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The behavior of a spatial double pendulum (SDP), comprising two pendulums that swing
in different planes, was investigated. Movement equations (i.e., mathematical model)
were derived for this SDP, and oscillations of the system were computed and compared
with experimental results. Matlab computer programs were used for solving the nonlin-
ear differential equations by the Runge-Kutta method. Fourier transformation was used
to obtain the frequency spectra for analyses of the oscillations of the two pendulums.
Solutions for free oscillations of the pendulums and graphic descriptions of changes in
the frequency spectra were used for the dynamic investigation of the pendulums for dif-
ferent initial conditions of motion. The value of the friction constant was estimated ex-
perimentally and incorporated into the equations of motion of the pendulums. This step
facilitated the comparison between the computed and measured oscillations.

Copyright © 2006 S. Bendersky and B. Sandler. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Research on different kinds of pendulum, including the double pendulum in a plane
(PDP), has spanned more than three centuries, starting with the invention of the pendu-
lum clock in 1657. Two hundred a fifty years later, research on a pendulum with vertical
oscillations of the hinge showed the influence of the moving suspension point on the
oscillations [15]. These early studies were followed by investigations of other types of
pendulum, such as, an inverted pendulum with an oscillating suspension point under
various conditions [4, 10]; the PDP [7, 3], including the so-called spherical pendulum
[5]; and various pendulums with an oscillating motion of the base hinge [13, 14]. In ad-
dition, theoretical studies were conducted on nonlinear motions of the elastic pendulum
or the swinging spring (motions of a three-dimensional pendulum) [2, 6, 11]. Lynch [6],
the author of one of these theoretical studies, wrote “The equations of motion are easy
to write down but, in general, impossible to solve analytically. For finite amplitudes, the
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motion of the system exhibits chaos, and predictability is severely limited.” The same may
be said of the spatial double pendulum (SDP) system.

In the current study, computer-aided analyses were applied to the study of the SDP.
This system is unusual in that both pendulums execute planar motions, but the planes
of these motions are distinct. The SDP is thus a simple mechanical system with complex
dynamics. It comprises two masses suspended at two fixed points by mass-less rigid rods
that move freely under gravity.

It is not difficult to express the equations of motion, but it is impossible to solve them
analytically. For nonlinear cases, we have shown that a combined numerical-analytical
approach enables us to describe some features of the complex motion of the two pendu-
lums under consideration and thereby to obtain estimations of some important system
characteristics (number of frequencies and their values). The approach developed in this
work enables us

(a) to obtain approximate estimations of the system’s behavior, since there are still
no strict mathematical means at the designer’s disposal for solving the mathe-
matical equations; and

(b) to find the desired domain of action of the system, and in this narrow domain to
use more powerful and exact techniques, if such methods do indeed exist.

Movement equations (mathematical model) were defined for the SDP, and, on the
assumption of a linear system, an analytical study of the vibrations of the system was
conducted. The results obtained were compared with experimental results. For the linear
case, the vibrations of the SDP were described both analytically and graphically.

For the non-linear oscillations mode, Fourier transformation was applied for the ex-
amination of the frequency spectra of the two pendulums comprising the double pendu-
lum. Graphical solutions for free oscillations and graphical descriptions of the change in
frequency constituted the basis of the research on the dynamics of the SDP for different
parameter values and initial conditions. In addition, the value of the friction constant
for the experimental system was estimated and used in the analytical description of the
behavior of the two pendulums of the SDP.

The computation layout for the SDP, that is, for a constrained system of two particles
is shown in Figure 1.1(a). The hinge of the first pendulum swinging in the X −Y plane is
located at point O. This pendulum comprises a mass-less rigid rod L1 and a point mass
m1. At point O′ (which coincides with the mass center of the mass m1), a second hinge
is mounted in such a way that the coordinate system X ′Y ′Z′ can rotate around the Y ′′

axis. The angle between the oscillation planes is designated Ψ. The second hinge serves as
the suspension point for the second pendulum, consisting of a rod L2 and a mass m2. For
Ψ = 0, this model becomes a PDP and X ′Y ′Z′ coincides with X ′′Y ′′Z′′. A photograph
of the experimental device corresponding to the model described above is presented in
Figure 1.1(b).

