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1. Introduction

In this paper, we consider the following second-order Strum-Liouville boundary value
problem with singularities (BVP):

(
p(t)u′(t)

)′
+ g(t)F(t,u)= 0, ∀t ∈ (0,1),

αu(0)−β lim
t→0+

p(t)u′(t)= 0,

γu(1)− δ lim
t→1−

p(t)u′(t)= 0,

(1.1)

where α,β,γ,δ ≥ 0, and

ρ= βγ+αγ
∫ 1

0

dr

p(r)
+αδ > 0. (1.2)

We always assume that the following hypotheses hold:
(A1) p ∈ C([0,1], [0,+∞]), and

∫ 1
0 dt/p(t) < +∞;

(A2) g∈ L(0,1), and g(s)≥ 0, a.e. and there exists [a,b]⊂ (0,1), such that 0<
∫ b
a g(s)ds;

(A3) F(t,u)∈ C([0,1]× [0,+∞],[0,+∞]).
The BVP(1.1) arises in many different areas of applied mathematics and physics, and

only its positive solution is significant in some practice. For the special case as follows with
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2 Multiple positive solutions of singular BVP

p(t) ≡ 1 and F(t,u) = f (u), BVP(1.1) was studied by many authors (see [1, 4–8]). Erbe
and Wang [1] investigated this problem by using norm-type cone expansion and com-
pression theorems; Lan and Webb [4] get the existence of positive solution for BVP(1.1)
by using a well-known nonzero fixed point theorem. This problem is also studied by Ma
[6] by using compact operator approximation.

Recently the authors [10] investigated the Strum-Liouville equation which has singu-
larities at 0 and 1, the existence of one positive solution is established by applying the
fixed point index theory.

However, the authors [1, 4, 6, 8, 10] only investigated the existence of positive solu-
tion for BVP(1.1). Liu and Li [5] get the existence of multiple positive solutions in the
special case as follows with p(t) ≡ 1 and g(t) ≡ 1 by using the fixed pointed theorem.
When we choose g(t)≡ 1, Wang et al. [11] established some nonexistence, existence, and
multiplicity results for the BVP(1.1) which are based on the Schauder fixed point theo-
rem, the method of upper and lower solutions, and the Leray-Schauder degree theory.
Furthermore, Ma and Thompson [7] studied the existence of multiple positive solutions
by applying bifurcation techniques. The purpose of this paper is to consider BVP(1.1) in
which g(t) ∈ L1(0,1) and F(t,u) satisfies weaker conditions than those in [1, 4–11], the
existence of multiple positive solutions for BVP(1.1) is obtained by using a fixed point
theorem. Our method is different from the ones in those papers and our results are often
new even when p(t)≡ 1, F(t,u)= f (u).

A map u ∈ C([0,1],R+)∩C1((0,1),R+), p(t)u′(t) ∈ C1((0,1),R+) is called a positive
solution of BVP(1.1) if x(t) > 0, for all t ∈ (0,1) and x(t) satisfies BVP(1.1).

2. Some lemmas

We will need the following well-known result (see, e.g., [3, Theorems 2.1 and 2.2].

Lemma 2.1. Let K be a cone in a Banach space X . Assume that Ω is a bounded open subset
of X with θ ∈Ω and let A : K ∩ (Ω)→ K be a completely continuous operator. If Au �= λx
for x ∈ K ∩ ∂Ω, λ≥ 1, then i(A,K ∩Ω,K)= 1.

Lemma 2.2. Assume that A : K ∩ (Ω)→ K is completely continuous, and there exists B :
K ∩ ∂Ω→ K which is completely continuous, such that

(i) infx∈∩∂Ω‖Bu‖ > 0;
(ii) x−Ax �= λBx for x ∈ K ∩ ∂Ω, and λ≥ 0,

then i(A,K ∩Ω,K)= 0.

We denote by G(t,s) Green’s function for the homogeneous boundary value problem

(
p(t)u′(t)

)′ = 0, ∀t ∈ (0,1),

αu(0)−β lim
t→0+

p(t)u′(t)= 0,

γu(1)− δ lim
t→1−

p(t)u′(t)= 0.

