ON BOUNDEDNESS OF THE SOLUTIONS OF THE DIFFERENCE EQUATION $x_{n+1}=x_{n-1} /\left(p+x_{n}\right)$

TAIXIANG SUN, HONGJIAN XI, AND HUI WU
Received 29 April 2006; Revised 4 July 2006; Accepted 5 July 2006

We study the difference equation $x_{n+1}=x_{n-1} /\left(p+x_{n}\right), n=0,1, \ldots$, where initial values $x_{-1}, x_{0} \in(0,+\infty)$ and $0<p<1$, and obtain the set of all initial values $\left(x_{-1}, x_{0}\right) \in(0,+\infty) \times$ $(0,+\infty)$ such that the positive solution $\left\{x_{n}\right\}_{n=-1}^{\infty}$ is bounded. This answers the Open Problem 2 proposed by Kulenović and Ladas.

Copyright © 2006 Taixiang Sun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Kulenović and Ladas in [2] (also see [1]) studied the following difference equation:

$$
\begin{equation*}
x_{n+1}=\frac{x_{n-1}}{p+x_{n}}, \quad n=0,1, \ldots \tag{1}
\end{equation*}
$$

where initial values $x_{-1}, x_{0} \in(0,+\infty)$ and $p \in(0,+\infty)$, and obtained the following theorem.

Theorem 1. (i) If $p>1$, then the unique equilibrium 0 of (1) is globally asymptotically stable.
(ii) If $p=1$, then every positive solution of (1) converges to a period-two solution.
(iii) If $0<p<1$, then 0 and $\bar{x}=1-p$ are the only equilibrium points of (1), and every positive solution $\left\{x_{n}\right\}_{n=-1}^{\infty}$ of (1) with $\left(x_{N}-\bar{x}\right)\left(x_{N+1}-\bar{x}\right)<0$ for some $N \geq-1$ is unbounded.

They proposed the following open problem.
Open Problem 2. Assume that $0<p<1$. Determine the set of initial values $x_{-1}, x_{0} \in(0$, $+\infty)$ for which the solution $\left\{x_{n}\right\}_{n=-1}^{\infty}$ of (1) is bounded.

In this note, we will answer the above open problem.
Write $D=(0,+\infty) \times(0,+\infty)$ and define $f: D \rightarrow D$ by, for all $(x, y) \in D$,

$$
\begin{equation*}
f(x, y)=\left(y, \frac{x}{p+y}\right) . \tag{2}
\end{equation*}
$$

It is easy to see that if $\left\{x_{n}\right\}_{n=-1}^{\infty}$ is a solution of (1), then $f^{n}\left(x_{-1}, x_{0}\right)=\left(x_{n-1}, x_{n}\right)$ for any $n \geq 0$. From Theorem 1, we have the following corollary.

Corollary 3. Let $0<p<1,\left(x_{-1}, x_{0}\right) \in D$, and $\left(x_{n-1}, x_{n}\right)=f^{n}\left(x_{-1}, x_{0}\right)$ for any $n \geq 0$. If there exists $N \geq-1$ such that $\left(x_{N}-\bar{x}\right)\left(x_{N+1}-\bar{x}\right)<0$, then $\left\{x_{n}\right\}_{n=-1}^{\infty}$ is a unbounded solution of (1).

Let

$$
\begin{array}{cc}
A_{1}=(0, \bar{x}) \times(0, \bar{x}), & A_{2}=(\bar{x},+\infty) \times(\bar{x},+\infty), \\
A_{3}=(0, \bar{x}) \times(\bar{x},+\infty), & A_{4}=(\bar{x},+\infty) \times(0, \bar{x}), \\
R_{0}=\{\bar{x}\} \times(0, \bar{x}), & L_{0}=\{\bar{x}\} \times(\bar{x},+\infty), \tag{3}\\
R_{1}=(0, \bar{x}) \times\{\bar{x}\}, & L_{1}=(\bar{x},+\infty) \times\{\bar{x}\} .
\end{array}
$$

Then $D=\left(\cup_{i=1}^{4} A_{i}\right) \cup L_{0} \cup L_{1} \cup R_{0} \cup R_{1} \cup\{(\bar{x}, \bar{x})\}$.
Lemma 4. The following statements are true.
(i) f is a homeomorphism.
(ii) $f\left(L_{1}\right)=L_{0}$ and $f\left(L_{0}\right) \subset A_{4}$.
(iii) $f\left(R_{1}\right)=R_{0}$ and $f\left(R_{0}\right) \subset A_{3}$.
(iv) $f\left(A_{3}\right) \subset A_{4}$ and $f\left(A_{4}\right) \subset A_{3}$.
(v) $A_{2} \cup L_{1} \subset f\left(A_{2}\right) \subset A_{2} \cup L_{1} \cup A_{4}$ and $A_{1} \cup R_{1} \subset f\left(A_{1}\right) \subset A_{1} \cup R_{1} \cup A_{3}$.