The central question that we set out to answer in this study is: What is the influence of
the angle Ψ on the behavior of the SDP? To find a solution to this question, the follow-
ing steps were taken: formulating the dynamic model by applying the Lagrange method
and finding solutions for small and non-small values of the angles ϕi (i = 1,2), respec-
tively; obtaining graphical solutions for free oscillations and graphical descriptions of the
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Figure 1.1. (a) Model and computation layout of an SDP; (b) photograph of the SDP.

changes in the frequency spectra by using Fourier transformations for different parameter
values and initial conditions.

2. Mathematical model

2.1. General model. The following equations for free oscillations without damping (ob-
tained by the Lagrange method) govern the behavior of the SDP:

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
+
∂P

∂qi
=Qi, i= 1,2, (2.1)

where T and P are the kinetic and potential energy, respectively, as given by

T = 1
2

(
m1 +m2

)
L2

1ϕ̇
2
1 +

1
2
m2L

2
2ϕ̇

2
2 +

1
2
m2L

2
2ϕ̇

2
1 cos2Ψsin2ϕ2

+
1
2
m2L

2
2ϕ̇

2
1 cos2ϕ2 +m2L

2
2ϕ̇1ϕ̇2 cosψ +m2L1L2ϕ̇1ϕ̇2 cosΨcosϕ2 +m2L1L2ϕ̇

2
1 cosϕ2,

P =m1gL1
(
1− cosϕ1

)
+m2gL1

(
1− cosϕ1

)
+m2gL2

(
1− cosϕ1 cosϕ2

)
+m2gL2 cosΨsinϕ1 sinϕ2,

(2.2)

where ϕ1 and ϕ2 are the deviation angles of pendulums 1 and 2, respectively, and g is
acceleration due to gravity. For deriving the movement equations for our SDP system, we



4 Investigation of a spatial double pendulum

defined

Ψ= const; Qi = 0;

q1 = ϕ1(t); q2 = ϕ2(t); q̇1 = ϕ̇1(t); q̇2 = ϕ̇2(t).
(2.3)

The equations governing motion may then be expressed as follows:

ϕ̈1
[(
m1 +m2

)
L2

1 +m2L
2
2 cos2Ψsin2ϕ2 +m2L

2
2 cos2ϕ2 + 2m2L1L2 cosϕ2

]
+ ϕ̈2

[
m2L

2
2 cosΨ+m2L1L2 cosΨcosϕ2

]
+ ϕ̇1ϕ̇2

[
2m2L

2
2 cos2Ψcosϕ2 sinϕ2− 2m2L

2
2 cosϕ2 sinϕ2− 2m2L1L2 sinϕ2

]
− ϕ̇2

2m2L1L2 cosΨsinϕ2

+
(
m1 +m2

)
gL1 sinϕ1 +m2gL2

(
cosΨcosϕ1 sinϕ2 + sinϕ1 cosϕ2

)= 0,

ϕ̈2m2L
2
2 + ϕ̈1

[
m2L

2
2 cosΨ+m2L1L2 cosΨcosϕ2

]
+ ϕ̇2

1

[
m2L

2
2 cosϕ2 sinϕ−2 m2L

2
2 cos2Ψsinϕ2 cosϕ2 +m2L1L2 sinϕ2

]
+m2gL2

(
cosΨsinϕ1 cosϕ2 + cosϕ1 sinϕ2

)= 0.

(2.4)

There are a number of problems associated with the numerical and analytical solu-
tions to this system of nonlinear equations (2.4). Iterative techniques are traditionally
used to obtain numerical solutions, but nearly all iterative methods are sensitive to the
initial solutions. Solutions to the linear model of SDP and to the pure nonlinear case are
discussed below. The perturbation expansion method for small parameters—widely used
to analyze simple nonlinear problems [8, 9]—is not really effective for our mechanism.

