
ESTIMATES OF TOPOLOGICAL ENTROPY OF CONTINUOUS
MAPS WITH APPLICATIONS

XIAO-SONG YANG AND XIAOMING BAI

Received 27 September 2005; Accepted 19 December 2005

We present a simple theory on topological entropy of the continuous maps defined on
a compact metric space, and establish some inequalities of topological entropy. As an
application of the results of this paper, we give a new simple proof of chaos in the so-
called N-buffer switched flow networks.
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1. Introduction

Topological entropy can be an indicator of complicated (chaotic) behavior in dynamical
systems. Whether the topological entropy of a dynamical system is positive or not is of
primary significance, due to the fact that positive topological entropy implies that one can
assert that the system is chaotic. As the concept of topological entropy is concerned, it is
hard, as remarked by [8], to get a good idea of what entropy means directly from various
definitions of entropy. Thus it is enough in this paper to know that topological entropy
of a dynamical system is a measure of complexity of dynamic behavior of the system,
and it can be seen as a quantitative measurement of how chaotic a dynamical system
is. Generally speaking, the larger the entropy of a system is, the more complicated the
dynamics of this system would be. For instance, a system on a compact metric space has
zero entropy provided its nonwandering set consists of finite number of periodic orbits.
For the notions and discussions on entropy of dynamical systems, the reader can refer to
[8, Chapter VIII].

In recent years a remarkable progress has been made in topological entropy and chaos
in low-dimensional dynamical systems [1, 2, 4, 6, 7], mainly including several methods of
estimating the topological entropy in one-dimensional situations. Therefore it is mean-
ingful to present some practical results on estimating topological entropy of arbitrary
dimensional dynamical systems that can be applied to real-world problems.

A well-known result in chaos theory is the following theorem.
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Theorem 1.1 [10]. Let X be a metric space, D a compact subset of X , and f : D → X
a continuous map satisfying the assumption that there exist m mutually disjoint compact
subsets D1, . . . ,Dm of D, such that

f
(
Dj
)⊃

m⋃

i=1

Di, j = 1,2, . . . ,m. (1.1)

Then there exists a compact invariant set Λ ⊂ D, such that f | Λ is semiconjugate to the
m-shift map.

In this paper we consider a general situation where the m subsets D1, . . . , and Dm are
not necessarily mutually disjoint or (1.1) does not hold, but satisfy some suitable con-
ditions on the intersection of these subsets. A generalization of the above statement is
without doubt of mathematical interest. However, the motivation in investigating this
general case in this paper is to try to give a simple proof on chaos in N-buffer switched
flow network.

2. Symbolic dynamics and some preliminaries

First we recall some aspects of symbolic dynamics.
Let Sm = {0,1, . . . ,m− 1} be the set of nonnegative successive integer from 0 to m− 1.

Let Σm be the collection of all one-sided sequences with their elements belonging to Sm,
that is, every element s of Σm is of the following form:

s= {s0,s1, . . . ,sn, . . .
}

, si ∈ Sm. (2.1)

Now consider another sequence s̄= {s̄0, s̄1, . . . , s̄n, . . .} ∈ Σm. The distance between s and s̄
is defined as

d(s, s̄)=
∞∑

i=0

1
2i

∣
∣si− s̄i

∣
∣

1 +
∣
∣si− s̄i

∣
∣ . (2.2)

With the distance defined as (2.2), Σm is a metric space, and the following fact is well
known [8].

The space Σm is compact, totally disconnected, and perfect.
A set having these properties is often defined as a Cantor set, such a Cantor set fre-

quently appears in characterization of complex structure of invariant set in a chaotic
dynamical system.

Furthermore, define the m-shift map σ : Σm→ Σm as follows:

σ(s)i = si+1. (2.3)

A well-known property of the shift map σ as a dynamical system defined on Σm is that
the dynamics generated by σ is sensitive to initial conditions, therefore is chaotic.

