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1. Introduction

Let nonempty sets S,T ⊂ �, and define �S = σ(Xk, k ∈ S), and the maximal correla-
tion coefficient ρ∗n = supcorr( f ,g) where the supremum is taken over all (S,T) with
dist(S,T)≥ n and all f ∈ L2(�S), g ∈ L2(�T) and where dist(S,T)= infx∈S,y∈T |x− y|.

A sequence of random variables {Xn, n≥ 1} on a probability space {Ω,�,P} is called
ρ∗-mixing if

lim
n→∞ρ

∗
n < 1. (1.1)

As for ρ∗-mixing sequences of random variables, Bryc and Smoleński [1] established
the moments inequality of partial sums. Peligrad [10] obtained a CLT and established an
invariance principles. Peligrad [11] established the Rosenthal-type maximal inequality.
Utev and Peligrad [16] obtained invariance principles of nonstationary sequences.

As for negatively associated (NA) random variables, Joag [6] gave the following defi-
nition.

Definition 1.1 (Joag [6]). A finite family of random variables {Xi, 1≤ i≤ n} is said to be
negatively associated (NA) if for every pair of disjoint subsets T1 and T2 of {1,2, . . . ,n},

Cov
(
f1
(
Xi, i∈ T1

)
, f2
(
Xj , j ∈ T2

))≤ 0, (1.2)
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whenever f1 and f2 are coordinatewise increasing and the covariance exists. An infinite
family is negatively associated if every finite subfamily is negatively associated.

Recently, some authors focused on the problem of limiting behavior of partial sums of
NA sequences. Su et al. [15] derived some moment inequalities of partial sums and a weak
convergence for a strong stationary NA sequence. Lin [9] set up an invariance principal
for NA sequences. Su and Qin [15] also studied some limiting results for NA sequences.
More recently, Liang and Su [8], Liang [7] considered some complete convergence for
weighted sums of NA sequences. Those results, especially some moment inequality by
Huang and Xu [5], Shao [13], and Yang [17] undoubtedly propose important theory
guide in further apply for the NA sequence.

The main purpose of this paper is to establish a strong law of large numbers and
complete convergence for ρ∗-mixing sequences or NA sequences with different distri-
butions that are investigated. The results obtained improve the relevant results by Utev
and Peligrad [16].

2. Main results

Throughout this paper, C will represent a positive constant though its value may change
from one appearance to the next, and an =O(bn) will mean an ≤ Cbn. And an	 bn will
mean an =O(bn).

In order to prove our results, we need the following lemma and the concept of com-
plete convergence.

Definition 2.1 (Hsu and Robbins [4]). Let {X ,Xn, n≥ 1} be a sequence of random vari-
ables, if for any ε > 0,

∞∑

n=1

P
(∣∣Xn−X

∣
∣ > ε

)
<∞ (2.1)

holds, {Xn, n≥ 1} is called completely converging to X .

As for complete convergence, let now {X ,Xn, n ≥ 1} be a sequence of independent
identically distributed random variables and denote Sn =

∑n
i=1Xi. The Hsu-Robbins-

Erdös law of large numbers (Hsu and Robbins [4], Erdös [3]) states that

∀ε > 0,
∞∑

n=1

P
(∣∣Sn

∣
∣ > εn

)
<∞ (2.2)

is equivalent to EX = 0 and EX2 <∞.
This is a fundamental theorem in probability theory and has been intensively inves-

tigated by many authors in the past decades as we can see by Petrov [12], Chow and
Teicher [2], and Stout [14]. There have been many extensions in various directions of the
Hsu-Robbins-Erdös law of large numbers.