2.2. Linear model. We therefore set out to solve our mathematical model for an SPD
analytically for small angles and to obtain the natural frequencies and oscillation modes.
Assuming

sinϕ≈ ϕ, cosϕ≈ 1, ϕ̇2 ≈ 0, (2.5)

we may write

ϕ̈1
[(
m1 +m2

)
L2

1 +m2L
2
2 + 2m2L1L2

]
+ ϕ̈2

[
m2L

2
2 cosΨ+m2L1L2 cosΨ

]
+ϕ1

(
m1 +m2

)
gL1 +ϕ2m2gL2 cosΨ+ϕ1m2gL2 = 0,

ϕ̈2m2L
2
2 + ϕ̈1

[
m2L

2
2 cosΨ+m2L1L2 cosΨ

]
+ϕ1m2gL2 cosΨ+ϕ2m2gL2 = 0.

(2.6)
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In matrix form, when [ϕ̈] and [ϕ] are column vectors and [M] and [k] are square ma-
trixes, expression (2.6) may be rewritten as

[M] · [ϕ̈] + [k] · [ϕ]= 0

M11 =
(
m1 +m2

)
L2

1 +m2L
2
2 + 2m2L1L2; M12 =m2L

2
2 cosΨ+m2L1L2 cosΨ;

M21 =m2L
2
2 cosΨ+m2L1L2 cosΨ; M22 =m2L

2
2;

k11 =
(
m1 +m2

)
gL1 +m2gL2; k12 =m2gL2 cosΨ;

k21 =m2gL2 cosΨ; k22 =m2gL2.

(2.7)

The transformations for amplitudes A1 and A2, and frequencies ω1 and ω2, —given in
(2.8) to (2.12)—made below show the following possible solution:

ϕ1 = A1 sin(ω · t+ γ);

ϕ2 = A2 sin(ω · t+ γ),
A1 �= A2 = const

(
k11−M11ω

2)A1 +
(
k12−M12ω

2)A2 = 0;

(
k21−M21ω

2)A1 +
(
k22−M22ω

2)A2 = 0.

(2.8)

From (2.8), we find the expressions for the natural frequencies:

ω4[M11M22−M2
12

]
+ω2[2k12M12− k11M22− k22M11

]
+
[
k11k22− k2

12

]= 0;

D = (L2 +L1
)2[

m2gL1L2
(
m1 +m2

)
+ 2m2

2gL
2
2 sin2Ψ

]2

− 4
[
m2L

2
1L

2
2

(
m1 +m2 sin2Ψ

)
+m2

2L
3
2 sin2Ψ

(
L2 + 2L1

)][
m2

2g
2L2

2 sin2Ψ+m2g
2L1L2

(
m1 +m2

)]
;

ω1,2 =
√√√√(L2 +L1

)[
m2gL1L2

(
m1 +m2

)
+ 2m2

2gL
2
2 sin2Ψ

]±√D
2m2L

2
1L

2
2

(
m1 +m2 sin2Ψ

)
+ 2m2

2L
3
2 sin2Ψ

(
L2 + 2L1

) .

(2.9)

For example, for the parameters Ψ= 30◦, L1 = L2 = 0.3 m,m1 =m2 = 1.57 kg, the natural
frequencies become

ω1 = 7.91
[

s−1]
ω2 = 4.387

[
s−1]=⇒

T1 = 0.794[s]

T2 = 1.4315[s]
=⇒

f1 = 1.26[Hz]

f2 = 0.698[Hz],
(2.10)
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where ω1 and ω2 are frequencies in radians per second; f1 and f2 are frequencies in oscil-
lations per second; and T1 and T2 are periods of oscillations in seconds.

