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In dynamic models in economics, often “rational expectations” are assumed. These are
meant to show that the agents can correctly foresee the result of their own and the other
agents’ actions. In this paper, it is shown that this cannot happen in a simple oligopoly
model with a linear demand function and constant marginal costs. “Naive expectations,”
that is, where each agent assumes the other agents to retain their previous period action,
are shown to result in a 2-period cycle. However, adapting to the observed periodicity
always doubles the actual resulting periodicity. In general, it is impossible for the agents
to learn any periodicity except the trivial case of a fixed point. This makes the whole idea
of “rational expectations” untenable in Cournot oligopoly models.

Copyright © 2006 Tönu Puu. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

In a note in 1959, Theocharis [5] reconsidered the Cournot [2] oligopoly problem, given
a linear demand function and constant marginal costs for the competitors. He showed
that with three competitors, the Cournot equilibrium becomes neutrally stable, and with
four, it becomes unstable. As discussed in [1], the whole argument was antedated 20
years earlier by Palander in [3, 4], but as this seems to be totally unknown to the eco-
nomics profession, we continue referring to the “Theocharis problem.” However, both
Palander and Theocharis only considered loss of local stability of the Cournot equilibrium
point.

In [1], the global dynamics of the model was studied. A linear demand function and
constant marginal costs lead to linear reaction functions, which in terms of substance,
become nonsense once they result in negative output and profits that are positive due
to negative costs dominating over negative revenues. Using nonnegativity constraints,
the model necessarily becomes nonlinear, which is needed for the study of the global
dynamics.
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The main result of [1] was that the model could asymptotically go to a stable monop-
oly, a stable duopoly, or else a synchronized 2-period oscillation, in the case of more than
three competitors, one where all firms drop out every second period. The outcome solely
depended on the marginal costs of the competing firms.

After restating some of these facts, we will now consider that a 2-period cycle (resulting
from so-called naive expectations) is easily learnt by the competitors. In particular, if all
firms drop out every second period, any firm may attempt to become a monopolist these
very periods, and so improve its long-run profit situation.

According to the “rational expectations” hypothesis, all the competitors would learn
this 2-periodicity, and so react to conditions, not in the past period, but 2 periods back.
As we will see, this changes the resulting periodicity, the cycle becomes 4-periodic. But
then, again assuming that all the competitors learnt this, we find that the resulting cycle
is doubled, to 8-period, and so forth.

The general issue then is whether it is at all possible for the competitors to learn the
right periodicity resulting from their own and their competitors’ actions, in accordance
with the rational expectations hypothesis. It will be shown that no periodic orbit, except
an equilibrium, can be learnt by the agents. In a very vague sense, of course, this reminds
of the uncertainty principle in physics. By attempting to measure something, the object
of measurement is affected so as to make accurate observation impossible. In the same
way, learning the outcome of a dynamical process by the agents involved and adapting to
it alters the process so that accurate learning of the process becomes impossible.

2. Palander (1936/1939) and Theocharis (1959)

2.1. The model. To restate the basic facts of the global dynamics, let us now specify the
model. With linear demand, market price

p := a− b
i=n∑

i=1

qi (2.1)

depends on the total of the supplies of the n competitors. To simplify notation, define
total supply

Q :=
i=n∑

i=1

qi, (2.2)

and “residual supply” (not under the control of the ith competitor)

Qi :=Q− qi, i= 1, . . . ,n. (2.3)

The revenue for the ith competitor hence becomes

Ri =
(
a− b

(
Qi + qi

))
qi, i= 1, . . . ,n, (2.4)
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whence marginal revenue becomes

∂Ri

∂qi
= a− bQi− 2bqi, i= 1, . . . ,n. (2.5)

Given constant marginal costs, total costs are

Ci = ciqi, i= 1, . . . ,n, (2.6)

and marginal costs are

∂Ci

∂qi
= ci, i= 1, . . . ,n. (2.7)

Equating marginal revenue (2.5) to marginal cost (2.7), we can solve for qi:

qi = 1
2
a− ci
b

− 1
2
Qi, i= 1, . . . ,n, (2.8)

which can be considered either as a simultaneous system or as a recurrence system.

