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1. Introduction

Consider the following discrete-time cascade systems:

x(n+ 1)= f
(
x(n), y(n)

)
, (1.1)

y(n+ 1)= g
(
y(n)

)
, (1.2)

where x ∈Rn, y ∈Rm, f : Rn×Rm → Rn is a continuous function and g :Rm →Rm is a
function.

An interesting problem we are concerned with is the following question.

Question. Does system (1.1) have periodic orbits when system (1.2) has periodic orbits?
Recently, there have been a lot of researches in the literature on the periodicity of

discrete-time dynamical systems [1, 3–8, 10, 11]. However, to the authors’ knowledge
the above question has not received investigations, therefore in this paper we study the
above question and obtain a fundamental result. On the basis of the fundamental result
in Section 2 we further discuss the number and the minimum period of periodic orbits
of system (1.1) when system (1.2) has periodic orbits. In Section 3, we present a result on
the stability of periodic orbits.

2. Results on existence, minimum period, and number of periodic orbits

In this section, we present some results on the existence, the minimum period, and the
number of periodic orbits.
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2 On periodic orbits in discrete-time cascade systems

Before stating our results, we first recall a fixed point theorem due to Brower, which is
useful in the following arguments.

Theorem 2.1 (Brower’s fixed point theorem). Let F : C ⊂ Rn → C ⊂ Rn be a continuous
mapping, where C is a nonempty, bounded, close, and convex set, then F has a fixed point.

Its proof can be found in [2].
Moreover we make the following assumptions for system (1.1).
(H1) When y �= 0, f (0, y) �= 0.
(H2) lim‖x‖→∞(‖ f (x, y)‖/‖x‖) = μ(y) < 1, where μ : Rm → R is a function, ‖·‖ de-

notes the Euclidean norm.
Now we state our results. First we give the following theorem (Theorem 2.2), and it is
addressed by the similar technique from [9, Theorem 2.2].

Theorem 2.2. Suppose that (H1) and (H2) hold. If system (1.2) has a nontrivial periodic
orbit, then system (1.1) has a corresponding nontrivial periodic orbit.

Proof. Because system (1.2) has a nontrivial periodic orbit, without loss of generality we
assume that the periodic orbit is o(y0)= {y0, y1, . . . , yk−1}with minimum period k, where
k is a positive integer, y0 = g(yk−1), and yi+1 = g(yi), i= 0,1, . . . ,k− 2.

Since condition (H2) holds, for every yi , i= 0,1, . . . ,k− 1, there exists a corresponding
mi, i= 0,1, . . . ,k− 1, such that when ‖x‖ >mi, ‖ f (x, yi)‖ < ‖x‖.

Letting mi = max‖x‖≤mi‖ f (x, yi)‖ > 0, Mi = max(mi,mi), M = max{Mi, i = 0,1, . . . ,
k− 1} > 0, one has that if ‖x‖ ≤M, then for every yi, i = 0,1, . . . ,k− 1, ‖ f (x, yi)‖ ≤M,
which implies that the set U = {x | ‖x‖ ≤M} is a positive invariant set of the following
systems:

x(n+ 1)= f
(
x(n), yi

)
, i= 0,1, . . . ,k− 1. (2.1)

Letting fi = f (x, yi), i= 0,1, . . . ,k− 1, F = fk−1, . . . , f0, we easily have that F : U →U is
a continuous mapping. Then by Brower’s fixed point theorem one has that the function F
has a fixed point x0, that is, F(x0)= x0, fk−1, . . . , f0(x0)= x0.

Letting xi = fi−1(xi−1), we get fk−1(xk−1)= x0, thus the orbit o(x0)= {x0,x1, . . . ,xk−1}
is a periodic orbit. This implies that o(x0) contains a periodic orbit whose minimum
period k divides k, where k is a positive integer.

In addition, according to condition (H1), we have that there exists i0 ∈ {0,1, . . . ,k− 1}
such that xi0 �= 0. This shows that o(x0) contains a nontrivial periodic orbit. The proof is
complete. �

It seems that the period of o(x0) should not be less than that of system (1.2), however
the following example shows that this is not always the case.

Now we apply Theorem 2.2 to discuss the following example.

