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We concentrate on the dynamics of one-dimensional and two-dimensional cubic maps, it
describes how complex behaviors can possibly arise as a system parameter changes. This
is a large class of diffeomorphisms which provide a good starting point for understanding
polynomial diffeomorphisms with constant Jacobian and equivalent to a composition of
generalized Hénon maps. Due to the theoretical and practical difficulties involved in the
study, computers will presumably play a role in such efforts.
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and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The study of discrete dynamical systems has been primarily limited to maps of an in-
terval and/or diffeomorphisms. Diffeomorphisms of the plane exhibit some of the fa-
miliar properties of the quadratic Hénon map. The simplest maps are polynomial, and
the simplest nontrivial diffeomorphism of the plane is the single Hénon map: (x′, y′) =
(y + x2 + a,cx). This map is a two-dimensional discrete time system containing a single
quadratic term as nonlinearity, and also known to display chaos for certain parameter val-
ues and initial conditions. Due to its simplicity, it has become a benchmark system and
has been extensively studied because of its genericity, the complexity and richness of its
dynamics, frequently used as an example for demonstrating schemes for analyzing and
controlling chaotic behavior. Recently, different types of generalization of the standard
Hénon map have been studied. In Dullin and Meiss [3] a two-dimensional map is treated
whose single polynomial term generalizes the quadratic nonlinearity of the Hénon map.

The set of polynomial maps with polynomial inverse is called the “affine Cremona
group”—very dynamically interesting maps. The structure of this group is well known
and understood for two-dimensional case; Friedland and Milnor [5] showed that any
map in this group of polynomial diffeomorphisms is conjugate to a composition of gener-
alized Hénon maps: (x′, y′)= (y + p(x),cx); a map with a constant and nonzero Jacobian
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2 One-dimensional and two-dimensional dynamics of cubic maps

and where p(x) is a polynomial. It follows that any composition of Hénon maps has an
inverse which is polynomial. The latter generalized Hénon maps (GHM) appear to be of
particular interest since they offer to study higher-dimensional chaos where the generat-
ing equation is simple.

On the other hand, a rigorous theory of the dynamics of noninvertible maps of the
plane has been recently developed. Many of the analytical techniques and theory applied
to diffeomorphisms are either unavailable or limited in the context of two-dimensional
endomorphisms of the plane. Principal method is the method of critical curves which
provides researchers in this field with analytical and experimental tools. Several papers
have shown the importance of critical curves in the bifurcations of basins, for example,
the transition type “simply connected basin↔ nonconnected basin” as Gumowski and Mira
[8] who have developed the role of critical curves in bifurcations, Barugola and Cathala
[1] and Gardini [6, 7] have studied bifurcations of type “simply connected basin↔multi-
ply connected basin.” These basic bifurcations result from the contact of a basin boundary
with a critical curve segment of an attracting set, such a bifurcation leads either to the
chaotic area destruction, or to a sudden and important modification of the area.

Many of chaotic motions that are observed in dynamical systems are intimately asso-
ciated with the presence of transversal homoclinic points of maps. Contact bifurcations
may correspond to homoclinic and heteroclinic bifurcations, and critical curves are useful
for interpreting such problems. Bifurcations by homoclinic and heteroclinic contact have
been presented in [7] for the one-dimensional case, in [6, 7] it is proved that some con-
tact bifurcations correspond to homoclinic bifurcations in the case involving a repelling
node or focus and other examples of homoclinic orbits of saddles.

This work presents research in the study of cubic invertible and noninvertible maps
of the plane that carried out some techniques and numerical simulations. This set is of
fundamental importance in dynamical systems. Two main tools are used by developing
the method of critical curves and incorporating the polynomial maps theory: two well-
established theories. Due to the theoretical and practical difficulties involved in the study,
computers will presumably play a role in such efforts. Our aim is to use computers not
only for inspiration, but to perform rigorous mathematical proofs.

First we recall the bifurcation structure of the one-dimensional endomorphism of the
cubic model

To(x)= x3 + (a+ 1)x+ b. (1.1)

The global organization of bifurcation in this map is proposed of “box-within-a-box”
fractal type in a foliated parameter plane [9], where the basic elements of this structure
are cross-road areas, spring areas, and saddle areas (see [11]) which are related to three
dispositions of fold and flip bifurcations curves around a cusp point.