2.2. Cournot equilibrium. In the first alternative, (2.8), given definitions (2.2) and (2.3),
can be solved for the Cournot equilibrium point:

qi =
1

n+ 1
a− ci
b

+
n

n+ 1
c− ci
b

, i= 1, . . . ,n, (2.9)

where for convenience

c = 1
n

i=n∑

i=1

ci. (2.10)

Summation of (2.9) gives total output in Cournot equilibrium:

Q = n

n+ 1
a− c

b
. (2.11)

We see that total Cournot equilibrium output is a fraction of the ratio of maximum
price minus average marginal cost to the slope of the inverse demand function. The frac-
tion is one half in the case of monopoly, two thirds in the case of duopoly, and it goes
asymptotically to unity as the number of competitors increases.

From (2.11), we can also easily calculate price in the Cournot point:

p = a− bQ = 1
n+ 1

a+
n

n+ 1
c, (2.12)

which is a weighted average of maximum price and average marginal cost, and hence
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positive. Using (2.12) with (2.9), the profits of the individual firms are

Πi =
(
p− ci

)
qi = b

(
1

n+ 1
a− ci
b

+
n

n+ 1
c− ci
b

)2

. (2.13)

This squared right-hand side may seem to be always nonnegative, but in case the ex-
pression in brackets is negative, we see from (2.9) that qi < 0, which is nonsense. The
positive profits then result from negative costs dominating over negative revenues. We
will meet this consideration again when constructing the iteration for global dynam-
ics. Hence, in order that a given firm stays in business, we require that (1/(n+ 1))((a−
ci)/b) + (n/(n+ 1))((c− ci)/b) > 0. As the common denominators (n+ 1)b > 0, this can
be reorganized as follows:

ci <
1

n+ 1
a+

n

n+ 1
c. (2.14)

Only firms with sufficiently low marginal costs will actually stay active in a Cournot equi-
librium. Note that from (2.10), ci is one of the terms in nc =∑i=n

i=1 ci, so in order to state a
condition for ci in terms of all the cj , j �= i, we later need a further reorganization.

2.3. Reaction functions. As mentioned, we may want to treat (2.8) as a dynamical sys-
tem. Suppose each firm assumes all the competitors to retain their supplies from the pre-
vious period. Then the “best reply” of this firm is

qi(t+ 1)= 1
2
a− ci
b

− 1
2
Qi(t), i= 1, . . . ,n. (2.15)

This function (2.15) is usually called the reaction function. In this case, it is linear, due to
the underlying linearity of the demand and cost functions, but in general it is not, and
then it might be impossible to state in explicit form. As we will see, the reaction function
turns nonlinear (piecewise linear) also when we take nonnegativity of output and profits
in account.

Note that the derivatives of (2.15),

∂qi(t+ 1)
∂Qi(t)

=−1
2

, i= 1, . . . ,n, (2.16)

are constant, equal to −1/2, independent of the coordinates of the Cournot equilibrium
point.

For further use, take the sum of (2.15) over i, and use (2.2), (2.3), and (2.10) to obtain

Q(t+ 1)= n
1
2
a− c

b
− n− 1

2
Q(t). (2.17)

Note that this is a divergent process whenever n > 3.
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2.4. Local stability. The derivatives (2.16) enter the Jacobian matrix of the system in all
off-diagonal elements, whereas the diagonal elements are zero. Thus,

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1
2

··· −1
2

−1
2

0 ··· −1
2

...
...

. . .
...

−1
2

−1
2

··· 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.18)

The characteristic equation reads

|J − λI| =
(
λ− 1

2

)n−1(
λ+

n− 1
2

)
= 0. (2.19)

There are n− 1 eigenvalues λ1,...,n−1 = 1/2 and 1 eigenvalue λn = −(n− 1)/2. Theocharis
concluded that in duopoly, there are two eigenvalues λ1 = 1/2 and λ2 = −1/2, both less
than unity in absolute value, so the Cournot equilibrium is stable. In triopoly, the eigen-
values are λ1,2 = 1/2, λ3 = −1, so the equilibrium is neutrally stable, with a tendency to
endless but stationary oscillation. For n > 3, |λn| = (n− 1)/2 > 1, so the equilibrium be-
comes unstable. Palander stated the same subject 20 years earlier, though for more general
reaction functions.

In his 1939 article, Palander [3] wrote “as a condition for an equilibrium with a cer-
tain number of competitors to be stable to exogenous disturbances, one can stipulate that
the derivative of the reaction function f ′ must be such that the condition |(n− 1) f ′| < 1
holds. If this criterion is applied to, for instance, the case with a linear demand function
and constant marginal costs, the equilibria become unstable as soon as the number of
competitors exceeds three. Not even in the case of three competitors will equilibrium be
restored, rather there remains an endless oscillation.” As we see, Palander considers not
just linear demand (and hence reaction) functions, but stability of the Cournot equilib-
rium in general.