Example 2.3.

x(n+ 1)= f
(
x(n), y(n)

)
, (2.2)

y(n+ 1)= g
(
y(n)

)
, (2.3)
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where

x ∈R, y ∈R, f (x, y)=

⎧
⎪⎪⎨

⎪⎪⎩

x

2
+ 1, x ∈ (−∞,+∞), y∈(−∞,0.6),

x

2
+ 1 + (y−0.6)(y−1.1018), x ∈ (−∞,+∞), y ∈ [0.6,+∞),

g(y)= 3.4986y(1− y).
(2.4)

By numerical analysis we easily see that system (2.3) has a periodic orbit {0.5000,
0.8746,0.3836,0.8272}. According to Theorem 2.2, one has that system (2.2) has a pe-
riodic orbit, and the periodic orbit is {1.9168,1.9584}.
Remark 2.4. In Example 2.3, we have the following facts.

(a) The system x(n+ 1)= f (x(n),0)= (1/2)x(n) + 1 is globally asymptotically stable
which implies that the system does not have nontrivial periodic orbits. However
its perturbed system has a nontrivial periodic orbit.

(b) The function f (x, y) satisfies the following conditions: f (x, y0) = f (x, y2), f (x,
y1)= f (x, y3), where y0 = 0.5000, y1 = 0.8746, y2 = 0.3836, and y3 = 0.8272.

(c) The minimum period of the periodic orbit of system (2.3) is 4, but the minimum
period of its corresponding periodic orbit in system (2.2) is 2, which is a little
surprising.

Considering the fact (c), we give the following theorem (Theorem 2.5). And
the following additional condition is assumed for system (1.1).

(H3) When y′ �= y′′, f (x, y′) �= f (x, y′′).

Theorem 2.5. Suppose that (H1), (H2), and (H3) hold. If system (1.2) has a periodic orbit
of minimum period k, then the minimum period of its corresponding periodic orbit in system
(1.1) is also k.

Proof. In terms of the proof of the above theorem, we have that system (1.1) has a periodic
orbit o(x0)= {x0,x1, . . . ,x j−1} of minimum period j, where j divides k and j ≤ k. Below
we prove that the minimum period of the above periodic orbit is k, that is, j = k. To
complete our proof we assume that j < k. Since o(x0) = {x0,x1, . . . ,x j−1} is a periodic
orbit, it is evident that x0 = x j , x1 = x j+1.

Because x0 = x j , by condition (H3) we have f (x0, y0) �= f (x j , yj), that is, x1 �= x j+1

which is a contradiction to the above equality. Therefore the minimum period of the
above periodic orbit is also k. The proof is complete. �

Remark 2.6. Consider the following system.

Example 2.7.

x(n+ 1)= f
(
x(n), y(n)

)
, (2.5)

y(n+ 1)= g
(
y(n)

)
, (2.6)
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where

x ∈R, y ∈R, f (x, y)= y

1 + |y| (1 + x), g(y)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, y = 1
2

,

1
2

, y = 1,

y + 1, other.

(2.7)

It is easy to see that system (2.6) only has a periodic orbit {1/2,1} with minimum
period 2 and in Example 2.7 the conditions stated in Theorem 2.2 are satisfied. Thus by
Theorem 2.2 we have that system (2.5) has a periodic orbit {4/5,3/5} whose minimum
period is the same as the minimum period of {1/2,1}.
Theorem 2.8. Suppose that (H1), (H2), and (H3) hold. If system (1.2) has m different
periodic orbits, then system (1.1) also has m different periodic orbits at least.

To prove this theorem, we establish the following elementary lemma.

Lemma 2.9. Suppose that o(c0) = {c0,c1, . . . ,ck−1} and o(d0) = {d0,d1, . . . ,dl−1} are two
different periodic orbits of minimum period k, l of system (1.2), where k and l are two positive
integers, then ci �= dj , i= 0,1, . . . ,k− 1, j = 0,1, . . . , l− 1.

This lemma is easy to be proved, and its proof is omitted here.