The solution of (2.8) gives two combined analytical solutions. Let us suppose an “ex-
act” analytical solution in the form

ϕ1 = A11 sin
(
ω1 · t+ γ1

)
+A12 sin

(
ω2 · t+ γ2

)
,

ϕ2 = A21 sin
(
ω1 · t+ γ1

)
+A22 sin

(
ω2 · t+ γ2

)
,

(2.11)

where from (2.8)–(2.11):

(
k11−M11ω

2
1

)
A11 +

(
k12−M12ω

2
2

)
A12 = 0;(

k21−M21ω
2
1

)
A21 +

(
k22−M22ω

2
2

)
A22 = 0.

(2.12)

Then, the ratios of the amplitudes as a function of Ψs derived from expression (2.12) are

A11

A12
= m2L2

[
ω2

2

(
L2 +L1

)− g](
m1 +m2

)
L1
(
g −ω2

1L1
)

+m2L2
[
g −ω2

1

(
L2 + 2L1

)] cosΨ

A22

A21
= g −ω2

1

(
L2 +L1

)
ω2

2L2− g cosΨ.

(2.13)

Equations (2.9) and (2.13) are suitable for all masses and lengths of the pendulums for
small oscillation angles of mass deviations, but not for all Ψ values. From expression
(2.13), when Ψ ≈ π/2 and cosΨ→ 0, the analytical description amplitude ratio of the
SDP becomes unreal. Thus, mathematically, there is no possibility of moving the second
pendulum, while the physical possibility obviously exists. In this extreme case, classical
linearization does not work. We seek the explanations for this point, and find it in non-
linearities of problem for this case.

The graphical solution for the general model of the movement of pendulums is shown
in Figure 2.1 [See (2.4) for specific, previously described parameters and initial condi-
tions.] As was mentioned earlier, (2.9) and (2.10), the two values of the frequencies are
identical for both pendulums, but with different energy. For example, the exact analytical
solution for the SDP for the parameters shown previously when initial angular velocities
are zero and free oscillations are considered for small angles such as ϕ1 = 2◦ and ϕ2 = 3◦,
is given in the form of (2.14):

{
ϕ1

ϕ2

}
=
[

1 1
−2.68 0.37

]{
−0.0128sin(7.91t+π/2)
0.0478sin(4.387t+π/2)

}
. (2.14)

3. Application of numeralytics solutions

The general nonlinear and linear forms of a mathematical model (movement equations)
for the SDP were shown in the previous section. For the linear case, we accepted the
conventional analytical expression for the natural frequencies and limitations of the am-
plitude ratios influencing the angle Ψ. For the nonlinear case, we took a numeralytical
approach [12] by applying the Matlab programs package.
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Figure 2.1. (a) “Phase portraits” for the two pendulums; (b) swinging angles ϕ1(t) and ϕ2(t); (c)
swinging speeds ϕ̇1(t) and ϕ̇2(t); (d) spectrum distribution for the two pendulums.

Since it is not possible to answer the central question—the influence of the angle Ψ
on the behavior of the SDP—directly from the given equation system (2.4), we use the
Runge-Kutta method for solving the nonlinear equations and Fourier transformation for
investigation of the frequency spectra of the two pendulums. The solutions are repre-
sented graphically for a wide range of initial conditions, values of the parameters, and
different values of the angle Ψ. Here, we show solutions forΨ= 0◦, Ψ= 15◦, Ψ= 30◦, Ψ=
60◦ and Ψ = 90◦. Graphical solutions for the general model of the movement equation
(2.4), for the described parameters, and for different initial conditions are shown in Fig-
ures 3.1–3.5.
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Figure 3.1. (a) “Phase portraits” for the two pendulums; (b) swinging angles ϕ1(t) and ϕ2(t); (c)
oscillation spectrum distributions for the two pendulums. Parameters are m1 =m2 = 1.57 kg, L1 =
L2 = 0.3 m, Ψ= 0◦. Initial conditions are ϕ1 = 50◦, ϕ2 = 0◦.