We emphasize that our aim is to study simply the cubic maps. We consider an imbed-
ding of (1.1), which is a one-dimensional noninvertible map, into a two-dimensional
diffeomorphism. This diffeomorphism can be considered as a model which only gives
rise to a set of bifurcations with a fractal structure, and does not give rise to birth of cyclic
invariant curves. We study this diffeomorphism in dependance of at least three param-
eters, using both analytic perturbation theory and numerical methods. The dynamics
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(a) Bifurcation structure c = 0
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(b) Bifurcation structure c = 0.25

Figure 1.1

involves various transitions by bifurcations. Perturbation theory here reveals periodic-
ity and quasiperiodicity, parametrically organized by embedded boxes structure. Outside
these parameter regimes the perturbation becomes larger and bifurcations complicate the
dynamics, often involving chaos.

The planar diffeomorphism is the following:

•T1 :

⎧
⎨

⎩

xn+1 = x3
n + (a+ 1)xn + b+ yn,

yn+1 = cxn,
(1.2)

where x, y are real variables, a, b, and c are real parameters. T1 has a constant Jacobian
determinant detJ =−c.

For c = 0, (1.2) is the one-dimensional endomorphism (1.1) embedded into the two-
dimensional diffeomorphism (1.2), and has some symmetry property and possesses at
most three fixed points depending upon the parameter values. We describe a specific fam-
ily of bifurcations in a region of real-parameter (a,b) plane for which the mappings were
expected to have simple dynamics. We compute the first few bifurcation curves in this
family and we study the bifurcation diagram which consists of these bifurcation curves
in the parameter (a,b) plane together with representative phase portraits. Figures 1.1(a),
1.1(b) present information on stability region for the fixed point (blue domain), and the
existence region for attracting cycles of order k exists (k ≤ 14). The black regions (k = 15)
correspond to the existence of bounded iterated sequences. These figures are typical of
maps with dominating cubic terms, analogous bifurcation diagrams have already been
obtained for systems with nonlinearity given by hyperbolic tangency [4, 12]. We can rec-
ognize on the diagram period doubling bifurcation, saddle area and spring area [11]. The
bifurcation structure is a cubic “box-within-a-box” type, as is well known infinitely many
periodic are opened by fold bifurcations and are closed by homoclinic bifurcations by the
intriguing “box-within-a-box” bifurcation structure. When c �= 0, there is an interesting
passage from the one-dimensional endomorphism to the two-dimensional diffeomor-
phism, and then some properties are automatically deduced.
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Figure 1.2. Bifurcation diagrams, (a) in (a+ 1, c) plane for h= 0.9, d =−1, (b) in (a+ 1, d) plane for
h= 0.9, c =−0.7, (c) in (a+ 1, h) plane for c = d =−0.7, (d) c = d = 1.

When c = 0,T0 is called of (Z1 − Z3 − Z1) type (in means of Mira [11]). Such maps
constitute a class having the simplest properties, maps of ( Z1−Z3−Z1) type are generally
characterized by the existence of one, three, and one rank-one preimages. Their study is
indispensable before considering more complex types, which locally may have the (Z1−
Z3−Z1) properties.

Let us consider now the noninvertible map T2 defined by

T2 :

⎧
⎨

⎩

xn+1 = εx3
n + (a+ 1)xn + b+hyn,

yn+1 = cxn +dyn,
(1.3)

where d, h are real parameters and ε = ±1. Figure 1.2 gives the different bifurcation di-
agrams for T2, where the existence regions of attracting sets of period k are shown, the
periods are indicated by colored squares. This scanning gives a first idea and a global view
of the different kinds of attracting sets and their parameter dependant bifurcations, which
show up when we study this map in its dynamic context and even lead to chaos.
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For this map we use the critical curve notion which is an important mathematical tool
used to study bifurcations. Mira [11] provides an entry into certain areas on noninvertible
maps and the role of such curve in bifurcations basin. We define the critical curve LC of
an endomorphism T in the plane R2 (in means of Mira [11]) as the geometrical locus of
points x having at least two coincident preimages of first rank. We determine the locus of
the initial line, said to have the rank −1, and denoted by LC−1, when T2 is differentiable,
by taking the Jacobian determinant of T2 to be equal to zero (det(DT2(x, y)) = 0). A
critical line LC is constituted of one or several branches. These branches separate the
plane in open regions, where all points of a region have the same number of first rank
antecedents. A train of critical curves, tangent to each other, bounds the absorbing area
for the attractor.

