n ∈ N, are calculated from the recurrence formulas xn+1 =
(xn + yn)/2 (arithmetic mean) and yn+1 = √xnyn (geometric mean). Thus, a convergent
sequence {(xn, yn)} is generated with a common limit given by an elliptic integral.

The joint iteration of the arithmetic and the geometric means has been explored al-
ready by Carl Friedreich Gauss in a related problem regarding secular perturbations of
orbital elements [5]. The algorithm has found many uses in several disciplines, in areas of
mathematics such as numerical analysis [2, 3], number theory [1, 4], in physics [7, 9], in
finances in problems related to portfolio market value [6], and so on. In spite of the appli-
cability of this process, there has not been much attention devoted to dynamical processes
with different versions of iterated means. In this work we will introduce and explore new
dynamical systems with an iteration function given by a generalization of the arithmetic
and geometric means. Our interest resides in the study of some dynamical properties such
as convergence and velocity. We establish a classification on these new dynamical systems
according to the time of convergence and the critical exponent associated concepts that
will be introduced afterwards.
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2 Weighted power mean discrete dynamical systems

There is a huge variety of possible generalizations of the arithmetic and geometric
means. One of them is given by a weighted power mean, which is defined as follows:
given two positive numbers x and y and a weight w, with 0 < w < 1, their weighted power
mean is defined as (wxr + (1−w)yr)1/r , where the power r is a nonzero real number. We
are in position to state the next definition.

Definition 1.1. A weighted power mean function is defined as the function f : R+×R+×
(0,1)×R+ → R with

f (x, y,w,r)= (wxr + (1−w)yr
)1/r

. (1.1)

It is straightforward to show that a power mean function f satisfies the following prop-
erties.

(1)

lim
r→0

f (x, y,w,r)= xw y1−w. (1.2)

So we defined f (x, y,w,0)= xw y1−w. Notice that in particular when w = 1/2 we
obtain the geometric mean of x and y, that is f (x, y,1/2,0)=√xy.

(2) f (x, y,w,r) is an increasing function of r for each fixed w, x, and y.
(3) If x ≤ y, then f (x, y,w,r) is an increasing (decreasing) function of w for each

fixed x, y, and r > 0, (r < 0).
(4) If x ≤ y, then the harmonic weighted power mean, f (x, y,w,−1), is related to the

arithmetic, f (x, y,w,1), and geometric, f (x, y,w,0), weighted power mean as

x ≤ f (x, y,w,−1)≤ f (x, y,w,0)≤ f (x, y,w,1)≤ y. (1.3)

This paper is organized as follows. In Section 2 we define and give properties of
weighted power mean discrete dynamical systems. In Section 3 the dynamic behavior
of the dynamical systems is analyzed by reducing their dimension. In Section 4 we intro-
duce the concepts of convergence and critical exponents in a general setting. Numerical
experiments between the different systems and conclusions are given in Section 5.

2. Weighted power mean systems

Let us start with the following definition.

Definition 2.1. Given a weighted power mean function f with fixed wi and ri, i= 1,2, a
weighted power mean (WPM) discrete dynamical system is defined as

xn+1 = f
(
xn, yn,w1,r1

)
,

yn+1 = f
(
xn, yn,w2,r2

)
,

(2.1)

with 0 < x0 and 0 < y0.
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In the successive sections we study some elementary properties of WPM discrete dy-
namical systems.

2.1. Convergence

Proposition 2.2. The WPM discrete dynamical system (2.1) converges for appropriate ini-
tial conditions to a common value.

Proof. Let x0 and y0 be nonnegative initial conditions for the system (2.1), without loss
in generality we assume that x0 ≤ y0, then we have that xr0 ≤w1x

r
0 + (1−w1)yr0. Thus,

x0 ≤ x1 = f
(
x0, y0,w1,r1

)≤ y0, (2.2)

inductively we obtain that the sequence {xn}∞0 satisfies

x0 ≤ x1 ≤ ··· ≤ xn ≤ y0, n∈N (2.3)

and similarly

x0 ≤ yn ≤ ··· ≤ y1 ≤ y0, n∈N. (2.4)

Thus {xn}∞0 and {yn}∞0 are two convergent sequences. Let x∞ and y∞ be their correspond-
ing limits. Using (2.1) we get that xri∞ = yri∞ for i= 1,2, which implies that x∞ = y∞.

The limit values of WPM discrete dynamical systems can be calculated explicitly for
several specific cases which we study in the following sections. �

2.2. Case r1 = r2 (linear). Let us consider the case where r1 and r2 have the same value
which we denote as r.

Proposition 2.3. The WPM discrete dynamical system

xn+1 =
(
w1x

r
n +
(
1−w1

)
yrn
)1/r

,

yn+1 =
(
w2x

r
n +
(
1−w2

)
yrn
)1/r

(2.5)

converges to a common value given by

x∞ = y∞ = w2x
r
0 +
(
1−w1

)
yr0

1−w1 +w2
. (2.6)

Proof. In this case the discrete dynamical system (2.5) can be written as

xrn+1 =w1x
r
n +
(
1−w1

)
yrn,

yrn+1 =w2x
r
n +
(
1−w2

)
yrn.