Let us now consider the case shown in Figures 3.3 and 3.3(c) in which the behavior
of the first and second pendulums is governed by at least three and four frequencies, re-
spectively. In this case, the “phase portraits,” especially that of the second pendulum, are
far from to be elliptic, that is, the oscillations are close to non-linear. An examination of
Figures 3.1 and 3.2 shows that the number of peaks is not equal for the two pendulums.
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Figure 3.2. (a) “Phase portraits” for the two pendulums; (b) swinging angles ϕ1(t) and ϕ2(t); (c)
oscillation spectrum distributions for the two pendulums. Parameters are m1 =m2 = 1.57 kg, L1 =
L2 = 0.3 m, Ψ= 15◦. Initial conditions are ϕ1 = 30◦, ϕ2 = 40◦.

From an analysis of Figures 3.5(a) and 3.5(c), we may conclude that (1) the phase por-
traits of pendulums 1 and 2 fit linear oscillations (the “phase portraits” are almost ellipti-
cal) and (2) both pendulums have one markedly exposed frequency peak. Figures 3.4(a)
and 3.4(c) illustrate the case in which the “phase portrait” of the first pendulum reflects
linear oscillations, as in Figure 3.5(a), whereas the second pendulum is governed by two
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Figure 3.3. (a) “Phase portraits” for the two pendulums; (b) swinging angles ϕ1(t) and ϕ2(t); (c)
oscillation spectrum distributions for the two pendulums. Parameters are m1 =m2 = 1.57 kg, L1 =
L2 = 0.3 m, Ψ= 30◦. Initial conditions are ϕ1 = 50◦, ϕ2 = 50◦.

frequencies. Even so, the oscillations of both pendulums remain close to linear as a result
of the harmonic form of the oscillations of either the first or the second pendulum. As
opposed to solutions for the linear case, the nonlinear case is characterized by serendip-
itous numbers and values of the frequencies for both pendulums of the system. In such
a situation, the engineering numeralytical approach, based on statistical investigation of
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Figure 3.4. (a) “Phase portraits” for the two pendulums; (b) swinging angles ϕ1(t) and ϕ2(t); (c)
oscillation spectrum distributions for the two pendulums. Parameters are m1 =m2 = 1.57 kg, L1 =
L2 = 0.3 m, Ψ= 60◦. Initial conditions are ϕ1 = 50◦, ϕ2 = 0◦.

numerical (or/and graphical) solution data, may be helpful. Randomized approaches for
investigating the behavior of pendulums have previously been reported [1]. In our case,
the study of the behavior of the SDP, especially the number of frequencies for the two
pendulums versus the angle between the oscillation planes of pendulums, is an excellent
example of a case in which the elements of random function theory may be applied.
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Figure 3.5. (a) “Phase portraits” for the two pendulums; (b) swinging angles ϕ1(t) and ϕ2(t); (c)
oscillation spectrum distributions for the two pendulums. Parameters are m1 =m2 = 1.57 kg, L1 =
L2 = 0.3 m, Ψ= 90◦. Initial conditions are ϕ1 = 30◦, ϕ2 = 10◦.

4. Behavior of the SDP

The “phase portraits” of the computed motion of the SDP given in Figures 3.1–3.5 illus-
trate the differences in the frequencies of oscillations of the pendulums with changes in
the angle Ψ. It follows from the diagrams that for Ψ= 90◦ both pendulums oscillate very
closely to the harmonic mode (even when the initial deviations ϕ1 and ϕ2 are significant).
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For Ψ= 15◦, both pendulums also oscillate closely to the harmonic mode, but the oscil-
lations contain at least two essential frequencies. In the case of Ψ = 30◦, the oscillation
picture becomes non-harmonic. This effect helps us to derive a description answering,
on the engineering level, the question formulated above. Using the numeralytical ap-
proach, we can show the influence of the value Ψ on the frequencies of the pendulums’
oscillations. Figures 4.1–4.3 present approximated fourth-order curves for the “number
of frequency peaks” versus the angle Ψ for the first and second pendulums (see (4.1)). In
this case, m1 =m2 = 1.57 kg, L1 = L2 = 0.3 m, and values of the angle Ψ are changed in
steps of 5◦. The peaks that were included in the consideration were those covering about
95% of the energy spectrum (95% of the area under the distribution curves of the oscilla-
tion spectrum) shown in Figures 3.1–3.5 for the two pendulums. In addition, coefficients
of peak distribution curves for the pendulums (PDCP) are shown (as given in (4.1)) in
Figures 4.1–4.3:

