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A kind of discrete system according to Nicholson’s blowflies equation with a finite delay
is obtained by the Euler forward method, and the dynamics of this discrete system are in-
vestigated. Applying the theory of normal form and center manifold, we not only discuss
the linear stability of the equilibrium and the existence of the local Hopf bifurcations, but
also give the explicit algorithm for determining the direction of bifurcation and stability
of the periodic solution of bifurcation.
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1. Introduction

Equation

x′(t)= ax(t− τ)e−bx(t−τ)− cx(t), (1.1)

which is one of the most important ecological systems, describes the population dynamics
of Nicholson’s blowflies. Here x(t) is the size of the population at time t, a is the maximum
per capita daily egg production rate, 1/b is the size at which the population reproduces
at the maximum rate, c is the per capita daily adult death rate, and τ is the generation
time. Equation (1.1) has been extensively studied in the literature [2, 7]. The majority
of the results on (1.1) deal with the global attractiveness of the positive equilibrium and
oscillatory behaviors of solutions [1, 3–6, 9].

But in practice, we need computers to simulate system (1.1), so it is necessary to study
the discrete system of (1.1). We hope that the dynamic behaviors of the discrete system
accord with the ones of system (1.1). Wei and Li [10] have got the condition upon which
a Hopf bifurcation exists and the bifurcating periodic solutions are stable for (1.1). In
this paper, we study the dynamics behaviors of the discrete system of (1.1), such as the
existence of Hopf bifurcation and the stability of the bifurcating periodic solution. The
theoretical analysis gives the condition under which there exists a Hopf bifurcation and
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the bifurcating periodic solutions are stable for the discrete system. At last the numerical
test shows that the analytic results are correct.

The paper is organized as follows: in Section 2, we investigate the occurrence of Hopf
bifurcations. In Section 3, direction and stability of the Hopf bifurcation of discrete model
are established. In Section 4, computer simulations are performed to illustrate the ana-
lytical results found.

2. Stability analysis

Let u(t)= x(τt). Then (1.1) can be written as

u′(t)= aτu(t− 1)e−bu(t−1)− cτu(t). (2.1)

We consider the stepsize of the form h= 1/m, where m∈ Z+. Applying Euler method to
this equation yields the difference equation

un+1 = (1− cτh)un + aτhun−me−bun−m , (2.2)

where un is an approximate value to u(nh).
Set u∗ a positive fixed point of (2.2), then we have

c = ae−bu∗ . (2.3)

Substituting yn = un−u∗ into (2.2) deduces that

yn+1 =
(
1− cτh)yn + cτh(yn−m +u∗

)
e−byn−m − cτhu∗. (2.4)

Introducing a new variable, Yn = (yn, yn−1, . . . , yn−m)T , we can rewrite (2.4) as

Yn+1 = F
(
Yn,τ

)
, (2.5)

where F = (F0,F1, . . . ,Fm)T and

Fk =
⎧
⎨

⎩
(1− cτh)yn + cτh

(
yn−m +u∗

)
e−byn−m − cτhu∗, k = 0;

yn−k+1, 1≤ k ≤m. (2.6)

Clearly the origin is a fixed point of map (2.5), the linear part of map (2.5) is

Yn+1 =AYn, (2.7)

where

A=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1− cτh 0 ··· 0 cτh
(
1− bu∗)

1 0 ··· 0 0
0 1 ··· 0 0
...

...
...

...
...

0 0 ··· 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2.8)
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It is easy to see that the characteristic equation of A is

zm(z− 1 + cτh)− cτh(1− bu∗)= 0. (2.9)

It is well known that the stability of the fixed point of map (2.5) depends on the distribu-
tion of the zeros of (2.9).

We will employ the results from Ruan and Wei [8] and Zhang et al. [12] to analyze the
distribution of the roots of the characteristic (2.9).

Lemma 2.1 [12]. Suppose that B ∈R is a bounded closed and connected set, f (λ,τ)= λm +
p1(τ)λm−1 + p2(τ)λm−2 + ···+pm(τ) is continuous in (λ,τ)∈ C×B, and τ is a parameter,
τ ∈ B. Then as τ varies, the sum of the order of the zeros of f (λ,τ) out of the unit circle

{
λ∈ C : |λ| > 1

}
(2.10)

can change only if a zero appears on or crosses the unit circle.