Proof of Theorem 2.8. Assuming that o(c0)= {c0,c1, . . . ,ck−1} and o(d0)= {d0,d1, . . . ,dl−1}
are two different periodic orbits of minimum period k, l of system (1.2), by Lemma 2.9
we have ci �= dj , i = 0,1, . . . ,k − 1, j = 0,1, . . . , l − 1, and by Theorem 2.5 we have that
system (1.1) has two corresponding periodic orbits o(c′0) = {c′0,c′1, . . . ,c′k−1} and o(d′0) =
{d′0,d′1, . . . ,d′l−1} whose minimum periods are, respectively, k and j.

Below we want to prove that the above orbits are different. For this purpose, we assume
that the two periodic orbits o(c′0) = {c′0,c′1, . . . ,c′k−1} and o(d′0) = {d′0,d′1, . . . ,d′l−1} are the
same, thus there exist i∈ {0,1, . . . ,k− 1} and j ∈ {0,1, . . . ,k− 1} such that c′i = d′j which

implies that c′i+1 = d′j+1. In addition, according to c′i+1 = f (c′i ,ci), d′j+1 = f ′(d′j ,dj), and

condition (H3), one has c′i+1 �= d′j+1, which contradicts the equality c′i+1 = d′j+1.

Consequently o(c′0) = {c′0,c′1, . . . ,c′k−1} and o(d′0) = {d′0,d′1, . . . ,d′l−1} are two different
periodic orbits. Therefore by the above result and Theorem 2.5, we conclude that system
(1.1) has m different periodic orbits at least. �

Remark 2.10. Consider the following system.

Example 2.11.

x(n+ 1)= f
(
x(n), y(n)

)
, (2.8)

y(n+ 1)= g
(
y(n)

)
, (2.9)



H. Li and X.-S. Yang 5

where

x ∈R, y ∈R, f (x, y)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y

1 + |y| (x− 4), x ≤−1,

y

1 + |y| (4x− 1), −1 < x < 1

y

1 + |y| (x+ 2), x ≥ 1,

, g(y)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, y = 1
2

,

1
2

, y = 1,

y + 1, other.

(2.10)

System (2.9) in this example has only a periodic orbit {1/2,1}, and the conditions
stated in Theorem 2.8 are satisfied in this example. However, system (2.8) has the follow-
ing three periodic orbits: {−12/5,−16/5}, {7/10,3/5}, and {8/5,6/5}.

This example shows that for a periodic orbit of system (1.2), the number of its corre-
sponding periodic orbits of system (1.1) may be greater than one.

Below we give a more precise estimate on the number of periodic orbits. First, we need
the following additional condition for system (1.1).

(H4)

∥
∥ f
(
x1, y

)− f
(
x2, y

)∥∥ <
∥
∥x1− x2

∥
∥, ∀x1,x2 ∈Rn, y ∈Rm. (2.11)

Theorem 2.12. Suppose that all conditions stated in Theorem 2.8 are satisfied and (H4)
holds. Then system (1.1) only has m different periodic orbits.

Proof. In terms of the proof of Theorem 2.2, we know that F = fk−1, . . . , f0 has a fixed
point. That is,

fk−1, . . . , f0
(
x0
)= x0. (2.12)

According to condition (H4), it is easy to prove that the fixed point is unique. This implies
that when system (1.2) has a periodic orbit, system (1.1) has a corresponding periodic
orbit that is unique.

Therefore by the above result, Theorem 2.8, and its proof, we have that when system
(1.2) has m different periodic orbits, system (1.1) has only m different periodic orbits.

The proof is complete. �

Remark 2.13. Consider the following system.

Example 2.14.

x(n+ 1)= f
(
x(n), y(n)

)
, (2.13)

y(n+ 1)= g
(
y(n)

)
, (2.14)
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where

x ∈R, y ∈R, f (x, y)= y

1 + |y| (1 + x), g(y)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y− 2, y < 0, y �= −1
2

, −1,

−1, y =−1
2

,

−1
2

, y =−1,

y + 2, y ≥ 0, y �= 1
2

,1,2,

1
2

, y = 2,

1, y = 1
2

,

2, y = 1.
(2.15)

It is evident that system (2.14) has the following two periodic orbits: {−1,−1/2} and
{1/2,1,2}. And it is easy to verify that conditions stated in Theorem 2.12 are satisfied in
the above example. Then the periodic orbit of system (2.13) that is corresponding to the
periodic orbit {−1,−1/2} is {−1/5,−2/5}. The corresponding periodic orbit of {1/2,1,2}
is {5/4,3/4,7/8}.