Proof. (i) Since $f\left(x_{1}, y_{1}\right) \neq f\left(x_{2}, y_{2}\right)$ for any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in D$ with $\left(x_{1}, y_{1}\right) \neq\left(x_{2}, y_{2}\right)$ and $f^{-1}(u, v)=(v(p+u), u)$ is continuous, f is a homeomorphism.
(ii) Let $(x, y) \in L_{1}$ and $(u, v)=f(x, y)=(y, x /(p+y))$, then $y=\bar{x}$ and $x>\bar{x}$, it follows

$$
\begin{equation*}
u=y=\bar{x}, \quad v=\frac{x}{(p+y)}>\frac{\bar{x}}{(p+\bar{x})}=\bar{x} \tag{4}
\end{equation*}
$$

which implies $f\left(L_{1}\right) \subset L_{0}$.
On the other hand, let $(u, v) \in L_{0}$ and $(x, y)=f^{-1}(u, v)=(v(p+u), u)$, then $u=\bar{x}$ and $v>\bar{x}$, it follows

$$
\begin{equation*}
y=u=\bar{x}, \quad x=v(p+u)>\bar{x}(p+\bar{x})=\bar{x}, \tag{5}
\end{equation*}
$$

which implies $f^{-1}\left(L_{0}\right) \subset L_{1}$. Thus $f\left(L_{1}\right)=L_{0}$.
Now let $(x, y) \in L_{0}$ and $(u, v)=f(x, y)=(y, x /(p+y))$, then $x=\bar{x}$ and $y>\bar{x}$, it follows

$$
\begin{equation*}
u=y>\bar{x}, \quad v=\frac{x}{(p+y)}<\bar{x}, \tag{6}
\end{equation*}
$$

which implies $f\left(L_{0}\right) \subset A_{4}$.
The proof of (iii) is similar to that of (ii).
(iv) Let $(x, y) \in A_{3}$ and $(u, v)=f(x, y)=(y, x /(p+y))$, then $\bar{x}<y$ and $0<x<\bar{x}$, from which it follows

$$
\begin{equation*}
v=\frac{x}{(p+y)}<\frac{\bar{x}}{(p+\bar{x})}=\bar{x}, \quad u>\bar{x} . \tag{7}
\end{equation*}
$$

Thus $(u, v) \in A_{4}$. In a similar fashion, we may show $f\left(A_{4}\right) \subset A_{3}$.
(v) Let $(x, y) \in A_{2}$ and $(u, v)=f(x, y)=(y, x /(p+y))$, then $y>\bar{x}$ and $x>\bar{x}$, from which it follows $u>\bar{x}$. Since f is a homeomorphism and $L_{0} \cup L_{1} \cup\{(\bar{x}, \bar{x})\}$ is the boundary of A_{2} with $f\left(L_{1}\right)=L_{0}$ and $f\left(L_{0}\right) \subset A_{4}$, we obtain $A_{2} \cup L_{1} \subset f\left(A_{2}\right) \subset A_{2} \cup L_{1} \cup A_{4}$. We similarly have $A_{1} \cup R_{1} \subset f\left(A_{1}\right) \subset A_{1} \cup R_{1} \cup A_{3}$. Lemma 4 is proven.

Lemma 5. If $0<p<1$ and $\left\{x_{n}\right\}_{n=-1}^{\infty}$ is a positive solution of (1) with $x_{n} \geq \bar{x}=1-p$ for all $n \geq-1\left(\right.$ or $x_{n} \leq \bar{x}=1-p$ for all $\left.n \geq-1\right)$, then $\lim _{n \rightarrow \infty} x_{n}=\bar{x}$.