PDCP1,2 = AΨ4 +BΨ3 +CΨ2 +DΨ+E. (4.1)

Various initial conditions and parameter values for the SDP were considered in the search
for analytical answers to the question formulated at the outset of the study: What is the
influence of the angle Ψ on the free oscillations of the mathematical model of this system?
Using the number of frequency peaks comprising the frequency spectra of the pendulum
oscillations as a criterion, we can provide an estimation of the behavior of the system.

In Figure 4.1, the behavior of the pendulums for which L1 = L2 is shown for the cases
in which ϕ1 	 ϕ2, ϕ1 = ϕ2 and ϕ1 
 ϕ2. These cases illustrate the dependence of the
shape and frequency of the pendulums’ oscillations on the angle Ψ. In other words, the
character of the oscillations changes from close to linear to strictly non-linear as the angle
Ψ is changing. When L1 
 L2 (Figure 4.2), the oscillations of the first pendulum are not
affected by the movement of the second pendulum. However, when the initial deviation
is changed from ϕ1 	 ϕ2 through ϕ1 = ϕ2 to ϕ1 
 ϕ2, pendulums 1 and 2 switch roles,
as is shown in Figure 4.2. From PDCP graphics, we can see the equalization trend of the
distributions of the peak numbers for both pendulums for all initial conditions when
L2 
 L1 (Figure 4.3).

Let us now examine the dependence of the behavior of SDPs having different param-
eters on the angle Ψ for the linear model (small initial conditions), having two frequency
peaks for each pendulum (Figures 4.4–4.6). The five curves in each graph illustrate the
behavior of the pendulums depending upon different proportions between values of the
pendulums’ point masses. These data are correct for all small initial conditions for the
SDP system. In addition, Figure 4.7 shows normalized data of comparison between the
values of the point masses for the first (Figure 4.7(a)) and the second (Figure 4.7(b)) pen-
dulums, respectively.

As we can see, the lack of analytical means for finding the shape of the function ϕi
(t,ψ,ϕ10,ϕ20) (where i is the number of the pendulum, and ϕ10, ϕ20 are initial deviations
of the pendulums) forces the practitioner to apply a “round about way” for seeking the
solution. In our case—that in which processes that are predictable in theory but for some
parameters become “unpredictable” in practice— this “way” was found by applying var-
ious computations to find the dependence of the frequency content of the oscillation
process on the angle Ψ.



14 Investigation of a spatial double pendulum

0 30 60 90 120 150 180
1

1.5

2

2.5

3

3.5

4

Ψ

N
u

m
be

r
of

fr
eq

u
en

cy
p

ea
ks

(a)

m1 =m2; L1 = L2; ϕ1 = ϕ2

Coefficients Pendulum 1 Pendulum 2
A −3 · 10−8 −6 · 10−9

B 9 · 10−6 2 · 10−6

C −9 · 10−4 −3 · 10−4

D 2.04 · 10−2 6.7 · 10−3

E 1.9716 3.2899
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(b)

m1 =m2; L1 = L2; ϕ1 < ϕ2

Coefficients Pendulum 1 Pendulum 2
A 1 · 10−8 7 · 10−9

B −4 · 10−6 −2 · 10−6

C 3 · 10−4 −3 · 10−4

D −48 · 10−3 −31 · 10−2

E 1.9832 3.0915
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(c)