Next we recall the semiconjugacy in terms of a continuous map and the shift map σ ,
which is conventionally defined as follows.
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Definition 2.1. Let X be a metric space. Consider a continuous map f : X → X . Let Λ be
a compact invariant set of f . If there exists a continuous surjective map

h : Λ−→ Σm (2.4)

such that h ◦ f = σ ◦ h, then the restriction of f to Λ f | Λ is said to be semiconjugate
to σ .

Since Theorem 1.1 in the previous section is useful for the sequel arguments of the
main results of this paper, we restate a version of it as a lemma and give a proof for the
reader’s convenience.

Lemma 2.2. Let X be a metric space, D a compact subset of X , and f : D→ X a map satis-
fying the assumption that there exist m mutually disjoint compact subsets D1, . . . ,Dm of D,
the restriction of f to each Di, that is, f |Di is continuous. Suppose that

f
(
Dj
)⊃

m⋃

i=1

Di, j = 1,2, . . . ,m, (2.5)

then there exists a compact invariant set Λ ⊂ D, such that f | Λ is semiconjugate to the
m-shift map.

Proof. The proof is very easy and is a standard argument in horseshoe theory. �

For the concept of topological entropy, the reader can refer to [8]. We just recall the
result stated in Lemma 2.3, which will be used in this paper.

Lemma 2.3 [8]. Let X be a compact metric space, and f : X → X a continuous map. If there
exists an invariant set Λ⊂ X such that f |Λ is semiconjugate to the m-shift σ , then

h( f )≥ h(σ)= logm, (2.6)

where h( f ) denotes the entropy of the map f . In addition, for every positive integer k,

h
(
f k
)= kh( f ). (2.7)

3. Some heuristic discussions

In the sequel, let X be a metric space, D a compact subset of X , let each Di, j = 1,2, . . . ,m,
be a compact subset of D, and let f : D→ X be a continuous map. To make the arguments
more readable, we first consider the case m= 2,3 in this section.

Proposition 3.1. Let D be a compact subset of X , and each Di, j = 1,2, a subset of D.
Suppose a continuous map f : D→ X satisfies the following assumptions:

(1) f (D1∩D2)∩D1∩D2 =∅;
(2) f (Dj)⊃∪2

i=1Di, j = 1,2.
Then the entropy of f satisfies h( f )≥ (1/3)log2.
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Proof. Let D1
1 ⊂ D1 be the subset such that f (D1

1) = D1, let D1
12 ⊂ D2 be the subset such

that f (D1
12)=D1

1, and let D1
121 ⊂D1 be the subset satisfying f (D1

121)=D1
12. It is easy to see

that f 3(D1
121)= f 2(D1

12)= f (D1
1)=D1. Now take a subset D1

2 ⊂D2 such that f (D1
2)⊂D1,

take D1
21 ⊂ D1 such that f (D1

21) = D1
2, and take D1

211 ⊂ D1 such that f (D1
211) = D1

21, it is
easy to see that f 3(D1

211)=D1. Now we show that D1
211∩D1

121 =∅.
To see this, suppose the contrary holds: let x ∈D1

211∩D1
121, then

f (x)∈D1
21∩D1

12 ⊂D1∩D2,

f ◦ f (x)∈D1∩D2.
(3.1)

This is in contradiction to the assumption (1), therefore D1
211∩D1

121 =∅. Now consider
the map F(x)= f 3(x). It can be seen in view of Lemma 2.2 that the map F |D1 : D1 →D1 is
semiconjugate to 2-shift map and the same is true of the restriction map F |D2 : D2 →D2.
Now Lemma 2.3 implies that h(F)≥ log2, so

h( f )≥ 1
3

log2. (3.2)

�

Proposition 3.2. Let X be a metric space, D a compact subset of X ,Di, j = 1,2,3, a subset
of D, and let f : D→ X be a continuous map satisfying the following assumptions:

(1) there exists a pair i �= j, such that f (Di∩Dj)∩Di∩Dj =∅;
(2) f (Dj)⊃∪3

i=1Di, j = 1,2,3.
Then the entropy of f satisfies h( f )≥ (1/3)log2.