3. A result on stability of periodic orbits

In view of the results obtained above, we can see that under the conditions (H1) and
(H2) for a periodic orbit o(y0) = {y0, y1, . . . , yk−1} with minimum period k of system
(1.2), there is a corresponding periodic orbit o(x0) = {x0,x1, . . . ,xk−1} with period k in
system (1.1).

In this section, our purpose is to study the stability of the periodic orbit o(z0), where
o(z0) = o(( x0

y0 )) = {( x0
y0 ), ( x1

y1 ), . . . ,( xk−1
yk−1 )}. For this purpose, we give the following condi-

tions.
(H5) For each i = 0,1, . . . ,k− 1, ‖ f (x′, y)− f (x′′, y)‖ ≤ α(y)‖x′ − x′′‖, where x′ and

x′′ belong to certain neighborhoodUi=B(xi,r) of xi ∈Rn, B(xi,r)={x | ‖x− xi‖
< r}, y ∈ Rm, the function α : Rm → R+ is a continuous function with α(yi) < 1
for yi ∈ o(y0), and R+ denotes all nonnegative real numbers.

(H6) For each i= 0,1, . . . ,k− 1, ‖ f (xi, y′)− f (xi, y′′)‖ ≤ β(xi)‖y′ − y′′‖, where y′ and
y′′ belong to certain neighborhood Vi of yi ∈Rm, xi ∈ o(x0), and β :Rn→R+ is
a function.

Before stating our result, we review a definition.

Definition 3.1. An orbit {xn} (n= 0,1, . . .) with the initial value x0 = x is said to be stable
if it satisfies the following conditions.

For every ε > 0, there exists δ > 0 such that if ‖x− y‖ < δ, then ‖xn− yn‖ < ε for every
orbit {yn} with the initial value y.
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Theorem 3.2. Suppose that all conditions stated in Theorem 2.2 are satisfied, and (H5)
and (H6) hold. If a periodic orbit o(y0) = {y0, y1, . . . , yk−1} with minimum period k of
system (1.2) is stable, then the periodic orbit o(z0) is also stable, where o(z0) = o(( x0

y0 )) =
{( x0

y0 ), ( x1
y1 ), . . . ,( xk−1

yk−1 )}, the periodic orbit o(x0)= {x0,x1, . . . ,xk−1} is corresponding to the pe-
riodic orbit o(y0).

Proof. According to Theorem 2.2, we have that for a periodic orbit o(y0) with minimum
period k of system (1.2), there is a corresponding periodic orbit o(x0) with period k in
system (1.1), therefore the minimum period of o(z0) is also k.

To prove stability of o(z0), we first give the following key inequalities ((3.1) and (3.2)).
The inequality (3.1) is easily obtained from the conditions (H5) and (H6):

∥
∥x′n+1−xn+1

∥
∥=∥∥ f (x′n, y′n

)− f
(
xn, yn

)∥∥≤ ∥∥ f (x′n, y′n
)− f

(
xn, y′n

)
+ f
(
xn, y′n

)− f
(
xn, yn

)∥∥

≤ α
(
y′n
)∥∥x′n− xn

∥
∥+β

(
xn
)∥∥y′n− yn

∥
∥, n≥ 0.

(3.1)

Since α :Rm →R+ is a continuous function and α(yi) < 1, i= 0,1, . . . ,k− 1, we have that
for yi ∈ o(y0), there exist ηi > 0 such that if ‖y− yi‖ < ηi, then α(y) < (1 + α(yi))/2 < 1,
here we make ηi be sufficiently small such thatB(yi,ηi)⊂Vi. And we set η =min0≤i≤k−1ηi,
by the stability of o(y0), we have that there exists 0 < δ′2 < η such that if ‖y′0− y0‖ < δ′2,
then ‖y′n− yn‖ < η, for yn ∈ o(y0) and n≥ 0.