Lemma 2.2 (Utev and Peligrad [16]). Let {Xi, i≥ 1} be a ρ∗-mixing sequence of random
variables, EXi=0, E|Xi|p <∞ for some p≥2 and for every i≥1. Then there exists C=C(p),
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such that

E max
1≤k≤n

∣
∣
∣
∣
∣

k∑

i=1

Xi

∣
∣
∣
∣
∣

p

≤ C

⎧
⎨

⎩

n∑

i=1

E
∣
∣Xi

∣
∣p +

( n∑

i=1

EX2
i

)p/2
⎫
⎬

⎭ . (2.3)

Lemma 2.3 (Shao [13]). Let {Xi, i ≥ 1} be a sequence of NA random variables, EXi = 0,
E|Xi|p <∞ for some p ≥ 2 and for every i≥ 1. Then there exists C = C(p), such that

E max
1≤k≤n

∣
∣
∣
∣
∣

k∑

i=1

Xi

∣
∣
∣
∣
∣

p

≤ C

⎧
⎨

⎩

n∑

i=1

E
∣
∣Xi

∣
∣p +

( n∑

i=1

EX2
i

)p/2
⎫
⎬

⎭ . (2.4)

Now we state the main result of this paper.

Theorem 2.4. Let {X ,Xi, i ≥ 1} be ρ∗-mixing sequence with E|X|p <∞, 0 < p < 2. Let
Sn =

∑n
i=1Xi, P(|Xi| > x)	 P(|X| > x), for all x > 0, i ≥ 1. When 1 ≤ p < 2, let EX = 0.

Then,

∀ε > 0,
∞∑

n=1

n−1P
(

max
1≤ j≤n

|Sj| > εn1/p
)
<∞. (2.5)

Proof of Theorem 2.4. For any i≥ 1, let X (n)
i = XiI(|Xi| ≤ n1/p), S(n)

j =∑ j
i=1(X (n)

i −EX (n)
i ).

for all ε > 0, then

P
(

max
1≤ j≤n

∣
∣Sj

∣
∣ > εn1/p

)

≤ P
(

max
1≤ j≤n

∣
∣Xj

∣
∣ > n1/p

)
+P

(

max
1≤ j≤n

∣
∣
∣
∣
∣S

(n)
j +

j∑

i=1

EX (n)
i

∣
∣
∣
∣
∣ > εn1/p

)

≤ P
(

max
1≤ j≤n

∣
∣Xj

∣
∣ > n1/p

)
+P

(

max
1≤ j≤n

∣
∣S(n)

j

∣
∣ > εn1/p− max

1≤ j≤n

∣
∣
∣
∣
∣

j∑

i=1

EX (n)
i

∣
∣
∣
∣
∣

)

.

(2.6)

When n large enough, first we show that

n−1/p max
1≤ j≤n

∣
∣
∣
∣
∣

j∑

i=1

EX (n)
i

∣
∣
∣
∣
∣−→ 0. (2.7)

In fact
(i) if p < 1, then

n−1/p max
1≤ j≤n

∣
∣
∣
∣
∣

j∑

i=1

EX (n)
i

∣
∣
∣
∣
∣≤ n−1/p

n∑

i=1

E
∣
∣Xi

∣
∣I
(∣∣Xi

∣
∣≤ n1/p)

≤ n1−1/pE|X|I(|X| ≤ n1/p)

= n1−1/p
n∑

k=1

E|X|I(k− 1 < |X|p ≤ k
)
,

(2.8)
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because

∞∑

k=1

k1−1/pE|X|I(k− 1 < |X|p ≤ k
)≤

∞∑

k=1

E|X|pI(k− 1 < |X|p ≤ k
)

≤
∞∑

k=1

E|X|pI(k− 1 < |X|p ≤ k
)= E|X|p <∞.