Proof. We will prove the lemma for $x_{n} \geq \bar{x}=1-p$ for all $n \geq-1$. The case for $x_{n} \leq \bar{x}=$ $1-p$ for all $n \geq-1$ is similar. From $x_{n} \geq \bar{x}$ for all $n \geq-1$ and

$$
\begin{equation*}
x_{n+1}-x_{n-1}=\frac{\bar{x}-x_{n}}{p+x_{n}} x_{n-1}, \tag{8}
\end{equation*}
$$

it follows that the sequences $\left\{x_{2 n-1}\right\}$ and $\left\{x_{2 n}\right\}$ are monotone decreasing. Let $\lim _{n \rightarrow \infty} x_{2 n}=$ a and $\lim _{n \rightarrow \infty} x_{2 n+1}=b$. By (8), we have $a=b=\bar{x}$. Lemma 5 is proven.

Set

$$
\begin{equation*}
x=g_{2}(y)=(p+y) \bar{x} \quad(y>0) \tag{9}
\end{equation*}
$$

then $y=h_{2}(x)=g_{2}^{-1}(x)=x / \bar{x}-p$ is an increasing and differentiable function which maps $(p \bar{x},+\infty)$ onto $(0,+\infty)$. Let

$$
\begin{equation*}
x=g_{3}(y)=(p+y) h_{2}(y) \quad(y>p \bar{x}), \tag{10}
\end{equation*}
$$

then $y=h_{3}(x)=g_{3}^{-1}(x)$ is an increasing and differentiable function which maps $(0,+\infty)$ onto $(p \bar{x},+\infty)$.

Assume that for some positive integer n we already define increasing and differentiable functions $h_{2 n}(x)$ and $h_{2 n+1}(x)$ such that $h_{2 n}$ maps ($p^{n} \bar{x},+\infty$) onto $(0,+\infty)$ and $h_{2 n+1}$ maps $(0,+\infty)$ onto ($p^{n} \bar{x},+\infty$). Set

$$
\begin{equation*}
x=g_{2 n+2}(y)=(p+y) h_{2 n+1}(y) \quad(y>0) \tag{11}
\end{equation*}
$$

then $y=h_{2 n+2}(x)=g_{2 n+2}^{-1}(x)$ is an increasing and differentiable function which maps ($p^{n+1} \bar{x},+\infty$) onto $(0,+\infty)$. Set

$$
\begin{equation*}
x=g_{2 n+3}(y)=(p+y) h_{2 n+2}(y) \quad\left(y>p^{n+1} \bar{x}\right) \tag{12}
\end{equation*}
$$

then $y=h_{2 n+3}(x)=g_{2 n+3}^{-1}(x)$ is an increasing and differentiable function which maps $(0,+\infty)$ onto ($p^{n+1} \bar{x},+\infty$). In such a way, we construct a family of increasing and differentiable functions $y=h_{n}(x)$.

4 The solutions of a difference equation
Let $P_{0}=A_{2}$ and $Q_{0}=A_{1}$. For any $n \geq 1$, write

$$
\begin{equation*}
P_{n}=f^{-1}\left(P_{n-1}\right), \quad Q_{n}=f^{-1}\left(Q_{n-1}\right), \quad L_{n}=f^{-1}\left(L_{n-1}\right), \quad R_{n}=f^{-1}\left(R_{n-1}\right) . \tag{13}
\end{equation*}
$$

From Lemma 4 we have that $L_{2}=f^{-1}\left(L_{1}\right) \subset P_{0}, R_{2}=f^{-1}\left(R_{1}\right) \subset Q_{0}, P_{1}=f^{-1}\left(P_{0}\right) \subset P_{0}$ and $Q_{1}=f^{-1}\left(Q_{0}\right) \subset Q_{0}$, which implies that for any $n \geq 1$,

$$
\begin{equation*}
L_{n+1} \subset P_{n-1}, \quad R_{n+1} \subset Q_{n-1}, \quad P_{n} \subset P_{n-1}, \quad Q_{n} \subset Q_{n-1} . \tag{14}
\end{equation*}
$$

Let $(x, y) \in L_{2}$. Since $f\left(L_{2}\right)=L_{1}$ and $(u, v)=f(x, y)=(y, x /(p+y))$, it follows that

$$
\begin{equation*}
\frac{x}{(p+y)}=v=\bar{x}, \quad y=u>\bar{x} . \tag{15}
\end{equation*}
$$

Thus $x=g_{2}(y)=(p+y) \bar{x}>\bar{x}(y>\bar{x})$ and $L_{2}=\left\{(x, y): y=h_{2}(x), x>\bar{x}\right\}$. In a similar fashion, we may show $R_{2}=\left\{(x, y): y=h_{2}(x), p \bar{x}<x<\bar{x}\right\}$.