Letting a=max0≤i≤k−1{(1 +α(yi))/2} < 1 and b =max0≤i≤k−1{β(xi)}, by the stability
of o(y0), we have that for every ε1 > 0, there exists δ′′2 > 0 such that if ‖y′0− y0‖ < δ′′2 , then
‖y′n− yn‖ < ((1− a)/b)ε1, n≥ 0.

Then when letting δ2 =min(δ′2,δ′′2 ), we have that for every ε1 > 0, if ‖y′0− y0‖ < δ2,
then

α
(
y′n
)
<

1 +α
(
yn
)

2
< 1,

∥
∥y′n− yn

∥
∥ <

1− a

b
ε1, for n≥ 0. (3.2)

Below we use mathematical induction to prove the following result.
For every ε1 > 0, there exist δ1 > 0 and δ2 > 0 such that if ‖x′0− x0‖ < δ1 and ‖y′0− y0‖ <

δ2, then ‖x′n− xn‖ < ε1, n ≥ 1, where z′0 = ( x
′
0

y′0
) and z0 = ( x0

y0 ) are the initial values of the

orbits {z′n} = {( x
′
n

y′n
)} and {zn} = {( xnyn )} = o(z0), respectively.

Now for every 0 < ε1 < r when choosing δ1 = ε1, δ2 =min(δ′2,δ′′2 ), by (3.1) and (3.2)
we have that

∥
∥x′1− x1

∥
∥≤ α

(
y′0
)∥∥x′0− x0

∥
∥+β

(
x0
)∥∥y′0− y0

∥
∥ < a

∥
∥x′0− x0

∥
∥+ b

∥
∥y′0− y0

∥
∥

< aε1 + b
1− a

b
ε1 = ε1.

(3.3)

By mathematical induction, we assume ‖x′n− xn‖ < ε1. Here our purpose is to prove
that ‖x′n+1− xn+1‖ < ε, by (3.1) we have

∥
∥x′n+1− xn+1

∥
∥≤ α

(
y′n
)∥∥x′n− xn

∥
∥+β

(
xn
)∥∥y′n− yn

∥
∥. (3.4)
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By (3.2) we have that

∥
∥x′n+1− xn+1

∥
∥≤ α

(
y′n
)∥∥x′n− xn

∥
∥+β

(
xn
)∥∥y′n− yn

∥
∥

≤ a
∥
∥x′n− xn

∥
∥+ b

∥
∥y′n− yn

∥
∥ < aε1 + b

1− a

b
ε1 = ε1.

(3.5)

Therefore by mathematical induction, we have proven that for every 0 < ε1 < r, there exist
δ1 > 0 and δ2 > 0 such that if ‖x′0− x0‖ < δ1 and ‖y′0− y0‖ < δ2, then ‖x′n− xn‖ < ε1 and
‖y′n− yn‖ < ((1− a)/b)ε1, for n≥ 1.

In terms of the above result, for every 0 < ε < ((1 + a− b)/b)r, if we choose 0 < ε1 =
(b/(1 + a− b))ε < r, then it is easy to prove that there exists δ > 0 such that if ‖z′0− z0‖ < δ,
then ‖z′n− zn‖ < ‖x′n− xn‖+‖y′n− yn‖ < ε1 + ((1− a)/b)ε1 = ε, where zn = ( xnyn )∈ o(z0).

Therefore by Definition 3.1 we can see that o(z0) is stable. The proof is complete. �

As an application of Theorem 3.2 we discuss the following example.

Example 3.3.

x(n+ 1)= f
(
x(n), y(n)

)
, (3.6)

y(n+ 1)= g
(
y(n)

)
, (3.7)

where

x ∈R, y ∈R, f (x, y)= 1
2
x+ 10y, g(y)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
y

, y >
1
3

,

82
27
− 1

9
y, y ≤ 1

3
.

(3.8)

It is easy to verify that system (3.7) has the periodic orbit {2,1/2}. For this periodic
orbit, by Theorem 2.2 we have that its corresponding periodic orbit in system (3.6) is the
orbit {20,30}. Moreover by Definition 3.1, we easily prove that the periodic orbit {2,1/2}
is stable, consequently by Theorem 3.2 we have that the periodic orbit {( 20

2 ),( 30
1/2 )} of

system (3.6) and (3.7) is stable.
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