Proof. Without loss of generality, suppose D2∩D3 =∅, or

f
(
D2∩D3

)∩D2∩D3 =∅, (3.3)

and consider the subset D1. Let D1
2 ⊂D2 be the subset such that f (D1

2)=D1, let D1
23 ⊂D3

be the subset such that f (D1
23)=D1

2, and let D1
231 ⊂D1 be the subset satisfying f (D1

231)=
D1

23. It is easy to see that f 3(D1
231) = f 2(D1

23) = f (D1
2) = D1. Similarly, take D1

2311 ⊂ D1,
D1

231 ⊂D1, D1
23 ⊂D3, D1

2 ⊂D2 such that

f 3(D1
321

)= f 2(D1
32

)= f
(
D1

3

)=D1. (3.4)

Now we show that D1
231∩D1

321 =∅. Suppose this is not the case, that is, D1
231∩D1

321 �= ∅.
Then for x ∈D1

321∩D1
231, it is easy to see that f (x)∈D3∩D2, f 2(x)∈D3∩D2.

Because of condition (1), this is impossible. Now let F(x)= f 3(x), by Lemmas 2.2 and
2.3 we have

h( f )≥ 1
3

log2. (3.5)

�

It is easy to prove the following result.
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Proposition 3.3. Let X be a metric space, D a compact subset of X ,Di, j = 1,2,3, a subset
of D, and let f : D→ X be a continuous map satisfying the following assumptions:

(1) D1∩D2∩D3 =∅ and there exists a pair i �= j, such that

f
(
Di∩Dj

)⊆Di∩Dj ; (3.6)

(2) f (Dj)⊃∪3
i=1Di−Dj , j = 1,2,3.

Then the entropy of f satisfies h( f )≥ (1/3)log2.

Proof. Without loss of generality, assume that f (D2∩D3)⊆D2∩D3. Then consider the
subsets D1

321 and D1
231 as the same as above. It remains to show that D1

231 ∩D1
321 =∅.

Suppose D1
231∩D1

321 �= ∅. Then for x ∈D1
321∩D1

231, it is easy to see that

f (x)∈D3∩D2, f 2(x)∈D3∩D2. (3.7)

It follows from the assumption f (D2∩D3)⊆D2∩D3 that f 3(x)∈D3∩D2 and f 3(x)∈
D1, contradictory to the assumption D1∩D2∩D3 =∅. �

4. General theorems

In this section we study the topological entropy for arbitrary m≥ 2 with assumptions dif-
ferent from those in the above propositions. Although these assumptions are little more
stringent, they can apply to a model called switched flow network of arising in manufac-
turing systems as well as other engineering disciplines.

Theorem 4.1. Let X be a metric space, D a compact subset of X ,Di, j = 1,2, . . . ,m, a subset
of D, and f : D→ X a continuous map satisfying the following assumptions:

(1) for each pair i �= j, 1≤ i, j ≤m, f (Di∩Dj)⊆Di∩Dj ;
(2) D1∩···∩Dm =∅;
(3) f (Dj)⊃∪m

i=1Di−Dj , j = 1,2, . . . ,m;
then there exists a compact invariant set Λ⊂D, such that f | Λ is semiconjugate to m− 1-
shift dynamics. And

h( f )≥ 1
m− 1

log(m− 1). (4.1)

Proof. Without loss of generality, let us consider the subset D1 and study the dynam-
ics of the restricted map f | D1. We are going to find m− 1 mutually disjointed subsets
contained in D1, such that Lemma 2.2 can be applied.

For this purpose let Π= {2,3, . . . ,m}, the set of integers from 2 to m. There are many
ways to select m− 1 piecewise different sequences taken from the numbers of Π. Here
for convenience we go as follows. Let Q = q1q2, . . . ,qm−1 be a fixed sequence, with each
element qi appearing once in the set Π.
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Let P be a permutation map as follows:

P(Q)= qm−1q1q2, . . . ,qm−2,

P2(Q)= qm−2qm−1q1q2, . . . ,qm−3,

···
Pm−2(Q)= q2, . . . ,qm−3qm−2qm−1q1.