Since f is a homeomorphism, $f\left(P_{1}\right)=P_{0}$, and $L_{0} \cup L_{1} \cup\{(\bar{x}, \bar{x})\}$ is the boundary of P_{0} with $f\left(L_{2}\right)=L_{1}$ and $f\left(L_{1}\right)=L_{0}$, we have

$$
\begin{equation*}
P_{1}=\left\{(x, y): \bar{x}<y<h_{2}(x), x>\bar{x}\right\} . \tag{16}
\end{equation*}
$$

In a similar fashion, we may show

$$
\begin{equation*}
Q_{1}=\{(x, y): 0<y<\bar{x}, 0<x \leq p \bar{x}\} \cup\left\{(x, y): h_{2}(x)<y<\bar{x}, p \bar{x}<x<\bar{x}\right\} . \tag{17}
\end{equation*}
$$

Let $(x, y) \in L_{3}$. Since $f\left(L_{3}\right)=L_{2}$ and $(u, v)=f(x, y)=(y, x /(p+y)) \in L_{2}$, it follows that

$$
\begin{equation*}
\frac{x}{(p+y)}=v=h_{2}(u)=h_{2}(y), \quad y=u>\bar{x} . \tag{18}
\end{equation*}
$$

Thus $x=g_{3}(y)=(p+y) h_{2}(y)>\bar{x}(y>\bar{x})$ and $L_{3}=\left\{(x, y): y=h_{3}(x), x>\bar{x}\right\}$. In a similar fashion, we may show $R_{3}=\left\{(x, y): y=h_{3}(x), 0<x<\bar{x}\right\}$.

Since f is a homeomorphism, $f\left(P_{2}\right)=P_{1}$, and $L_{1} \cup L_{2} \cup\{(\bar{x}, \bar{x})\}$ is the boundary of P_{2} with $f\left(L_{3}\right)=L_{2}$ and $f\left(L_{2}\right)=L_{1}$, we have

$$
\begin{equation*}
P_{2}=\left\{(x, y): h_{3}(x)<y<h_{2}(x), x>\bar{x}\right\} . \tag{19}
\end{equation*}
$$

In a similar fashion, we may show

$$
\begin{equation*}
Q_{2}=\left\{(x, y): 0<y<h_{3}(x), 0<x \leq p \bar{x}\right\} \cup\left\{(x, y): h_{2}(x)<y<h_{3}(x), p \bar{x}<x<\bar{x}\right\} . \tag{20}
\end{equation*}
$$

Using induction, one can easily show that for any $n \geq 2$,

$$
\begin{equation*}
L_{n}=\left\{(x, y): y=h_{n}(x), x>\bar{x}\right\}, \tag{21}
\end{equation*}
$$

and for any $n \geq 1$,

$$
\begin{align*}
R_{2 n}= & \left\{(x, y): y=h_{2 n}(x), p^{n} \bar{x}<x<\bar{x}\right\}, \\
R_{2 n+1}= & \left\{(x, y): y=h_{2 n+1}(x), 0<x<\bar{x}\right\}, \\
Q_{2 n}= & \left\{(x, y): 0<y<h_{2 n+1}(x), 0<x \leq p^{n} \bar{x}\right\} \\
& \cup\left\{(x, y): h_{2 n}(x)<y<h_{2 n+1}(x), p^{n} \bar{x}<x<\bar{x}\right\}, \\
Q_{2 n+1}= & \left\{(x, y): 0<y<h_{2 n+1}(x), 0<x \leq p^{n+1} \bar{x}\right\} \tag{22}\\
& \cup\left\{(x, y): h_{2 n+2}(x)<y<h_{2 n+1}(x), p^{n+1} \bar{x}<x<\bar{x}\right\}, \\
P_{2 n}= & \left\{(x, y): h_{2 n+1}(x)<y<h_{2 n}(x), x>\bar{x}\right\}, \\
P_{2 n+1}= & \left\{(x, y): h_{2 n+1}(x)<y<h_{2 n+2}(x), x>\bar{x}\right\} .
\end{align*}
$$

By (14), it follows that for $x>\bar{x}$,

$$
\begin{equation*}
\bar{x}<h_{3}(x) \leq h_{5}(x) \leq \cdots \leq h_{4}(x) \leq h_{2}(x) \tag{23}
\end{equation*}
$$

and for $0<x \leq \bar{x}$,

$$
\begin{equation*}
\bar{x} \geq h_{3}(x) \geq h_{5}(x) \geq \cdots \tag{24}
\end{equation*}
$$

and for any $n \geq 2$ and $p^{n} \bar{x}<x \leq \bar{x}$

$$
\begin{equation*}
h_{2 n-1}(x) \geq h_{2 n}(x) \geq h_{2 n-2}(x) . \tag{25}
\end{equation*}
$$