Lemma 2.2. There exists τ′ > 0 such that for 0 < τ < τ′ all roots of (2.9) have modulus less
than one.

Proof. When τ = 0, (2.9) becomes

zm+1− zm = 0. (2.11)

The equation has, as τ = 0, an m-fold root and a simple root z = 1.
Consider the root z(τ) such that |z(0)| = 1. This root depends continuously on τ and

is a differential function of τ. From (2.9), we have

dz

dτ
= ch

(
1− bu∗)− chzm

mzm+1(z− 1 + cτh) + zm
,

dz̄

dτ
= ch(1− bu∗)− chz̄m
mz̄m+1(z̄− 1 + cτh) + z̄m

,

(2.12)

so

d|z|2
dτ

= z dz
dτ

+ z
dz

dτ
,

d|z|2
dτ

∣
∣
∣
∣
τ=0,z=1

=−2bchu∗ < 0.

(2.13)

Consequently, |z| < 1 for all sufficiently small τ > 0. Thus all roots of (2.9) lie in |z| < 1
for sufficiently small positive τ > 0, and the existence of the maximal τ′ follows. �

Lemma 2.3. Assume that the stepsize h is sufficiently small and bu∗ < 2. Then (2.9) has no
root with modulus one for all τ > 0.

Proof. Let eiω
∗

be a root of (2.9) when τ = τ∗. Then

ei(m+1)ω∗ − eimω∗(1− cτh)= cτh(1− bu∗). (2.14)
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Separating the real and imaginary parts, we have

cos(m+ 1)ω∗ − (1− cτh)cosmω∗ = cτh(1− bu∗),
sin(m+ 1)ω∗ − (1− cτh)sinmω∗ = 0,

(2.15)

so

cosω∗ = 1− (cτh)2
(
1− bu∗)2

+ (1− cτh)2

2(1− cτh)

= 1 +
(cτh)2bu∗

(
2− bu∗)

2(1− cτh)
.

(2.16)

For h > 0 small enough, if bu∗ < 2, then cosω∗ > 1, which yields a contradiction. This
completes the proof. �

If bu∗ > 2, then the roots e±iω∗ of (2.9) with modulus one satisfy

cosω∗ = 1 +
(cτh)2bu∗

(
2− bu∗)

2(1− cτh)
,

τ∗ = 1
ch

(
1− sin(m+ 1)ω∗

sinmω∗

)
,

h= 1
m
.

(2.17)

Lemma 2.4. If the stepsize h is sufficiently small and bu∗ > 2, then

dh = d|z|2
dτ

∣
∣
∣
∣
τ=τ∗,ω=ω∗

> 0, (2.18)

where τ∗ and ω∗ satisfy (2.17).

Proof. From (2.9), we have

dh =
[
z
dz

dτ
+ z

dz

dτ

]∣∣
∣
∣
τ=τ∗,ω=ω∗

=
[
z̄

ch
(
1− bu∗)− chzm

mzm+1(z− 1 + cτh) + zm
+ z

ch
(
1− bu∗)− chz̄m

mz̄m+1(z̄− 1 + cτh) + z̄m

]∣∣
∣
∣
τ=τ∗,ω=ω∗

= 2ch
(m+ 1)

[(
1− bu∗)cos(m+ 1)ω∗− cosω∗

]
+m(1− cτh)

[
1− (1− bu∗)cosmω∗

]

(m+ 1)2 +m2(1− cτh)2− 2m(m+ 1)(1− cτh)cosω∗
.

(2.19)

By (2.15) we find that

cosmω∗ = 1
1− bu∗ +

cτhbu∗
(
2− bu∗)

2(1− cτh)
(
1− bu∗) , (2.20)
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so we derive that

cos(m+ 1)ω∗ = cτh(1− bu∗)+ (1− cτh)cosmω∗

= cτh(1− bu∗)+
1− cτh
1− bu∗ +

cτhbu∗
(
2− bu∗)

2
(
1− bu∗) .

(2.21)

It is easy to see that

1− (1− bu∗)cosmω∗ = − cτhbu
∗(2− bu∗)

2(1− cτh)
> 0,

(
1− bu∗)cos(m+ 1)ω∗ − cosω∗ = 1

2
bu∗

(
bu∗ − 2

)
(

1− cτh

1− cτh
)
> 0.