m1 =m2; L1 = L2; ϕ1 > ϕ2

Coefficients Pendulum 1 Pendulum 2
A −3 · 10−9 −2 · 10−8

B −1 · 10−7 5 · 10−6

C 3 · 10−4 −5 · 10−4

D −3.44 · 10−2 8.8 · 10−3

E 1.8053 2.7069

Figure 4.1. Peak distribution curves for pendulums (PDCP) for the cases in which m1 =m2 where
0.5 kg< m1 <4 kg and L1 = L2 where 0.1 m< L1 <5 m for: (a) ϕ1 = ϕ2 where 5◦ < ϕ1 < 40◦; (b) 2ϕ1 <
ϕ2 < 6ϕ1 where 2◦ < ϕ1 < 15◦; and (c) 2ϕ2 < ϕ1 < 6ϕ2 where 2◦ < ϕ2 < 15◦. Solid curve is PDCP of
pendulum 1, and doted curve is PDCP of pendulum 2.

5. Friction

There are no free oscillations of the experimental device because friction always exists
in practice. The value of the friction constant was obtained experimentally from the
laboratory device (Figure 1.1(b)). The results obtained experimentally showed
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(a)

m1 =m2; L1 > L2; ϕ1 = ϕ2

Coefficients Pendulum 1 Pendulum 2
A 0 −7 · 10−8

B 0 3 · 10−5

C 0 −3 · 10−3

D 0 8.81 · 10−2

E 1 3.0649
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(b)

m1 =m2; L1 > L2; ϕ1 < ϕ2

Coefficients Pendulum 1 Pendulum 2
A 0 0
B 0 0
C 1 · 10−4 0
D −2.38 · 10−2 0
E 2.1667 1
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(c)

m1 =m2; L1 > L2; ϕ1 > ϕ2

Coefficients Pendulum 1 Pendulum 2
A 0 −3 · 10−8

B 0 9 · 10−6

C 0 −3 · 10−4

D 0 −4.9 · 10−2

E 1 1

Figure 4.2. Peak distribution curves for pendulums (PDCP) for the cases in which m1 =m2, where
0.5kg <m1 < 4kg and 5L2 < L1 < 15L2 where 0.1m < L2 < 5m for: (a) ϕ1 = ϕ2 where 5◦ < ϕ1 < 40◦; (b)
2ϕ1 < ϕ2 < 6ϕ1 where 2◦ < ϕ1 < 15◦; and (c) 2ϕ2 < ϕ1 < 6ϕ2 where 2◦ < ϕ2 < 15◦. Solid curve is PDCP
of pendulum 1, and doted curve is PDCP of pendulum 2.

logarithmic fading of the oscillations. If we suppose that the resistance force FR due to
friction is proportional to the speed of motion of the pendulums, that is, FR = cϕ̇, then
the energy dissipation coefficient ψ may be defined for one oscillation period T as

ψ = 1− (ϕ1/ϕ2
)2 = 1− [(e−2n(1+T))/(e−2nT)]= 1− e−2nT = 1− e−2λ. (5.1)
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(a)

m1 =m2; L1 < L2; ϕ1 = ϕ2

Coefficients Pendulum 1 Pendulum 2
A 3 · 10−8 5 · 10−8

B −2 · 10−5 −2 · 10−5

C 2.7 · 10−3 3.6 · 10−3

D −0.1834 −0.2371
E 5.288 6.16
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(b)

m1 =m2; L1 < L2; ϕ1 < ϕ2

Coefficients Pendulum 1 Pendulum 2
A 9 · 10−8 9 · 10−8

B −3 · 10−5 −4 · 10−5

C 4.6 · 10−3 5.1 · 10−3

D −0.2597 −0.2978
E 5.9114 6.7382
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(c)

m1 =m2; L1 < L2; ϕ1 > ϕ2

Coefficients Pendulum 1 Pendulum 2
A 6 · 10−8 8 · 10−8

B −3 · 10−5 −3 · 10−5

C 3.8 · 10−3 5.1 · 10−3

D −0.2558 −0.2934
E 6.9806 7.8736

Figure 4.3. PDCP graphics for the cases in which m1 =m2 where 0.5kg < m1 < 4kg and 5L1 < L2 <
15L1 where 0.1m < L1 < 5m for: (a) ϕ1 = ϕ2 where 5◦ < ϕ1 < 40◦; (b) 2ϕ1 < ϕ2 < 6ϕ1 where 2◦ < ϕ1 <
15◦; and (c) 2ϕ2 < ϕ1 < 6ϕ2 where 2◦ < ϕ2 < 15◦. Solid curve is PDCP of pendulum 1, and doted curve
is PDCP of pendulum 2.