From (23), (24), and (25) we may assume that for every $x>0$,

$$
\begin{equation*}
F(x)=\lim _{n \rightarrow \infty} h_{2 n+1}(x), \quad G(x)=\lim _{n \rightarrow \infty} h_{2 n}(x) \quad\left(n>\log _{p}\left(\frac{x}{\bar{x}}\right)\right) \tag{26}
\end{equation*}
$$

Then $F(x) \leq G(x)$ if $x>\bar{x}$ and $F(x) \geq G(x)$ if $0<x \leq \bar{x}$.
Lemma 6. $F(x)$ and $G(x)$ are continuous.
Proof. We first show that $F(x)$ is continuous. Let $x, x_{0} \in(0,+\infty)$. Choosing $N>0$ such that $x, x_{0} \in\left(p^{N} \bar{x},+\infty\right)$, then for every $n>N+1$, there exists c_{n} between x and x_{0} such that

$$
\begin{equation*}
\left|h_{2 n+1}(x)-h_{2 n+1}\left(x_{0}\right)\right|=\left|h_{2 n+1}^{\prime}\left(c_{n}\right)\right|\left|x-x_{0}\right| . \tag{27}
\end{equation*}
$$

Let $\xi_{n}=h_{2 n+1}\left(c_{n}\right)$, then $h_{2 n}^{\prime}\left(\xi_{n}\right) \geq 0$ and

$$
\begin{align*}
h_{2 n}\left(\xi_{n}\right)+\left(p+\xi_{n}\right) h_{2 n}^{\prime}\left(\xi_{n}\right) & \geq h_{2 n}\left(\xi_{n}\right)=h_{2 n}\left(h_{2 n+1}\left(c_{n}\right)\right) \\
& \geq h_{2 n}\left(h_{2 n+1}\left(p^{N} \bar{x}\right)\right) \geq h_{2 N}\left(h_{2 N+2}\left(p^{N} \bar{x}\right)\right), \\
\left|h_{2 n+1}(x)-h_{2 n+1}\left(x_{0}\right)\right| & =\left|\frac{1}{\left(h_{2 n}\left(\xi_{n}\right)+\left(p+\xi_{n}\right) h_{2 n}^{\prime}\left(\xi_{n}\right)\right)}\right|\left|x-x_{0}\right| \tag{28}\\
& \leq\left|\frac{1}{h_{2 N}\left(h_{2 N+2}\left(p^{N} \bar{x}\right)\right)}\right|\left|x-x_{0}\right| .
\end{align*}
$$

Thus

$$
\begin{equation*}
\left|F(x)-F\left(x_{0}\right)\right|=\lim _{n \rightarrow \infty}\left|h_{2 n+1}(x)-h_{2 n+1}\left(x_{0}\right)\right| \leq\left|\frac{1}{h_{2 N}\left(h_{2 N+2}\left(p^{N} \bar{x}\right)\right)}\right|\left|x-x_{0}\right| \tag{29}
\end{equation*}
$$

which implies $F(x)$ is continuous. In a similar fashion, we may show that $G(x)$ is also continuous.

Let S be the set of initial values $\left(x_{-1}, x_{0}\right) \in D$ such that the positive solution $\left\{x_{n}\right\}_{n=-1}^{\infty}$ of (1) is bounded. Then we have the following theorem.

Theorem 7. Let $0<p<1$, then $S=W_{1} \cup\{(\bar{x}, \bar{x})\} \cup W_{2}$, where $W_{1}=\{(x, y): F(x) \leq y \leq$ $G(x), \bar{x}<x\}$ and $W_{2}=\{(x, y): G(x) \leq y \leq F(x), 0<x<\bar{x}\}$. Moreover, every positive solution $\left\{x_{n}\right\}_{n=-1}^{\infty}$ of (1) with initial value $\left(x_{-1}, x_{0}\right) \in S$ converges to \bar{x}.

Proof. Let $\left(x_{-1}, x_{0}\right) \in W_{1} \cup\{(\bar{x}, \bar{x})\} \cup W_{2}$ and $\left\{x_{n}\right\}_{n=-1}^{\infty}$ is a positive solution of (1) with initial value $\left(x_{-1}, x_{0}\right)$.