(2.1)
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We know that G(t,s) is nonnegative on [0,1]× [0,1] and is expressed by

G(t,s)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
ρ

(
β+α

∫ s

0

dr

p(r)

)(
δ + γ

∫ 1

t

dr

p(r)

)
, 0≤ s≤ t ≤ 1,

1
ρ

(
β+α

∫ t

0

dr

p(r)

)(
δ + γ

∫ 1

s

dr

p(r)

)
, 0≤ t ≤ s≤ 1,

(2.2)

where ρ = αδ +αγ
∫ 1

0 (dr/p(r)) +βγ.

Lemma 2.3 [2]. Green’s function G(t,s) has the following properties:
(i) G(t,s)≤G(s,s)≤ (1/ρ)(β+α

∫ 1
0 (dr/p(r)))(δ + γ

∫ 1
0 (dr/p(r))) := θ <∞;

(ii) for all t ∈ [a,b]⊂ (0,1), s∈ [0,1], there is G(t,s)≥ σG(s,s),
where

σ =min

{
δ + γ

∫ 1
b

(
dr/p(r)

)

δ + γ
∫ 1

0

(
dr/p(r)

) ,
β+α

∫ a
0

(
dr/p(r)

)

β+α
∫ 1

0

(
dr/p(r)

)

}

. (2.3)

It is obvious that 0 < σ < 1. Let X = C[0,1], Ωh = {u ∈ X : ‖u‖ ≤ h} for any h > 0, and
K = {u ∈ C[0,1] : u ≥ 0, and x(t) ≥ σx(τ) for t ∈ [a,b], τ ∈ [0,1]}. Then K is a positive
cone in X .

Define an operator A by

(Au)(t)=
∫ 1

0
G(t,s)g(s)F

(
s,u(s)

)
ds. (2.4)

It is well known that u∈ C[0,1]∩C1(0,1) is a positive solution of BVP(1.1) if and only
if u is a fixed point of the operator A in K .

Lemma 2.4. A : K → K is completely continuous.

Proof. Similar to the proof of [10, Lemma 2.1], we can prove that A is a completely con-
tinuous operator. �

3. Main result

Theorem 3.1. Assume that (A1)–(A3) hold, if
(H1) there exists p ∈ (0,1) such that 0 < liminfu→0+ mint∈[0,1](F(t,u)/up)≤ +∞,
(H2) there exists q ∈ (0,1] such that 0≤ limsupu→+∞maxt∈[0,1](F(t,u)/uq) < +∞,

then BVP(1.1) has at least one positive solution.

Proof. Without loss of generality, we assume that there exists ε > 0 such that x �= Ax for
x ∈ K with 0 < ‖x‖ < ε, otherwise there is a fixed point in K and this would complete the
proof.

By virtue of (H1), there exists τ > 0 and ε1 > 0 such that

F(t,u)≥ τup, for 0≤ u≤ ε1. (3.1)
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Define B : C[0,1]→ C[0,1] by

Bu= φ, ∀u∈ C[0,1], (3.2)

where φ(t) ≡ 1, φ ∈ C[0,1]. Then it is easy to verify that B : K ∩ ∂Ω→ K is completely
continuous and infK∩∂Ωr ‖Bu‖ > 0, φ ∈ K\θ with ‖φ‖ = 1.

Choose

ε2 =min

{

ε,ε1,
(
σδ
∫ b

a
G(s,s)g(s)ds

)1/(1−p)
}

(3.3)

and r ∈ (0,ε2]; we now prove that

u−Au �= λBu, for u∈ K ∩ ∂Ωr , λ≥ 0. (3.4)

In fact, if not, there are λ0 ≥ 0 and u0 ∈ K ∩ ∂Ωr such that u0−Au0 = λ0Bu0. So λ0 > 0,
then we have u0 = Au0 + λ0Bu0 ≥ λ0φ. Let λ∗ = sup{λ : u0(s) ≥ λφ(s), s ∈ [a,b]}, then
λ∗ ∈ [λ0,+∞) and u0(s)≥ λ∗ for s∈ [a,b]. So the inequality

λ∗ ≤ u0(s)≤ ∥∥u0
∥
∥= r ≤

(

σδ
∫ b

a
G(s,s)g(s)ds

)1/(1−p)