As usual, the eigenvalues correspond to a diagonalization of the system, the first n− 1
associated with differences of the phase variables, the last with the sum of the phase vari-
ables.

3. The global dynamics

3.1. Nonnegativity of output and profits. It is now time to consider that qi(t+ 1) cannot
become negative. According to (2.15), they must be restricted to

Qi(t)≤ a− ci
b

, i= 1, . . . ,n. (3.1)

However, there is another fact that we must take in account! Profits must be positive, or
the firms will drop out from the market. So, consider expected profits as obtained from
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(2.4) and (2.6),

Πi(t+ 1)= (a− ci− b
(
Qi(t) + qi(t+ 1)

))
qi(t+ 1), i= 1, . . . ,n. (3.2)

Substituting for qi(t+ 1) from (2.15), we get

Πi(t+ 1)= b

4

(
a− ci
b

−Qi(t)
)2

, i= 1, . . . ,n. (3.3)

The right-hand side of (3.3) being squared, it might seem that we always have a non-
negative profit. However, if (3.1) is not fulfilled, the nonnegativity of profits is due to pos-
itive costs dominating over negative revenues, a meaningless case in terms of substance.
Hence, the condition for a meaningful nonnegative profit coincides with the condition
for nonnegative output, which actually simplifies things.

3.2. The global reaction function. Hence, we reformulate the map as follows:

qi(t+ 1)=

⎧
⎪⎪⎨
⎪⎪⎩

1
2
a− ci
b

− 1
2
Qi(t), Qi(t)≤ a− ci

b
,

0, Qi(t) >
a− ci
b

,
i= 1, . . . ,n. (3.4)

Numerical experiments with (3.4) indicate that eventually the model can go to steady
states of monopoly or duopoly. With three competitors, a permanent oscillation appears,
and with four or more, oscillations of period two, where all firms drop out every sec-
ond period, are the rule. However, any number of competitors may drop out, and the
remaining firm(s) may go to Cournot duopoly or even a monopoly state.

4. Monopoly and duopoly

We saw that (i) monopoly and duopoly are always stable, and (ii) it is not certain that all
the n firms can make positive profits in the Cournot equilibrium point. It may even oc-
cur that the relevant condition (2.14), dependent only on the relation between marginal
costs, is fulfilled for only one or two firms. If so, the system settles to a stable monopoly or
duopoly. The triopoly is a boundary case. We will first check out the possibility for mo-
nopoly and duopoly, and then, skipping the boundary case, establish the general global
dynamics for n > 3 remaining competitors.

4.1. Monopoly. In the case of monopoly, where we, without loss of generality, can take
the monopolist as number 1, (2.14) states that if

ci >
1

n+ 1
a+

n

n+ 1
c, i= 2, . . . ,n, (4.1)

holds, then no competing firm will be able to enter. We can reduce the question to first
deal with excluding the possibility of any other firm entering into duopoly. Then n = 2,
and we compare firms 1 and 2, where the second firm, again without loss of generality,
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can represent any of the other firms. We thus get

c2 >
1
3
a+

1
3

(
c1 + c2

)
(4.2)

or, rearranging,

c2 >
1
2

(
a+ c1

)
. (4.3)

If this condition does not hold, then the second firm can enter into competition with
the monopolist and establish a duopoly. In order for a new firm to make positive profit,
and enter in competition with the monopoly, its marginal cost must not exceed a certain
number, but note that it does not need to be lower than the marginal cost for the mo-
nopolist. If a = 1, c1 = 0.5, then the monopoly remains when c2 > 0.75, but transforms
into a duopoly when c2 < 0.75—even though the marginal cost of the second firm is 50%
higher than that for the monopolist. As the Cournot point in duopoly is contractive, with
eigenvalues ±1/2, the system will approach the Cournot equilibrium.

4.2. Duopoly. Suppose now that one competitor succeeded to intrude the market, and
that a duopoly is formed. Again

ci >
1

n+ 1
a+

n

n+ 1
c, i= 3, . . . ,n (4.4)

must hold for the duopoly to remain a duopoly. We can again discuss a possible intrusion
of a third firm, i= 3, as a generic representative for the remaining firms. Thus

c3 >
1
4
a+

1
4

(
c1 + c2 + c3

)
(4.5)

prevents intrusion. Rearranging,

c3 >
1
3

(
a+ c1 + c2

)
. (4.6)

Suppose again a= 1, c1 = 0.5, and further c2 = 0.6. Then the nonintrusion condition
reads c3 > 0.7, whereas if c3 < 0.7, the third firm will enter. As the eigenvalues are now 1/2,
1/2, −1, the system will become oscillating. However, as illustrated in [1], the new firm
can also expel one of the duopolists, so that duopoly remains. This can also happen in the
case of monopoly, where a new competitor can throw the previous monopolist out from
the market.