(2.22)

Equation (2.22) implies immediately that

dh = d|z|2
dτ

∣
∣
∣
∣
τ=τ∗,ω=ω∗

> 0 (2.23)

hold. This completes the proof. �

By Lemmas 2.1–2.4, we have the following results on stability and bifurcation in map
(2.5).

Theorem 2.5. (1) If bu∗ < 2, then the fixed point of map (2.5) is absolutely stable for all
τ > 0.

(2) If bu∗ > 2, then there exists an infinite sequence of the time delay parameter, τ0 <
τ1 < ··· < τn < ··· , such that the fixed point of map (2.5) is asymptotically stable when
τ ∈ (0,τ0) and unstable when τ > τ0. Map (2.5) has a Hopf bifurcation at the origin when
τ = τj , j = 0,1,2 . . ., where τj satisfies (2.17).

Proof. (1) Set bu∗ < 2. From Lemmas 2.2 and 2.3, we know that (2.9) has no root with
modulus one for all τ > 0. Applying Lemma 2.1, all roots of (2.9) have modulus less than
one for all τ > 0. Hence, conclusion (1) follows.

(2) Set bu∗ > 2. Applying Lemma 2.4, we know that all roots of (2.9) have modulus less
than one when τ ∈ (0,τ0), and (2.9) has at least a couple of roots with modulus greater
than one when τ > τ0. Hence conclusion (2) follows. �

3. Direction and stability of the Hopf bifurcation in discrete model

Without loss of generality, denote the critical value τj ( j = 0,1,2, . . .) by τ∗, at which map
(2.5) undergoes a Hopf bifurcation at origin. Assume map (2.5) is smooth enough so that
it can be expanded.

For map (2.5), we have

Yn+1 =AYn +
1
2
B
(
Yn,Yn

)
+

1
6
C
(
Yn,Yn,Yn

)
+O

(∥
∥Yn

∥
∥4
)

, (3.1)
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where

B
(
Yn,Yn

)= (b0
(
Yn,Yn

)
,0···0

)
,

C
(
Yn,Yn,Yn

)= (c0
(
Yn,Yn,Yn

)
,0···0

)
,

(3.2)

b0(φ,ψ)= cτhb(bu∗ − 2
)
φmψm,

c0(φ,ψ,η)= cτhb2(3− bu∗)φmψmηm.
(3.3)

Let q ∈ Cm+1 be a complex eigenvector of A corresponding to eiω
∗
, then

Aq = eiω∗q, Aq̄ = e−iω∗ q̄. (3.4)

We also introduce an adjoint eigenvector q∗ ∈ Cm+1 having the properties

ATq∗ = e−iω∗q∗, ATq̄∗ = eiω∗ q̄∗ (3.5)

and satisfying the normalization < q∗,q >= 1, where < q∗,q >=∑m
i=0 q̄

∗
i qi.

Lemma 3.1. Let q = (q0,q1, . . . ,qm)T be the eigenvector of A corresponding to the eigen-
value eiω

∗
, and q∗ = (q∗0 ,q∗1 , . . . ,q∗m) be the eigenvector ofAT corresponding to the eigenvalue

e−iω∗ . Then

q = (1,e−iω
∗
, . . . ,e−imω

∗)T
,

q∗ = K(1,αeimω
∗
, . . . ,αeiω

∗)
,

(3.6)

where α= cτh(1− bu∗) and K = (1 + cτh(1− bu∗)mei(m+1)ω∗)−1.

Proof. Let q = (q0,q1, . . . ,qm)T be the eigenvector of A corresponding to the eigenvalue
eiω

∗
, then

qi = qi+1e
iω∗ , i= 1,2, . . . ,m− 1,

(1− cτh)q0 + τh
(
1− bu∗)qm = q0e

iω∗ .
(3.7)

Setting q0 = 1 we find that

q = (1,e−iω
∗
, . . . ,e−imω

∗)T
(3.8)

is the eigenvector of A corresponding to the eigenvalue eiω
∗
. Similarly,

q∗ = K(1,αeimω
∗
, . . . ,αeiω

∗)
, (3.9)

where α= cτh(1− bu∗) and K = (1 + cτh(1− bu∗)mei(m+1)ω∗)−1. �

All vectors x ∈Rm+1 can be decomposed as

x = vq+ v̄q̄+ y, (3.10)
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where v ∈ C, vq+ v̄q̄ ∈ Tcentre and y ∈ Tstable.The complex variable v can be viewed as a
new coordinate on Tcentre, so we have

v = 〈q∗,x
〉

,

y = x− 〈q∗,x
〉
q− 〈q̄∗,x

〉
q̄.