(2.7)
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Setting x̂n = xrn and ŷn = yrn in (2.7) we get the linear system

x̂n+1 =w1x̂n +
(
1−w1

)
ŷn,

ŷn+1 =w2x̂n +
(
1−w2

)
ŷn.

(2.8)

The linear system in x̂n and ŷn can be written in the form

Xn+1 =AXn, (2.9)

with

Xn =
(
x̂n
ŷn

)

, A=
(
w1 1−w1

w2 1−w2

)

. (2.10)

Thus

lim
n→∞Xn = lim

n→∞A
nX0 =

(
w2 1−w1

w2 1−w1

)(
x̂0

ŷ0

)
1

1−w1 +w2
. (2.11)

Notice that x̂n and ŷn converge to the common limit given by

x∞ = y∞ = w2x̂0 +
(
1−w1

)
ŷ0

1−w1 +w2
. (2.12)

Therefore, the common limit of the original system (2.5) is given by

x∞ = y∞ = w2x
r
0 +
(
1−w1

)
yr0

1−w1 +w2
. (2.13)

Notice that the system converges exponentially, that is, as exp(n ln(|w1−w2|)) with n
approaching∞. �

2.3. Case with w1 =w2 = 1/2 and r2 = 0

Proposition 2.4. For given initial conditions the discrete dynamical system

xn+1 =
(
xrn + yrn

2

)1/r

,

yn+1 = √xnyn
(2.14)

converges to the common value L which satisfies

L= π

2

(∫ π/2

0

dθ
√
x2r

0 cos2(θ) + y2r
0 sin2(θ)

)−1

. (2.15)

Proof. Let us substitute

kn = xrn− yrn
xrn + yrn

(2.16)
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into the following equality known as Gauss’s transformation:

1
1 + kn

∫ π/2

0

dθ
√

1− 4kn sin2(θ)/
(
1 + kn

)2
=
∫ π/2

0

dθ
√

1− k2
n sin2(θ)

(2.17)

to get

∫ π/2

0

dθ
√
x2r
n cos2(θ) + y2r

n sin2(θ)
=
∫ π/2

0

dθ
√
x2r

0 cos2(θ) + y2r
0 sin2(θ)

. (2.18)

Taking the limit as n goes to infinity and using the fact that the system (2.14) has a com-
mon limit we obtain the desired result. �

This system converges faster than the system with r1 = r2. Later on we will show in
detail the reason for this behavior.

3. Decoupling

Using the following transformation xn = ρn cos(θn) and yn = ρn sin(θn) with 0 < θn < π/2
for all n, the system (2.1) decouples into

tanθn+1 =
(
w1 +

(
1−w1

)
tanr1

(
θn
))1/r1

(
w2 +

(
1−w2

)
tanr2

(
θn
))1/r2

, (3.1)

ρn+1 = ρn cos
(
θn
)
G
(
θn
)
, (3.2)

where

G
(
θn
)=

√(
w1 +

(
1−w1

)
tanr1

(
θn
))2/r1 +

(
w2 +

(
1−w2

)
tanr2

(
θn
))2/r2 . (3.3)

Writing zn = tan(θn) in (3.1), we obtain a one-dimensional discrete system zn+1 =
H(zn) given by

zn+1 =
(
w1 +

(
1−w1

)
zr1
n

)1/r1

(
w2 +

(
1−w2

)
zr2
n
)1/r2

=H
(
zn
)
. (3.4)

This system inherits the convergence properties of system (2.1), therefore it converges
globally to the fixed point z = 1 for all values of wi and ri, i= 1,2. Notice that |H′(1)| =
|w1 −w2| < 1 which implies that if w1 �= w2, then the system converges exponentially to
the fixed point and the error decays as e−n/τ where τ is a constant, see [10].
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Assume now that w1 = w2, then |H′(1)| = 0 and |H′′(1)| = w(1−w)|r1 − r2|. No-
tice that H′′(1) = 0 only if r1 = r2 and this is the case which was already analyzed in
Section 2.2. Therefore we can assume that H′′(1) �= 0. Let us now investigate this case in
the next section using a general setting.

4. Critical exponents and time of convergence

Given a discrete dynamical system of the form xn+1 = H(λ,xn), where λ is a parameter,
assume the existence of an isolated attracting fixed point xH(λ), which may depend on λ.
Define the error sequence, {εn}, as xn = xH + εn. Therefore

εn+1 =H′(λ,xH
)
εn +H′′(λ,xH

)ε2
n

2
+O

(
ε3
n

)
. (4.1)

Let λ̂ be a value of the control parameter satisfying H′(λ̂,xH) = 0, and assume that

H′′(λ̂,xH) is not identically equal to zero, then using (4.1) we conclude that |εn| decays as
exp(−2n/τ) with τ a constant independent of n. From now on we will refer to the points
(λ̂,xH) as points of fast convergence. The constant τ has a particular meaning, which is
given in the next definition.