5. The oscillatory case

5.1. Variable differences. Consider now the general oscillatory case with n > 3. First let
us form the difference (qj(t + 1)− qi(t + 1)) according to (2.15), also taking note of (2.2)
and (2.3). Hence,

(
qj(t+ 1)− qi(t+ 1)

)= 1
2

ci− cj
b

+
1
2

(
qj(t)− qi(t)

)
. (5.1)
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As we see, this is a contraction, so all differences between variables eventually approach
fixed quantities. This relates to what was said above about the first n− 1 eigenvalues being
associated with differences of phase variables.

5.2. The asymptotic process. After any transient has been passed, we have (qj(t)−qi(t))=
(ci− cj)/b, or better,

qj(t)= qi(t) +
ci− cj
b

. (5.2)

Summing over j, using (2.2) and (2.10), we get

Q(t)= nqi(t) +n
ci− c

b
(5.3)

or, solving for qi(t),

qi(t)= c− ci
b

+
1
n
Q(t), i= 1, . . . ,n. (5.4)

This tells us how each phase variable asymptotically changes with total output of the
industry. For the dynamics of Q(t), we have (2.17), which as we saw, unlike the case of
(5.1), is oscillatory divergent whenever n > 3. But this would sooner or later result in
a negative Q(t), which cannot happen unless some qi(t) are negative as well, and this
cannot happen.

As we are past the transient, (5.4) holds. Further, assume Q(t)= 0. Then from (5.4),

qi(t)= c− ci
b

, i= 1, . . . ,n, (5.5)

we conclude that qi(t) > 0 for ci < c, whereas qi(t) < 0 for ci > c. The latter is, however,
impossible, so the negative outputs are replaced by zero. If there are any positive outputs,
then their aggregate must be positive too, because they cannot be counterbalanced by
negative ones, that is, Q(t) > 0, which contradicts that Q(t)= 0. Thus, in the asymptotic
state, all qi(t)= 0 whenever Q(t)= 0.

5.3. The 2-period orbit. Assume now that Q(t) = 0 in some time period. From (2.17),
we then find

Q(t+ 1)= n
1
2
a− c

b
> 0, (5.6)

where positivity holds because maximum price must be higher than all marginal costs,
and hence also their average. Further consider also the following iterate, obtained through
substituting (5.6) in (2.17) once more, whence

Q(t+ 2)=−n(n− 3)
1
4
a− c

b
< 0 (5.7)

negative as stated provided that n > 3.
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This cannot happen, because Q(t + 2) < 0 implies that some qi(t + 2) < 0. Any nega-
tive qi(t+ 2) are, however, replaced by zero. Then, positive qi(t+ 2) cannot occur, because
there are no negative ones that can counterbalance them to make Q(t + 2) < 0. Hence,
all qi(t + 2)= 0, which also sum up to Q(t + 2)= 0. We conclude that (i) zero total mar-
ket output after the passage of two periods again results in a zero output, and (ii) this
can only happen through all individual outputs being zero simultaneously as well. From
(5.6), we find that the same positive total quantity is produced in the intermediate peri-
ods. From (5.4), asymptotically there is a fixed linkage between total output and all the
individual outputs, so there definitely is a 2-period cycle where all the firms drop out
every second period. This also shows up in any numerical experiment. The condition
for this type of 2-period cycle to occur is that the remaining number of firms is n > 3
as assumed.

6. Learning the orbit

6.1. Period doubling. A 2-period orbit is the simplest possible nonconstant orbit, so as
soon as the competitors find this out, everybody will adapt to conditions two periods
back. They know that their first expectations—that the competitors retain their supplies
from the previous period—turned out wrong, and they learned that the competitors’
actions recur every second period.

Given this, we can immediately state the recurrence equation

qi(t+ 2)=

⎧
⎪⎪⎨
⎪⎪⎩

1
2
a− ci
b

− 1
2
Qi(t), Qi(t)≤ a− ci

b
,

0, Qi(t) >
a− ci
b

,
i= 1, . . . ,n. (6.1)

Note that nothing is changed, except the adaptation period. The Cournot equilibrium
point is the same, and all considerations about entry and positivity of profits still hold.
Recall that we are dealing with n > 3, that is, marginal costs such that all competitors
remain in business.