(4.2)

For convenience, let

Qi = Pi−1(Q)= qm−i+1qm−i+2, . . . ,q1q2, . . . ,qm−i, i= 1,2, . . . ,m− 1. (4.3)

For each Qi, let

D1
Qi

, D̄Qi , D̄qm−i+1qm−i+2,...,q1q2,...,qm−i−1 , . . . , D̄qm−i+1 (4.4)

be the sequence of subsets satisfying

D̄qm−i+1 ⊂Dqm−i+1 ,

···
D̄qm−i+1qm−i+2,...,q1q2,...,qm−i−1 ⊂Dqm−i−1 ,

D̄Qi ⊂Dqm−i ,

D1
Qi
⊂D1,

(4.5)

such that

f
(
D1

Qi

)= D̄Qi ,

···
f
(
D̄qm−i+1qm−i+2,...,q1q2,...,qm−i−1

)= D̄qm−i+1qm−i+2,...,q1q2,...,qm−i−2 ,

···
f
(
D̄qm−i+1qm−i+2

)= D̄qm−i+1 ,

f
(
D̄qm−i+1

)=D1.

(4.6)

It is easy to see that

f m−1(D1
Qi

)=D1i , i= 1,2, . . . ,m− 1. (4.7)

Now we show that all the m− 1 subsets D1
Qi

, i= 1,2, . . . ,m− 1, are mutually disjointed.
To this end, let us suppose that there exists a pair i �= j such that

D1
Qi
∩D1

Qj
�= ∅. (4.8)
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Then take a point x from intersection of these two subsets. It can be seen that

f (x)∈Dm−i∩Dm− j ,

f 2(x)∈Dm−i−1∩Dm− j−1,

···
f m−2(x)∈Dm−i+1∩Dm− j+1,

f m−1(x)∈D1.

(4.9)

Because of the assumption that f (Di∩Dj)⊆Di∩Dj for each pair i �= j, 1≤ i, j ≤m, it
is easy to see that

f m−1(x)∈Dm−i∩Dm− j ,

f m−1(x)∈Dm−i−1∩Dm− j−1,

···
f m−1(x)∈Dm−i+1∩Dm− j+1.

(4.10)

Note that Qi is j− i times permutation of Qj if j > i or vice versa. This implies that

f m−2(x)∈Di ∀i∈Π= {2,3, . . . ,m}, (4.11)

together with f m−1(x)∈D1 this again implies that

f m−1(x)∈D1∩···∩Dm, (4.12)

which is a contradiction to the assumption D1∩···∩Dm =∅.
Now the theorem follows from Lemmas 2.2 and 2.3. �

Theorem 4.2. Let X be a metric space, D a compact subset of X ,Di, j = 1,2, . . . ,m, a subset
of D, and f : D→ X a continuous map satisfying the following assumptions:

(1) for each pair i �= j, 1 ≤ i, j ≤m, f (Di ∩Dj) ⊆ Di ∩Dj ; or there exists a pair i �= j,
such that Di∩Dj =∅;

(2) D1∩···∩Dm =∅;
(3) f

(
Dj
)⊃∪m

i=1Di, j = 1,2, . . . ,m.
Then there exists a compact invariant set Λ⊂D, such that f |Λ is semiconjugate to m-shift
dynamics. And

h( f )≥ 1
m+ 1

logm. (4.13)

Proof. Without loss of generality, let us consider the subset D1 and study the dynamics of
the restricted map f |D1. We are going to find m mutually disjointed subsets contained
in D1 in order to apply Lemma 2.2.

For this purpose let Π= {1,2,3, . . . ,m}, the set of integers from 1 to m, and the above
theorem can be proved in the similar manner as the proof of Theorem 4.1. �
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5. An application: the estimate of entropy of N-buffer switched flow networks

There has been much interests in a model called switched arrival system, often called
switched flow network, because of its significance in manufacturing systems and other
engineering disciplines. Various dynamical behaviors such as existence and stability of
periodic trajectories, bifurcation, and chaos were extensively investigated.