(3.11)

Let a(μ) be a characteristic polynomial of A and μ= μ(τ) be a characteristic root of A.
Applying this decomposition to the map F, we get

v �−→ μ(τ)v+
〈
q∗,N(vq+ v̄q̄+ y)

〉
,

y �−→ Ay +N
(
vq+ v̄q̄+ y)− 〈q∗,N

(
vq+ v̄q̄+ y

)〉
q− 〈q̄∗,N

(
vq+ v̄q̄+ y

)〉
q̄.

(3.12)

Using Taylor expansions, we get

v �−→ μ(τ)v+
1
2
g20v

2 + g11vv̄+
1
2
g02v̄

2 +
1
2
g21v

2v̄+ ··· . (3.13)

Let τ = τ∗, then we obtain

v �−→ eiω
∗
v+

1
2
g20v

2 + g11vv̄+
1
2
g02v̄

2 +
1
2
g21v

2v̄+ ··· , (3.14)

where

g20 =
〈
q∗,B(q,q)

〉
,

g11 =
〈
q∗,B

(
q, q̄

)〉
,g02 =

〈
q∗,B

(
q̄, q̄

)〉
,

g21 =
〈
q∗,B

(
q̄,ω20

)〉
+ 2
〈
q∗,B

(
q,ω11

)〉
+
〈
q∗,C

(
q,q, q̄

)〉
,

(
eiω

∗
I −A)ω20 =H20,

(I −A)ω11 =H11,

H20 = Bq,q−
〈
q∗,B(q,q)

〉
q− 〈q̄∗,B(q,q)

〉
q̄,

H11 = Bq,q̄−
〈
q∗,B(q, q̄)

〉
q− 〈q̄∗,B(q, q̄)

〉
q̄.

(3.15)

By [11, Lemmas 3.8 and 3.10], we get

ω20 = b0(q,q)
a
(
μ2
) q

(
μ2)−

〈
q∗,B(q,q)

〉

μ2−μ q−
〈
q̄∗,B(q,q)

〉

μ2− μ̄ q̄,

ω11 = b0(q, q̄)
a(1)

q(1)−
〈
q∗,B(q, q̄)

〉

1−μ q−
〈
q̄∗,B(q, q̄)

〉

1− μ̄ q̄,

(3.16)
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here μ= eiω∗ is a characteristic root of A. The coefficient g21 can be simplified as

g21 = b0(q, q̄)
a
(
μ2
)
〈
q∗,B

(
q̄,q

(
μ2))〉− g20g11

μ2−μ −
∣
∣g02

∣
∣2

μ2−μ

+ 2
b0(q, q̄)
a(1)

〈
q∗,B

(
q,q(1)

)〉− 2
g20g11

1−μ − 2

∣
∣g11

∣
∣2

1− μ̄ +
〈
q∗,C(q,q, q̄)

〉
.

(3.17)

From this we obtain an expression for the critical coefficient c1:

c1 = 1
2
q̄∗0

[
b0
(
q̄,q

(
μ2
))
b0(q,q)

a
(
μ2
) +

2b0
(
q,q(1)

)
b0(q, q̄)

a(1)
+ c0(q,q, q̄)

]
. (3.18)

Lemma 3.2 [11]. Given the map (3.13), assume the following.
(1) μ(τ)= r(τ)eiω(τ), μ(τ),ω(τ)∈R, where

r
(
τ∗
)= 1, r′

(
τ∗
) �= 0, ω

(
τ∗
)= ω∗. (3.19)

(2) eikω
∗ �= 1 for k = 1,2,3,4.