(2.9)

By Kronecker lemma, we get n1−1/p
∑n

k=1E|X|I(k− 1 < |X|p ≤ k)→ 0, n→∞, so

n−1/p max
1≤ j≤n

∣
∣
∣
∣
∣

j∑

i=1

EX (n)
i

∣
∣
∣
∣
∣−→ 0, n−→∞; (2.10)

(ii) if 1≤ p < 2, by EX = 0, then

n−1/p max
1≤ j≤n

∣
∣
∣
∣
∣

j∑

i=1

EX (n)
i

∣
∣
∣
∣
∣≤ n−1/p

n∑

i=1

E
∣
∣Xi

∣
∣I
(∣∣Xi

∣
∣ > n1/p)

≤ E
∣
∣X
∣
∣pI

(|X| > n1/p)−→ 0.

(2.11)

Equations (2.10) and (2.11) imply (2.7).
From (2.6) and (2.7) it follows that for n large enough, we have P(max1≤ j≤n |Sj| >

εn1/p) ≤∑n
j=1P(|Xj| > n1/p) +P(max1≤ j≤n |S(n)

j | > ε/2n1/p).
Hence we need only to prove that

I =:
∞∑

n=1

n−1
n∑

j=1

P
(∣∣Xj

∣
∣ > n1/p) <∞,

II =:
∞∑

n=1

n−1P
(

max
1≤ j≤n

∣
∣S(n)

j

∣
∣ >

ε

2
n1/p

)
<∞.

(2.12)

By E|X|p <∞, then

I ≤ C
∞∑

n=1

P
(|X| > n1/p)	 E|X|p <∞. (2.13)

By Lemma 2.2, it follows that

II	
∞∑

n=1

n−1−αqE max
1≤ j≤n

∣
∣S(n)

j

∣
∣q

	
∞∑

n=1

n−1−αq
⎧
⎨

⎩

n∑

j=1

E
∣
∣X (n)

j

∣
∣q +

( n∑

j=1

E
∣
∣X (n)

j

∣
∣2
)q/2

⎫
⎬

⎭

=: II1 + II2.

(2.14)
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Let q = 2, we have

II1 ≤ C
∞∑

n=1

n−αqE
∣
∣X
∣
∣qI

(|X| ≤ n1/p)

=
∞∑

n=1

n−αq
n∑

k=1

E|X|qI(k− 1 < |X|p ≤ k
)

=
∞∑

k=1

∞∑

n=k
n−αqE|X|qI(k− 1 < |X|p ≤ k

)

	
∞∑

k=1

kP
(
k− 1 < |X|p ≤ k

)	 E
∣
∣X
∣
∣p <∞.

(2.15)

Let q = 2, then II2 = II1 <∞. So II <∞. Now we complete the proof of Theorem
2.4. �

Corollary 2.5. Under the conditions of Theorem 2.4,

lim
n→∞

Sn
n1/p = 0 a.s. (2.16)

Proof of Corollary 2.5. For all ε > 0, by (2.5), we have

∞∑

n=1

n−1P
(

max
1≤ j≤n

∣
∣Sj

∣
∣ > εn1/p

)
<∞. (2.17)

Then we have

∞∑

k=0

2k+1−1∑

n=2k

(
2k+1− 1

)−1
P
(

max
1≤ j≤2k

∣
∣Sj

∣
∣ > εn1/p

)
<∞. (2.18)

So

∞∑

k=0

P
(

max
1≤ j≤2k

∣
∣Sj

∣
∣ > ε2(k+1)/p

)
<∞. (2.19)

By the Borel-Cantelli lemma, we have

max
1≤ j≤2k

∣
∣Sj

∣
∣

2k/p
−→ 0 a.s. (2.20)

For all positive integers n, there existes a nonnegative integer k0, such that 2k0 ≤ n < 2k0+1.
Thus

∣
∣Sn

∣
∣

n1/p ≤ max
1≤ j≤2k0+1

∣
∣Sj

∣
∣

2k0/p
−→ 0 a.s. (2.21)
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Thus we have

lim
n→∞

Sn
n1/p = 0 a.s. (2.22)