, ∀s∈ [a,b]. (3.5)

Then if t ∈ [a,b], we have

u0(t)=
∫ 1

0
G(t,s)g(s)F

(
s,u0(s)

)
ds+ λ0φ(t)

≥
∫ b

a
G(t,s)g(s)F

(
s,u0(s)

)
ds+ λ0

≥ σ
∫ b

a
G(s,s)g(s)δ

(
u0(s)

)p
ds+ λ0

≥ σδ(λ∗)p
∫ b

a
G(s,s)g(s)ds+ λ0 ≥ λ∗ + λ0

(3.6)

which contradicts the definition of λ∗, hence (3.4) holds, by Lemma 2.2

i
(
A,K ∩ ∂Ωr ,K

)= 0. (3.7)

In view of (H2), there exists η > 0 and N > 0 such that F(t,u)≤ ηuq, for u≥ C0, then

0≤ F(t,u)≤M +ηuq, for u∈ [0,+∞], (3.8)

where M =max{F(t,u) : 0≤ u≤ C0}.
Choose sufficiently large R > 0 such that

MR−1 +ηRq−1 <
(
θ
∫ 1

0
g(s)ds

)−1

. (3.9)
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We will prove that

Au �= λu, for u∈ K ∩ ∂ΩR, λ≥ 1. (3.10)

In fact, if not, there exist u1 ∈ K ∩ ∂ΩR and λ1 ≥ 1 such that Au1 = λ1u1, then if t ∈ [0,1],
we have

u1(t)≤ λ1u1(t)=
∫ 1

0
G(t,s)g(s)F

(
s,u1(s)

)
ds

≤
∫ 1

0
G(t,s)g(s)

(
M +ηu1(s)q

)
ds

≤ (M +ηRq
)
∫ 1

0
G(t,s)g(s)ds

≤ (M +ηRq
)
θ
∫ 1

0
g(s)ds.

(3.11)

Hence R≤ (M +ηRq)θ
∫ 1

0 g(s)ds. That is,

R≤ (M +ηRq
)
θ
∫ 1

0
g(s)ds (3.12)

which yields

MR−1 +ηRq−1 ≥
(
θ
∫ 1

0
g(s)ds

)−1

, (3.13)

which is a contradiction to (3.9), so (3.10) holds. By Lemma 2.1, we have

i
(
A,K ∩ ∂ΩR,K

)= 1, (3.14)

(3.7) and (3.14) together imply

i
(
A,K ∩ (ΩR\Ωr

)
,K
)= i(K ∩ ∂ΩR,K

)− i(A,K ∩ ∂Ωr ,K
)= 0− 1=−1. (3.15)

Consequently, according to [2, Theorem 2.3.2], A has a fixed point u∗ ∈ K ∩ (ΩR\Ωr),
so BVP(1.1) has at least one positive solution u∗. This completes the proof. �

Theorem 3.2. Assume that (A1)–(A3) hold, if
(H3) there exists k ∈ (1,+∞) such that 0 < limsupu→+∞mint∈[0,1](F(t,u)/uk)≤ +∞,
(H4) there exists l ∈ (1,+∞) such that 0≤ liminfu→0+ maxt∈[0,1](F(t,u)/ul) < +∞,

then BVP(1.1) has at least one positive solution.

Proof. By virtue of (H3), there exist ξ > 0 and C0 > 0 such that F(t,u)≥ ξuk, for u≥ C0.
Choose

R >max

{

Nσ−1,
[

min
t∈[a,b]

∫ b

a
G(t,s)g(s)dsξ

](−1/k−1)
}

. (3.16)
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Without loss of generality, we assume that u �= Au for u ∈ K ∩ ∂ΩR, otherwise the con-
clusion holds. Define B : C[0,1]→ C[0,1] by

Bu= ψ, ∀u∈ C[0,1], (3.17)

where ψ(t)=mint∈[a,b]
∫ b
a G(t,s)g(s)ds, ψ ∈ C[0,1]. Then it is easy to verify B : K ∩ ∂Ω→

K is completely continuous and infK∩∂ΩR ‖Bu‖ > 0, φ ∈ K\θ with ‖ψ‖ = C, C is a const.
We now prove that

u−Au �= λBu, for u∈ K ∩ ∂ΩR, λ≥ 0. (3.18)