Obviously, assuming qi(t)=Q(t)=Qi(t)= 0 and using the above considerations, we
conclude that now qi(t + 4)=Q(t + 4)=Qi(t + 4)= 0 as well. In the intermediate period
t+ 2, all quantities will be positive.

So much about periods t, t + 2, and t + 4. For periods t + 1, t + 3, and t + 5, there
is another independent 4-period cycle, with alternating zero and positive outputs. How
these two processes are combined depends on initial conditions and transients. Anyhow,
the resulting process is 4-period, so again, the assumption that the resulting cycle was
2-periodic shows up to be wrong. We can further assume that the competitors learn also
this 4-periodicity, only to check out that they actually produce an 8-period cycle, and so
it goes.

6.2. Possibility of rational expectations. We may thus pose the following question. Does
there exist any periodicity which the competitors can learn, and which coincides with
what their behaviour actually results in? Our answer is in the negative.
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Assume there is such a T-periodicity. Then, in analogy to (3.4) and (6.1), we have

qi(t+T)=

⎧
⎪⎪⎨
⎪⎪⎩

1
2
a− ci
b

− 1
2
Qi(t), Qi(t)≤ a− ci

b
,

0, Qi(t) >
a− ci
b

,
i= 1, . . . ,n. (6.2)

But under the rational expectations hypothesis, the T-periodicity is recognized, so

qi(t+T)≡ qi(t). (6.3)

Substituting from (6.3) in (6.2) and taking the first branch of the map,

qi(t)= 1
2
a− ci
b

− 1
2
Qi(t) (6.4)

or, using (2.3),

qi(t)= 1
2
a− ci
b

− 1
2
Q(t) +

1
2
qi(t). (6.5)

Finally, rearranging,

qi(t)= a− ci
b

−Q(t). (6.6)

Sum over i, use (2.2) and (2.10), and rearrange to solve for

Q(t)= n

n+ 1
a− c

b
, (6.7)

which equals total supply in Cournot equilibrium, that is, Q(t)=Q. Further, substituting
back in the previous equation, we get

qi(t)= 1
n+ 1

a− ci
b

+
n

n+ 1
c− ci
b

, i= 1, . . . ,n, (6.8)

which equals the individual supplies in Cournot equilibrium, that is,

qi(t)= qi, i= 1, . . . ,n. (6.9)

As these relations have to hold for all t, we conclude that the only periodic orbit that can
be learned is the fixed Cournot point.

Now, we chose the first branch of the reaction function (6.2), so how about the second?
From the above reasoning around (2.13), we know that output and profits in Cournot
equilibrium are positive, so it is this branch that counts.

By conclusion, in terms of rational expectations, the fixed point is the only periodic orbit
that can be learned by the agents.
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7. Discussion

The Cournot oligopoly model with linear demand and constant marginal costs was shown
by Palander [3] and Theocharis [5] to have an unstable equilibrium whenever the num-
ber of competitors becomes larger than 3. The global dynamics of this model can only be
studied if nonnegativity constraints for supplies and profits are taken in account. Given
this is done, the model displays a 2-period orbit when the competitors react to “naive”
expectations, that is, assume that everybody else will supply as in the previous period.
Obviously these expectations are not fulfilled.

If the competitors learn the 2-periodicity, and adapt their beahviour to it, the actual
periodicity is doubled to 4, and this goes on with any expectations that try to capture
the true periodicity. Learning a periodicity interferes with the process, and alters it. By
conclusion, it becomes obvious that the only periodicity that can be learned in the “ra-
tional” way is the Cournot fixed point. But as we saw, this fixed point becomes unstable,
quite as pointed out by Palander and Theocharis, so it is no alternative with more than 3
competitors.

The natural question then is whether the competitors can learn and adapt to anything
else than a periodic orbit. A dynamical system can only be attracted to fixed points or
periodic orbits, to quasiperiodic or chaotic orbits, or it can diverge.

Now, in the oligopoly case, divergence indicates misspecification of the model, for
instance by neglecting nonnegativity constraints in a linear model. On the other hand,
a chaotic trajectory is in principle unpredictable, and a quasiperiodic one requires infinite
memory. So, the “rational expectations hypothesis” seems impossible.

It is the conviction of the author that this holds in much more generality, in fact for
any reasonable oligopoly model we may construct, and perhaps also in other classes of
dynamical models in economics.
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