When h= c = 0 we have the composition r ◦Υ of a classical discrete-time map mod-
eled by the iteration of the two-dimensional map

Υ :

⎧
⎪⎨

⎪⎩

x′ = r1(y),

y′ = r2(x),
(1.4)

and the reflection r(x, y)= (y,x).
r1 and r2 are real functions defined in X ⊂ R and Y ⊂ R, respectively (so that Υ is

defined in the rectangle X × Y). In a paper by Rand (see [14]), it is proved that quite
complex dynamics, with periodic and chaotic trajectories, can emerge from the itera-
tion of Υ. Peculiar properties of this kind of map can be deduced from the properties of
one-dimensional maps obtained by the composition of the real functions, while peculiar
properties of the bifurcations are given in Lupini et al. [10]. Bischi et al. in [2] showed
that, in general, map of the form Υ is characterized by multistability.

In our case, these real functions are expressed by r1(y)= y and r2(x)= x3 + (a+ 1)x+
b, where c = h= 0.

Since T2 is noninvertible, so global analyses which use the theory of critical lines cited
above apply. Noninvertibility means that there exists a set in phase plane where the Ja-
cobian determinat of the map vanishes. The forward image of this set is called line LC.
The existence of such a set brings a specific character into bifurcation scenarios, shapes
of attracting sets and their basins of attraction, and so forth, different from those known
for invertible maps.

T2 with h= ε = 1 is of type (Z1−Z3−Z1), whose critical curves LC−1, LC′−1, LC, LC
′

are given here by

⎛

⎝LC−1 : x = +

√

c

3d
− a+ 1

3
, LC′−1 : x =−

√

c

3d
− a+ 1

3

⎞

⎠ ,

(
LC : y = d · x−d · x3

0 − (a ·d+d− c)x0−d · b
LC′ : y = d · x+d · x3

0 + (a ·d+d− c)x0−d · b

)

with x0 =
√

c

3d
− a+ 1

3
.

(1.5)
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The critical curves of rank k are defined as LCk = Tk(LC) and LC′k = Tk(LC′). The succes-
sive images of the critical curves define an absorbing area A such that if some trajectory
enters A, it can never leave this area, and such that there exists a neighborhood U(A)
whose points will be mapped into A in a finite number of iterations. The boundary of
this area is made up by portions of the images of LC and LC′.

Figure 1.2 presents the parameter regions of existence of attracting cycles and regions
of divergence. The well-known “Arnold tongues” are clearly seen, and regions of coexis-
tence of several attracting cycles can be observed. These occur where there are overlapping
tongues associated with cycles of different periods. What will happen with the phase plane
of T2 if we fix the parameters values inside some tongues of periodicity? This question is
closely related to the problem of the breakdown of a two-dimensional torus, which is
well studied for diffeomorphisms, but is a more complicated task for noninvertible maps.
This paper intends to give such a study, and to consider the different maps. Therefore, it is
structured in the following way. In Section 2 we introduce the language used in [5, 11] to
analyze these maps, and we note basic definitions and facts about Hénon maps. Section 3
gives some results on basin structures of invertible cubic maps and their bifurcations.
Section 4 illustrates properties of bifurcations of noninvertible cubic maps.

2. Definitions and fundamental properties

In this section, we define precisely a number of dynamical properties commonly associ-
ated with invertible polynomial maps, chaotic area, contact and homoclinic bifurcations,
and some properties of increasing complexity that try to highlight the important concepts
of nonlinear maps. These are the properties which will appear in our work.