Definition 4.1. Define the time of convergence of the system xn+1 =H(λ,xn) at a point of

fast convergence (λ̂,xH) as

τ =−
(

ln
∣
∣
∣
∣
ε0

2
∂2H

∂x2

(
λ̂,xH

)
∣
∣
∣
∣

)−1

, (4.2)

and we also define the critical exponent, δ, as the smallest power of the nonzero term in
the Taylor series of g(λ)= ln|(ε0/2)(∂2H/∂x2)(λ,xH)| around the point λ̂.

It is noticeable that both concepts depend on the initial condition. With these def-
initions, we obtain a classification of discrete dynamical systems at points of fast con-
vergence. For each class, defined by specific values of λ and derivatives of the function
ln|(ε0/2)(∂H2/∂x2)(λ,xH)|, the value of δ is independent of the iteration function. The
main ideas to define these new concepts are taken from [10] which is a work regarding
slower dynamical systems.

We now return to the analysis of WPM dynamical systems to show the existence of
classes of dynamical systems with different associated critical exponent values.

For the system

zn+1 =
(
w+ (1−w)zr1

n

)1/r1

(
w+ (1−w)zr2

n
)1/r2

, (4.3)

(w,1) is a point of fast convergence for all w ∈ (0,1). So considering a fixed weight w0, the
Taylor expansion of the function g(w)= ln((ε0/2)w(1−w)|r1− r2|) around the value w0



Francisco J. Solis 7

is

g(w)= ln
(
ε0

2
w0
(
1−w0

)∣∣r1− r2
∣
∣
)
− 2w0− 1
w0
(
w0− 1

)
(
w−w0

)

+

(
2

w0
(
1−w0

) − 2w0− 1

w0
(
1−w0

)2 −
2w0− 1

w2
0

(
1−w0

)

)(
w−w0

)2

2
+O

((
w−w0

)3
)
.

(4.4)

Therefore we obtain that if ε0w0(1−w0)|r1 − r2| �= 2, the system (4.3) has associated
a critical exponent δ = 0. So except for a set of Lebesgue measure zero, that is, when
ε0w0(1−w0)|r1− r2| �= 2, zero is the typical value of the critical exponent for WPM sys-
tems with the same weight.

Now assume that ε0w0(1−w0)|r1 − r2| = 2, requiring that ε0|r1 − r2| ≥ 8, then the
system (4.3) has a critical exponent δ = 1 only ifw0 �= 1/2. Finally, the only existing critical
exponent is δ = 2 if we have that w0 = 1/2 and ε0|r1− r2| = 8. Therefore we have proven
the following proposition.

Proposition 4.2. The discrete dynamical system

zn+1 =
(
w+ (1−w)zr1

n

)1/r1

(
w+ (1−w)zr2

n
)1/r2

(4.5)

has three associated critical exponents at the fast convergence point (w0,1) with w0 ∈ (0,1).
The value δ = 0 corresponds to the case where (z0 − 1)w0(1−w0)|r1 − r2| �= 2. The value
δ = 1 is possible if and only if (z0− 1)w0(1−w0)|r1− r2| = 12 and w0 �= 1/2, and δ = 2 for
the cases where w0 = 1/2 and (z0− 1)|r1− r2| = 8.

5. Numerical examples and conclusions

The WPM discrete dynamical system

xn+1 =
(
w1x

r1
n +

(
1−w1

)
yr1
n

)1/r1 ,

yn+1 =
(
w2x

r2
n +

(
1−w2

)
yr12
n

)1/r2

(5.1)

(1) converges exponentially if w1 �= w2. In Figure 5.1 we show the set of initial con-
ditions {(x0, y0) | 0 ≤ x0 ≤ 1, 0 ≤ y0 ≤ 1} for a WPM system with r1 = 2, r2 = 4,
w1 = 0.5, and w2 = 0.3. The number of iterations necessary to achieve conver-
gence with a tolerance of 10−6 is shown in the different colored regions of the unit
square. The black portion of Figure 5.1 means that only one iteration is needed
to achieve convergence;
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Figure 5.1. Number of iterations with exponential decay.
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Figure 5.2. Number of iterations with critical exponent δ = 0.

(2) with w1 =w2, converges with a critical exponent of δ = 0 for all initial conditions
except for a set of measure zero. In Figure 5.2, we show the number of itera-
tions to achieve convergence with a tolerance of 10−6 in the unit square of initial
conditions for a system with r1 = 5, r2 = 0.5, w1 = w2 = 0.3. Notice the notable
reduction in the number of iterations from the previous example.
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