If $\left(x_{-1}, x_{0}\right)=(\bar{x}, \bar{x})$, then $\left\{x_{n}\right\}_{n=-1}^{\infty}$ is a trivial solution of (1), which implies $\lim _{n \rightarrow \infty} x_{n}=$ \bar{x} and $\left(x_{-1}, x_{0}\right) \in S$.

If $\left(x_{-1}, x_{0}\right) \in W_{1}$, then $\left(x_{-1}, x_{0}\right) \in P_{n}$ for any $n \geq 0$, which implies $f^{n}\left(x_{-1}, x_{0}\right)=\left(x_{n-1}\right.$, $\left.x_{n}\right) \in A_{2}$ for any $n \geq 0$. Thus it follows from Lemma 5 that $\lim _{n \rightarrow \infty} x_{n}=\bar{x}$ and $\left(x_{-1}, x_{0}\right) \in$ S. In a similar fashion, we may show that if $\left(x_{-1}, x_{0}\right) \in W_{2}$, then $\lim _{n \rightarrow \infty} x_{n}=\bar{x}$ and $\left(x_{-1}, x_{0}\right) \in S$.

Now let $\left(x_{-1}, x_{0}\right) \in D-W_{1} \cup\{(\bar{x}, \bar{x})\} \cup W_{2}$ and $\left\{x_{n}\right\}_{n=-1}^{\infty}$ is a positive solution of (1) with initial value $\left(x_{-1}, x_{0}\right)$.

If $\left(x_{-1}, x_{0}\right) \in A_{3} \cup A_{4} \cup R_{0} \cup R_{1} \cup L_{0} \cup L_{1}$, then by Lemma 4 we have $f^{2}\left(x_{-1}, x_{0}\right)=$ $\left(x_{1}, x_{2}\right) \in\{(x, y):(x-\bar{x})(y-\bar{x})<0\}$, it follows from Corollary 3 that $\left(x_{-1}, x_{0}\right) \notin S$.

If $\left(x_{-1}, x_{0}\right) \in A_{2}-W_{1}$, then there exists $n \geq 0$ such that

$$
\begin{equation*}
\left(x_{-1}, x_{0}\right) \in P_{n}-P_{n+1}=f^{-n}\left(A_{2}\right)-f^{-n-1}\left(A_{2}\right) \tag{30}
\end{equation*}
$$

from which it follows

$$
\begin{equation*}
f^{n}\left(x_{-1}, x_{0}\right)=\left(x_{n-1}, x_{n}\right) \in A_{2}-f^{-1}\left(A_{2}\right) . \tag{31}
\end{equation*}
$$

By Lemma 4, we have $f^{n+1}\left(x_{-1}, x_{0}\right) \in A_{4} \cup L_{1}$, which implies $f^{n+3}\left(x_{-1}, x_{0}\right)=\left(x_{n+2}, x_{n+3}\right)$ $\in A_{4}$, it follows from Corollary 3 that $\left(x_{-1}, x_{0}\right) \notin S$. In a similar fashion, we may show that if $\left(x_{-1}, x_{0}\right) \in A_{1}-W_{2}$, then it follows that $\left(x_{-1}, x_{0}\right) \notin S$. Theorem 7 is proven.

Acknowledgment

The project is supported by NNSF of China $(10461001,10361001)$ and NSF of Guangxi (0447004).

References

[1] C. H. Gibbons, M. R. S. Kulenović, and G. Ladas, On the recursive sequence $x_{n+1}=(\alpha+$ $\left.\beta x_{n-1}\right) /\left(\gamma+x_{n}\right)$, Mathematical Sciences Research Hot-Line 4 (2000), no. 2, 1-11.
[2] M. R. S. Kulenović and G. Ladas, Dynamics of Second Order Rational Difference Equations: With Open Problems and Conjectures, Chapman \& Hall/CRC Press, Florida, 2002.

Taixiang Sun: Department of Mathematics, College of Mathematics and Information Science, Guangxi University, Nanning, Guangxi 530004, China
E-mail address: stx1963@163.com
Hongjian Xi: Department of Mathematics, Guangxi College of Finance and Economics, Nanning, Guangxi 530003, China
E-mail address: xhongjian@263.net
Hui Wu: Department of Mathematics, College of Mathematics and Information Science, Guangxi University, Nanning, Guangxi 530004, China
E-mail address: stxhql@gxu.edu.cn