In fact, if not, there are λ1 ≥ 0 and u1 ∈ K ∩ ∂Ωr such that u1−Au1 = λ1Bu1. So λ1 > 0,
then we have u1 = Au1 + λ1Bu1 ≥ λ1ψ. Let λ∗ = sup{λ : u1(s) ≥ λψ(s), s ∈ [a,b]}, then
λ∗ ∈ [λ1,+∞] and u1(s)≥ λ∗ψ for s∈ [a,b]. Then if t ∈ [a,b], we have

u1(t)=
∫ 1

0
G(t,s)g(s)F

(
s,u1(s)

)
ds+ λ1ψ(t)

≥
∫ b

a
G(t,s)g(s)F

(
s,u1(s)

)
ds+ λ1ψ

≥
∫ b

a
G(t,s)g(s)ξ

(
u1(s)

)p
ds+ λ1ψ

≥ ξ(λ∗ψ)k min
t∈[a,b]

∫ b

a
G(t,s)g(s)ds+ λ1ψ ≥

(
λ∗ + λ1

)
ψ,

(3.19)

which contradicts the definition of λ∗, hence (3.18) holds, by Lemma 2.2

i
(
A,K ∩ ∂ΩR,K

)= 0. (3.20)

By virtue of (H4), there are μ > 0 and ε > 0 such that 0 ≤ F(t,u) ≤ μul for 0 ≤ u ≤ ε.
Take

0≤ r ≤min

{

ε,R,
(
μ max
t∈[0,1]

∫ 1

0
G(t,s)g(s)ds

)−1/(l−1)
}

, (3.21)

then we now prove that

Au �= λu, for u∈ K ∩ ∂Ωr , μ≥ 1. (3.22)

In fact, if it is not true, there exist u0 ∈ K ∩ ∂Ωr and λ0 ≥ 1 such that Au0 = λ0u0. Then if
t ∈ [0,1],

u0(t)≤ λ0u0(t)=
∫ 1

0
G(t,s)g(s)F

(
s,u0(s)

)
ds

≤
∫ 1

0
G(t,s)g(s)μ

(
u0(s)

)l
ds

≤ rl
(
μ max
t∈[0,1]

∫ 1

0
G(t,s)g(s)ds

)
,

(3.23)
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that is,

r ≤ μrl max
t∈[0,1]

G(t,s)g(s)ds (3.24)

which contradicts the definition of r, so (3.22) holds. According to Lemma 2.1,

i
(
A,K ∩ ∂Ωr ,K

)= 1, (3.25)

(3.20) and (3.25) together imply

i
(
A,K ∩ (ΩR\Ωr

)
,K
)= i(K ∩ ∂ΩR,K

)− i(A,K ∩ ∂Ωr ,K
)= 0− 1=−1. (3.26)

Consequently, according to [2, Theorem 2.3.2], A has a fixed point u∗ ∈ K ∩ (ΩR\Ωr),
so BVP(1.1) has at least one positive solution u∗. This completes the proof. �

Theorem 3.3. Assume that (A1)–(A3) hold, (H1) and (H3) are satisfied. In addition if
(H5) there exists T1, such that

T1 > max
(t,u)∈[0,1]×[σT1,T1]

F(t,u) max
t∈[0,1]

∫ 1

0
G(t,s)g(s)ds, (3.27)

then BVP(1.1) has at least two positive solutions.

Proof. By the proof of Theorems 3.1 and 3.2, there exist 0 < r < T1 < R such that (3.7) and
(3.20) hold, respectively.