Now we complete the proof of Corollary 2.5. �

Theorem 2.6. Let {X ,Xi, i ≥ 1} be NA sequence with E|X|p <∞ , 0 < p < 2. Let Sn =∑n
i=1Xi, P(|Xi| >x)	 P(|X| > x), for all x > 0, i≥ 1. When 1≤ p < 2, let EX = 0. Then,

∀ε > 0,
∞∑

n=1

n−1P
(

max
1≤ j≤n

∣
∣Sj

∣
∣ > εn1/p

)
<∞. (2.23)

Proof of Thereom 2.6. Using Lemma 2.3 instead of Lemma 2.2, the proof of Theorem 2.6
is similar to the proof of Theorem 2.4. �

Corollary 2.7. Under the conditions of Theorem 2.6,

lim
n→∞

Sn
n1/p = 0 a.s. (2.24)

Proof of Corollary 2.7. The proof of Corollary 2.7 is similar to the proof of Corollary 2.5.
�
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[1] W. Bryc and W. Smoleński, Moment conditions for almost sure convergence of weakly correlated
random variables, Proceedings of the American Mathematical Society 119 (1993), no. 2, 629–
635.

[2] Y. S. Chow and H. Teicher, Probability Theory: Independence, Interchangeability, Martingales, 3rd
ed., Springer Texts in Statistics, Springer, New York, 1997.

[3] P. Erdös, On a theorem of Hsu and Robbins, Annals of Mathematical Statistics 20 (1949), 286–
291.

[4] P. L. Hsu and H. Robbins, Complete convergence and the law of large numbers, Proceedings of the
National Academy of Sciences of the United States of America 33 (1947), no. 2, 25–31.

[5] W.-T. Huang and B. Xu, Some maximal inequalities and complete convergences of negatively asso-
ciated random sequences, Statistics & Probability Letters 57 (2002), no. 2, 183–191.

[6] K. Joag-Dev and F. Proschan, Negative association of random variables, with applications, The
Annals of Statistics 11 (1983), no. 1, 286–295.

[7] H.-Y. Liang, Complete convergence for weighted sums of negatively associated random variables,
Statistics & Probability Letters 48 (2000), no. 4, 317–325.

[8] H.-Y. Liang and C. Su, Complete convergence for weighted sums of NA sequences, Statistics &
Probability Letters 45 (1999), no. 1, 85–95.

[9] Z. Y. Lin, An invariance principle for negatively dependent random variables, Chinese Science
Bulletin 42 (1997), no. 3, 238–242 (Chinese).



Guang-hui Cai 7

[10] M. Peligrad, On the asymptotic normality of sequences of weak dependent random variables, Jour-
nal of Theoretical Probability 9 (1996), no. 3, 703–715.

[11] M. Peligrad and A. Gut, Almost-sure results for a class of dependent random variables, Journal of
Theoretical Probability 12 (1999), no. 1, 87–104.

[12] V. V. Petrov, Limit Theorems of Probability Theory. Sequences of Independent Random Variables,
Oxford Studies in Probability, vol. 4, The Clarendon Press, Oxford University Press, New York,
1995.

[13] Q.-M. Shao, A comparison theorem on moment inequalities between negatively associated and
independent random variables, Journal of Theoretical Probability 13 (2000), no. 2, 343–356.

[14] W. F. Stout, Almost Sure Convergence, Academic Press, New York, 1974.
[15] C. Su and Y. S. Qin, Two limit theorems for negatively associated random variables, Chinese Science

Bulletin 42 (1997), no. 3, 243–246.
[16] S. Utev and M. Peligrad, Maximal inequalities and an invariance principle for a class of weakly

dependent random variables, Journal of Theoretical Probability 16 (2003), no. 1, 101–115.
[17] S. C. Yang, Moment inequality of random variables partial sums, Science in China. Series A 30

(2000), 218–223.

Guang-hui Cai: Department of Mathematics and Statistics, Zhejiang Gongshang University,
Hangzhou 310035, China
E-mail address: cghzju@163.com

mailto:cghzju@163.com