The polynomial map T of the plane has the form

(x′, y′)= T(x, y)= ( f (x, y;λ),g(x, y;λ)
)
, (2.1)

where f and g are polynomials in x, y and λ is a real parameter-vector. The Jacobian
determinant is defined as

det J( f ,g)= detT(x, y)= ∂ f

∂x

∂g

∂y
− ∂ f

∂y

∂g

∂x
. (2.2)

2.1. General properties. We assume that a closed and invariant set A is called an attract-
ing set if some neighborhood U of A may exist such that T(U)⊂U , and Tn(x, y)→ A as
n→∞ for all (x, y)∈U . The set B=∪n≥0T−n(U) is called the total basin of A.

Definition 2.1. A chaotic area A is an invariant absorbing area (T(A) = A) that exhibits
chaotic dynamics, and the points of which give rise to iterated sequences having the prop-
erty of sensitivity to initial conditions.

Definition 2.2. λ= λ∗ is a bifurcation of contact of A if a contact between the frontier of
A and the frontier of its basin of attraction takes place.
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Proposition 2.3 [13]. When a bifurcation of contact of a chaotic area A arises for a value
λ= λ∗, the crossing of this value leads to the destruction of A or to a qualitative modification
of properties of A.

Definition 2.4. Let T be an endomorphism of R2 depending on a parameter λ and let S
be a saddle point of T . A homoclinic bifurcation takes place if for a value λ= λ∗, there is
apparition (or disappearance) of an infinity of homoclinic orbits.

2.2. Generalized Hénon map properties. First we recall the dynamics of diffeomor-
phism of the plane and let us take T of the form

T(x, y)= (y + p(x),cx
)

(2.3)

with p(x) a degree 3 polynomial then T is conjugate to a generalized Hénon map. We
know some results which enable us to detect, predict, determine cycles and fixed points,
and locate bifurcation curves in parameter space.

It is sufficient to consider the case |c| ≤ 1, since the inverse of a generalized Hénon map
with |c| > 1 is conjugate to a generalized Hénon map with |c| < 1 under the reflection
r(x, y)= (y,x), and r ◦T−1 ◦ r = (y− p(x/c),x/c).

Since p(x) is a degree odd, then T has a symmetry s−1 ◦T−1 ◦ s= T ,s(x, y)= (−x,−y)
when p(−x)=−p(x).

Fixed point (x∗, y∗) of T satisfies y∗ = cx∗, and (1− c)x∗ = p(x∗), so that x∗ is a
root of the polynomial q(x)= (c− 1)x+ p(x), thus all fixed points are located on the line
y− cx = 0 in the plane.

The stability of these fixed points is determined by the Jacobian J = ( p′(x) 1
c 0

)
which

has trace tr= p′(x) and determinant det J =−c. The fixed point is stable if its parameters
belong to the interior of the triangle |− tr|− 1≤ det J ≤ 1 in (tr,det J) space, because J is
a contraction, so it is necessary that |− tr| ≤ 1 + det J for stability.

It is easy to verify according to [3, 5] that any generalized Hénon map can have
bounded orbits only when there are fixed points.

Theorem 2.5 [3]. Suppose a generalized Hénon map has no fixed points, then every orbit is
unbounded.

Proof. Suppose that T has no fixed points, then the polynomial q(x) = p(x) + cx− x is
either positive or negative for all x. In the first case q(x) is positive, consider d(x, y) =
x + y then d(x′, y′) = d(x, y) + q(x) creases monotonically and must be unbounded. In
the other case q(x) is negative, d(x′, y′) decreases monotonically, and then in either case
there are no bounded orbits.

When there are fixed points, we can find a box that contains all these bounded orbits.
�

Theorem 2.6 [3]. Every bounded orbit of a generalized Hénon map is contained in the box
{(x, y) : |x| ≤M|y| ≤ |c|M}, where M is the largest of the absolute values of |p(x)− (1 +
|c|)x|.
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c = 0.1

(a) c = 0.1

c = 0.40

(b) c = 0.40

c = 0.50

(c) c = 0.50

c = 0.90

(d) c = 0.90

Figure 3.1. Destruction of the chaotic area and its basin after a contact bifurcation.