We now prove that

Au �= λu, for u∈ K ∩ ∂ΩT1 , λ≥ 1. (3.28)

Otherwise, there are u2 ∈ K ∩ ∂ΩT1 and λ2 ≥ 1 such that Au2 = λu2. Then if t ∈ [0,1],

u2(t)≤ λ2u2(t)=
∫ 1

0
G(t,s)g(s)F

(
s,u2(s)

)
ds

≤ max
(t,u)∈[0,1]×[σT1,T1]

F(t,u)
∫ 1

0
G(t,s)g(s)ds

≤ max
(t,u)∈[0,1]×[σT1,T1]

F(t,u) max
t∈[0,1]

∫ 1

0
G(t,s)g(s)ds,

(3.29)

that is,

T1 ≤ max
(t,u)∈[0,1]×[σT1,T1]

F(t,u) max
t∈[0,1]

∫ 1

0
G(t,s)g(s)ds, (3.30)
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which contradicts with (H5), hence (3.28) holds. According to Lemma 2.1,

i
(
A,K ∩ ∂ΩT1 ,K

)= 1, (3.31)

(3.7), (3.20), and (3.31) together imply

i
(
A,K ∩ (ΩR\ΩT1

)
,K
)= i(K ∩ ∂ΩR,K

)− i(A,K ∩ ∂ΩT1 ,K
)= 0− 1=−1,

i
(
A,K ∩ (ΩT1\Ωr

)
,K
)= i(K ∩ ∂ΩT1 ,K

)− i(A,K ∩ ∂Ωr ,K
)= 1− 0= 1.

(3.32)

Then according to [2, Theorem 2.3.2], A has two fixed points u∗1 ∈ K ∩ (ΩR\ΩT1 ) and
u∗2 ∈ K ∩ (ΩT1\Ωr), so BVP(1.1) has at least two positive solutions u∗1 , u∗2 . This completes
the proof. �

Theorem 3.4. Assume that (A1)–(A3) hold, (H2) and (H4) are satisfied. In addition if
(H6) there exists T2, such that

0 < T2 < min
(t,u)∈[a,b]×[σT2,T2]

F(t,u) min
t∈[a,b]

∫ b

a
G(t,s)g(s)ds, (3.33)

then BVP(1.1) has at least two positive solutions.

Proof. By the proof of Theorems 3.1 and 3.2, there exist 0 < r < T2 < R such that (3.14)
and (3.25) hold, respectively.

Define B : C[0,1]→ C[0,1] by

Bu= u, ∀u∈ C[0,1]. (3.34)

Then it is easy to verify B : K ∩ ∂Ω→ K is completely continuous and infK∩∂Ωr ‖Bu‖ > 0.
We now prove that

u−Au �= λBu, for u∈ K ∩ ∂ΩT2 , λ≥ 0. (3.35)

Otherwise, there are u3 ∈ K ∩ ∂ΩT2 and λ3 ≥ 1 such that u3 −Au3 = λ3Bu3. Then if t ∈
[a,b],

u3(t)= Au3(t) + λ3Bu3

≥
∫ b

a
G(t,s)g(s)F

(
s,u3(s)

)
ds

≥ min
(t,u)∈[a,b]×[σT2,T2]

F(t,u)
∫ b

a
G(t,s)g(s)ds

≥ min
(t,u)∈[a,b]×[σT2,T2]

F(t,u) min
t∈[a,b]

∫ b

a
G(t,s)g(s)ds,

(3.36)

that is,

T2 > min
(t,u)∈[a,b]×[σT2,T2]

F(t,u) min
t∈[a,b]

∫ b

a
G(t,s)g(s)ds, (3.37)
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which contradicts with (H6), hence (3.35) holds. According to Lemma 2.2,

i(A,K ∩ ∂ΩT2 ,K)= 0, (3.38)

(3.14), (3.25), and (3.38) together imply

i
(
A,K ∩ (ΩR\ΩT2

)
,K
)= i(K ∩ ∂ΩR,K

)− i(A,K ∩ ∂ΩT1 ,K
)= 1− 0= 1,

i
(
A,K ∩ (ΩT2\Ωr

)
,K
)= i(K ∩ ∂Ω2,K

)− i(A,K ∩ ∂Ωr ,K
)= 0− 1=−1.

(3.39)

Then according to [2, Theorem 2.3.2], A has two fixed points u∗1 ∈ K ∩ (ΩR\ΩT2 ) and
u∗2 ∈ K ∩ (ΩT2\Ωr), so BVP(1.1) has at least two positive solutions u∗1 , u∗2 . This completes
the proof. �

Theorem 3.5. Assume that (A1)–(A3) hold, T1 < T2, (H1), (H2), (H5), and (H6) are satis-
fied. Then BVP(1.1) admits at least three positive solutions.