In studying switched flow model for manufacturing system, the work in [3, 5] con-
sidered the switched arrival system with one server and three buffers, and obtained an
interesting discrete dynamical system via map of equilateral triangle. This dynamical sys-
tem can be treated by virtue of one-dimensional dynamical systems theory. A mathe-
matical analysis has been given on chaotic dynamics of this system in [5], where it was
shown that the map of equilateral triangle is chaotic in terms of sensitive dependence
on initial conditions, topological transitivity, and density of periodic orbits. In [1] L.
L. Alsedà et al. gave a treatment on topological entropy of the switched arrival system
with one server and three buffers. For details, one can see [3, 5]. In case of more than
three buffers, [9] gave an elegant rigorous proof on the existence of chaos in terms of
positive entropy. However, in [9] a quite deep knowledge about invariant SRB measure
and the Markov partition as well as the entropy of ergodic Markov shift makes it not
easy to catch on for readers less of good background of ergodic theory in dynamical sys-
tems.

In this section, we will revisit this problem and present a thorough but elementary
treatment on the topological entropy of the N-buffer fluid networks with one server. We
give an estimate formula for topological entropy of N-buffer fluid networks in form of
an inequality just by virtue of the result obtained in the previous section. Our arguments
are easy to understand even for readers who are not familiar with modern theory of dy-
namical systems.

Consider a system of N buffers and one server. In such a system, work is removed from
buffer i at a fixed rate of ρi > 0 while the server delivers material to a selected buffer at a
unit rate. The control law is applied to the server so that once a buffer empties, the server
instantaneously starts to fill the empty buffer. The system is assumed to be close in the
sense that

N∑

i=1

ρi = 1. (5.1)

Let xi(t) be the amount of work in buffer i at time t ≥ 0, and let x(t)= (x1(t), . . . ,xN (t))
denote the state of work of the buffers at time t, then

N∑

i=1

xi(t)= 1 (5.2)

if it is assumed that
∑N

i=1 xi(0)= 1.
Consider the sample sequence at clearing time, {tn}, which are the times when at least

one of these buffers becomes empty. Let x(n) = (x1(tn), . . . ,xN (tn)), then the sequence
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{x(n)} evolves on the N − 2 dimensional manifold

X =
{

x :
N∑

i=1

xi = 1, xi ≥ 0, ∃1≤ j ≤N , xj = 0

}

(5.3)

by the following rule G : X → X :
(1) G(x)= x if at least two of the buffers empty at the same time;
(2) x(n+ 1)=G(x(n))= x(n) + mini �= j(xi(n)/ρi)(1 j − ρ), otherwise,

where 1 j is a vector with all zeros except for one in the jth position and ρ is a vector of
work rates ρj . It is apparent that X defined above can be regarded as the surface of the
standard (N − 1) simplex φ defined by

φ =
{

x ∈RN : x =
N∑

i=1

xiei, xi ≥ 0,
N∑

i=1

xi = 1

}

, (5.4)

where e1 = (1,0, . . . ,0), e2 = (0,1,0, . . . ,0), . . . , eN = (0,0, . . . ,1), and they are the vertices of
the piecewise linear manifold X .

Let Xi ⊂ X be the ith face of X ,

Xi =
{
x ∈ X : xi = 0

}
, i= 1,2, . . . ,N. (5.5)

It is very easy to see that the map G has the following properties.

Proposition 5.1. The restriction of the map G to every face Xj , that is,

G | Xj : Xj −→ X − X̂ j , (5.6)

is a continuous one to one map. Here X̂ j = Xj − ∂Xj(∂Xj is the boundary of Xj), that is, the
set consists of interior points of Xj . G(Xi∩Xj)= Xi∩Xj , i �= j, 1≤ i, j ≤N .

In view of the above proposition it is easy to prove the following result as a corollary
of Theorem 4.1.

Theorem 5.2. The map G : X → X is chaotic and its entropy, h, satisfies the following in-
equality:

h(G)≥ 1
N − 1

log(N − 1). (5.7)

6. Conclusion

In this paper we have discussed the topological entropy of the dynamical system described
by continuous maps defined on a compact metric space, and presented several estimates
of topological entropy for the continuous maps under some practical conditions. As an
application we give a simple proof on the chaos of the so-called N-buffer switched flow
networks.
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