(3) Let

c1 = 1
2
q̄∗0

[
b0
(
q̄,q

(
μ2
))
b0(q,q)

a
(
μ2
) +

2b0
(
q,q(1)

)
b0(q, q̄)

a(1)
+ c0(q,q, q̄)

]
, (3.20)

where μ= μ(τ∗)= eiω∗ and the gi, j are evaluated at τ = τ∗, and assume

Re
[
e−iω

∗
c1
(
τ∗
)] �= 0. (3.21)

Then an invariant closed curve, topologically equivalent to a circle, for the map exists for τ
in a one side neighborhood of τ∗. The radius of the invariant curve grows like O(

√|τ − τ∗|).
One of the four cases below applies:

(1) r′(τ∗) > 0, Re[e−iω∗c1(τ∗)] < 0.The origin is asymptotically stable for τ < τ∗ and
unstable for τ > τ∗. An attracting invariant closed curve exists for τ > τ∗;

(2) r′(τ∗) > 0, Re[e−iω∗c1(τ∗)] > 0.The origin is asymptotically stable for τ < τ∗ and
unstable for τ > τ∗. A repelling invariant closed curve exists for τ < τ∗;

(3) r′(τ∗) < 0, Re[e−iω∗c1(τ∗)] < 0.The origin is asymptotically stable for τ > τ∗ and
unstable for τ < τ∗. An attracting invariant closed curve exists for τ < τ∗;

(4) r′(τ∗) < 0, Re[e−iω∗c1(τ∗)] > 0. The origin is asymptotically stable for τ > τ∗ and
unstable for τ < τ∗. An attracting invariant closed curve exists for τ > τ∗.

Theorem 3.3. If bu∗ > 2 holds, then the origin is asymptotically stable for τ < τ∗ and un-
stable for τ > τ∗. An attracting invariant closed curve exists for τ > τ∗.
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Proof. By (3.3), we know

b0
(
q̄,q

(
μ2))= cτ∗hb(bu∗ − 2

)
e−imω

∗
,

b0(q,q)= cτ∗hb(bu∗ − 2
)
e−imω

∗
,

b0(q, q̄)= cτ∗hb(bu∗ − 2
)
,

c0(q,q, q̄)= cτ∗hb2(3− bu∗)e−imω∗ ,

a
(
μ2)= ei(2m+2)ω∗ − cτ∗hb(1−u∗)− cτ∗hei2mω∗ ,

a(1)= 1− cτ∗hb(bu∗ − 2
)
,

b0
(
q,q(1)

)= cτ∗hb(bu∗ − 2
)
e−imω

∗
.

(3.22)

By (3.8), (3.9), (3.18), and (3.22) we get

c1
(
τ∗
)= k̄cτ∗hbe−imω∗

2

(
cτ∗hb

(
bu∗ − 2

)2
e−i2mω∗

ei(2m+2)ω∗ − cτ∗hb(1−u∗)− cτ∗hei2mω∗

+
cτ∗hb

(
bu∗ − 2

)2

1− cτ∗hb(bu∗ − 2
) + b

(
3− bu∗)

)

.

(3.23)

So, by (2.15) (2.16), and (2.20) we have

Re
[
e−iω

∗
c1
(
τ∗
)]=−1− bu∗(2− bu∗)h

2	(bu∗ − 1
)2 +O

(
h2), (3.24)

where

	= ∣∣e−2i(m+1)ω∗−cτ∗h−chmτ∗e−2imω∗+bchτ∗u∗
∣
∣2∣∣1+chmτ∗e−2i(m+1)ω∗(1−bu∗)∣∣2

.
(3.25)

so

Re
[
e−iω

∗
c1
(
τ∗
)]
< 0, (3.26)

where τ = τ∗, ω = ω∗ satisfy (2.17). By lemmas 2.4 and 3.2, the theorem as follows. �

4. Numerical test

To illustrate the analytical results found, let us consider the following particular case of
system (2.2). We could get that a= 30, b = 2, c = 2, then τ ≈ 1.1994 is the Hopf bifurca-
tion value and bu∗ ≈ 2.708 > 2.
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Figure 4.1. The equilibrium of (2.2) is asymptotically stable when τ = 0.8.
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Figure 4.2. The equilibrium of (2.2) is unstable when τ = 1.7.

Figures 4.1, 4.2, and 4.3 are about difference equation (2.2) when the stepsize h =
τ/100.

From Figure 4.1, τ = 0.8, we could get that the equilibrium u∗ = 1.354 of (2.2) is
asymptotically stable. And from Figures 4.2 and 4.3, τ = 1.7 and 1.3, we have the equilib-
rium u∗ = 1.354 of (2.2) is unstable; the system undergoes a periodic solution of bifurca-
tion.
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Figure 4.3. System exists on attracting invariant closed curve for τ = 1.3 > 1.1994.
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