Proof. By the proof of Theorem 3.1, there exist 0 < r < T1 and R > T2 such that (3.7) and
(3.14) hold, respectively. By Theorems 3.3 and 3.4, (3.31) and (3.38) are valid. Therefore
BVP(1.1) has at least three positive solutions u∗1 ∈ K ∩ (ΩR\ΩT2 ), u∗2 ∈ K ∩ (ΩT2\ΩT1 ),
u∗3 ∈ K ∩ (ΩT1\Ωr). This completes the proof. �

Similar to the proof of Theorem 3.5, we can get the following theorem.

Theorem 3.6. Assume that (A1)–(A3) hold, T1 > T2, (H3), (H4), (H5), and (H6) are satis-
fied. Then BVP(1.1) admits at least three positive solutions.

Remark 3.7. In fact, if T1 = T2 = T , the conditions of Theorems 3.5 and 3.6 both cannot
ensure that BVP(1.1) has at least three positive solutions or even one positive solution.
The reason is that the conditions (H5) and (H6) imply that the inequalities

Au �≥ u, for u∈ K ∩ΩT ,

Au �≤ u, for u∈ K ∩ΩT ,
(3.40)

hold, respectively, however, the latter two contradict each other.

Remark 3.8. In this paper, if p(t)= 1, F(t,u)= f (u), all the theorems above still hold and
the results are new. Here the function f (u) and the boundary conditions are more general
than in [1, 6, 7] where f (u) only satisfies limu→0+ f (u)/u= 0 (or∞), limu→∞ f (u)/u=∞
(or 0) and only the cases β = 0, δ = 0 are considered. In addition, our method is different
from those methods in [1, 6, 7].

Remark 3.9. In the proof of theorems, one of the key steps is to find the operator B.
We note that it is more general than the ones in [6, 8–11]. We think not only about the
superlinear, sublinear cases but also the general cases. Hence, our results improve and
generalize those in some well-known papers.

4. Examples

In this section, we provide some examples to illustrate the validity of the results estab-
lished in Section 2.
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Example 4.1. Consider the following boundary value problem:

u′′ +
1

√
t(1− t)

[
1
4

(1 + t)u3/2(t) +u1/2(t)
]

, t ∈ (0,1),

u(0)= u(1)= 0.
(4.1)

Conclusion. BVP (4.1) has at least two positive solutions.

Proof. Let

p(t)= 1, g(t)= 1
√
t(1− t) , F(t,u)= 1

4
(1 + t)u3/2(t) +u1/2(t), (4.2)

and we choose [a,b]= [1/4,3/4]⊂ (0,1).
It is easy to verify that the conditions (A1)–(A3) of Theorem 3.3 are satisfied. In term

of (2.1) and (2.2), the corresponding Green function is

G(t,s)=
⎧
⎨

⎩
s(1− t), 0≤ s≤ t ≤ 1,

t(1− s), 0≤ t ≤ s≤ 1.

σ = 1
4

, G(s,s)= s(1− s),
∫ 1

0

dt
√
t(1− t) = π.

(4.3)

We first verify the conditions (H1) and (H3). In fact let p = 1/2, k = 3/2, we have

lim
u→0+

min
t∈[0,1]

F(t,u)
up

= lim
u→0+

min
t∈[0,1]

(1/4)(1 + t)u3/2(t) +u(t)
u1/2

= 1
4

,

lim
u→+∞ min

t∈[0,1]

F(t,u)
uk

= lim
u→+∞ min

t∈[0,1]

(1/4)(1 + t)u3/2(t) +u1/2(t)
u3/2

= 1.

(4.4)

Choosing T1 = 4, we have

max
(t,u)∈[0,1]×[1,4]

F(t,u) max
t∈[0,1]

∫ 1

0
G(s,s)g(s)ds

= max
(t,u)∈[0,1]×[1,4]

[
1
4

(1 + t)u3/2(t) +u1/2(t)
]

1
8
π = 6 · 1

8
π = 3

4
π < 4.

(4.5)

So condition (H5) holds. Consequently by Theorem 3.3, BVP (4.1) has at least two posi-
tive solutions. �
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