From here, we obtain

λ= nT = ln
(
ϕ1/ϕ2

)
, (5.2)
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Figure 4.4. Ratio of frequencies versus angle between the oscillation planes for point masses ratio
and equal length of pendulums. The initial parameters for (a) L1 = L2 = 0.2 m, m2 = 2 kg; and for (b)
L1 = L2 = 1 m, m2 = 2 kg.

where λ is the logarithmic decrement of the oscillations and n is derived as

2n= c

mL2
. (5.3)
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Figure 4.5. The ratio of frequencies versus angle between the oscillation planes for point masses ratio
and small length of first pendulum. The initial parameters for (a) L1 = 0.2 m, L2 = 5 · L1, m2 = 2 kg;
and for (b) L1 = 1 m, L2 = 5 ·L1, m2 = 2 kg.

We may assume equal values for the friction coefficient c for the hinges of both pen-
dulums in the SDP system, but the values for the amplitudes and cycle times for the
two pendulums will not be the same. Using the experimental measurements of pendu-
lums’ swinging processes and expressions (5.1)–(5.3), we determined the proportional
friction coefficient of the system as c = 0.02 kgm2/s. The oscillations of the SDP measured
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Figure 4.6. The ratio of frequencies versus angle between the oscillation planes for point masses ratio
and small length of second pendulum. The initial parameters for (a) L2 = 0.2 m, L1 = 5 ·L2,m2 = 2 kg;
and for (b) L2 = 1 m, L1 = 5 ·L2, m2 = 2 kg.

experimentally are presented in Figure 5.1(a), the free oscillations as calculated, in Figure
5.1(b), and the oscillations calculated taking into account the above-mentioned value of
the friction coefficient, in Figure 5.1(c). We must assume that for the same initial con-
ditions and parameters, the oscillations of pendulums are influenced only by friction of
experimental system, and for other SDP set-ups these friction coefficients should be esti-
mated experimentally.
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Figure 4.7. Comparison between values of the point mass for the first (a) and second (b) pendulums
of SDP. The normalized initial parameters are shown on the graphs.

6. Conclusions

(1) We have shown that the numeralytical approach may indeed replace time- and
labor-consuming process of formal calculations and enables us to obtain satis-
factory engineering results for solving the very complicated problem of the be-
haviour of the SDP. In some cases, like those discussed here, the novelty of the
computation technique lies in its ability to answer design questions, when strict
mathematics cannot obviously not supply engineering solutions.

(2) The numeralytic approach may indeed be an effective tool in engineering design
in, for example, the following cases:

- when the designer seeks a relatively fast, although approximate, result;
- in the analysis of nonlinear systems with many degrees of freedom.
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Figure 5.1. Experimental picture of the vibration of the pendulums: (a) oscillation of the experi-
mental pendulums; (b) computed free oscillation of the pendulums; (c) computed free oscillation
of the pendulums with friction estimated from experiments. The initial conditions are ϕ1 = −10◦,
ϕ2 = −20◦, and initial parameters are m1 = m2 = 1.57 kg, L1 = L2 = 0.3 m, Ψ = 45◦, ϕ1 = −10◦,
ϕ2 =−20◦.

(3) Behavior of the SDP is dependent on the angle between the oscillation planes of
the two pendulums whose oscillations change from almost harmonic to almost
chaotic.

(4) The information gathered in the process of the SDP investigation may be applied
in the design of dynamic systems, for example, robots, turbine blades, which like
the SDP include bodies oscillating in different planes.
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