Proof. See [3], more generally the polynomial determining M is the same as that for the
fixed points, up to the absolute value signs. �

3. Basins and attractors for the diffeomorphism

In this section we give a sketch on bifurcations which give rise to fractalization of attractor
and its basin boundary. The main purpose of this section is to give some results on basin
structure of invertible maps and their bifurcations. Especially, we explain basin bifurca-
tions. These basic bifurcations result from the contact of a basin boundary with a chaotic
attractor, such a bifurcation leads either to the chaotic area destruction, or a sudden and
important modification of this area, some properties of maps were presented in [1, 11]
from the point of view of fixed point bifurcations, with chaotic attractors and absorbing
area bifurcations. We choose a=−2.67, b = 0.47, h= 1 and we vary c.

The following figures show the corresponding basin structure of T1. Figures 3.1(a),
3.1(b), 3.1(c), and 3.1(d) represent the existing attractors (order k cycles, invariant curves,
or chaotic attractors) and their basins. The evolution of attractors and their basins is
given directly in figures, the parameters (a,b) have been chosen constant and c varies.
There exist several ways in which a dynamical system can become chaotic, of which the
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period-doubling route to chaos is the best known and identified here. We can see also
that the bifurcation, which is put in evidence, corresponds to a limit contact between
the basin boundary ∂B and the chaotic attractor. A further increase of the parameter c
causes a contact between these two boundaries which marks the destruction of the basin
of attraction. As argued in [11], we can see the ghost of this area destroyed at the contact.

4. Basin bifurcations for the endomorphism

In this section we consider the two-dimensional endomorphisms T2, of which the LC is
constituted of two distinct branches, separates the phase plane in three open regions Z1

1 ,
Z3, and Z2

1 , Z3 is the place of points having three preimages of distinct first rank Z1
1 , and

Z2
1 is the one of points having only one antecedent. These applications are called of type

Z1−Z3−Z1.
We denote, respectively, by B0 andB immediate basin of attraction and total attraction

basin of an attractor. The region not containing the attractor is called an island. It is
interesting to know when basins are connected or nonconnected. The creation of holes
inside the basin is considered as a bifurcation, that means a qualitative change in the
system behavior. This can be explained on the basis of the critical curves properties and
it is the same for the chaotic attractors and their bifurcations.

The publication [1] deals with basin bifurcation, and the fractalization of the domain
B, but using other techniques. These bifurcations are called contact bifurcations. With
noninvertible maps, contact bifurcations; that is, contact between the boundary of a basin
and the critical curve, are at the origin of various situations giving rise to heteroclinic
orbits and heteroclinic connections.

Different types of fractalization of basin boundary occur, a part of them resulting from
a phenomenon of islands aggregation for nonconnected basins presented in [11].

Proposition 4.1 [11]. Consider an endomorphism T depending on a parameter λ. If the
connected components number of B∩LC changes when λ crosses bifurcation value λ∗, then
the basin Bmay undergo a qualitative change of one of the following types:

(a) connected basin ↔ nonconnected basin (when the number of connected components
of B0∩LC changes);

(b) simply connected basin ↔ multiply connected basin (when the number of connected
components of B0∩LC changes);

(c) modification of the number of lakes in B or new arborescent sequence of islands;
(d) destruction of a chaotic area.

These bifurcations essentially correspond to an interaction of stable manifold associ-
ated with a saddle point or a saddle cycle (they generally constitute the boundary of the
basin of attraction of an area or a chaotic attractor) with the critical lines (which consti-
tute the boundary of the area or the chaotic attractor).

For fixed parameter values, we plot the attraction basin of an attractor. When there
exist several attracting sets, it is possible to define a global basin, that means the set of
initial conditions giving rise to bounded iterated sequences, independently of the fact
that they converge to one attractor or another. We choose c = −1, b = 0, d = −1.498,
h= ε = 1, a varying.
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(a) a=−1; (x, y)∈[−2,2]×[−2,2].
Tongues appear on basin bound-
ary. Invariant closed curve shows
stability loss of the fixed point

(b) a = −0.59. Bistability; we have
coexistence of two invariant curves
of order 5

(c) a = −0.6; (x, y) ∈ [−2,2]×
[−2,2]. Chaotic attractor

(d) a = −0.79; (x, y) ∈ [−2,2]×
[−2,2]. Invariant absorbing area,
obtained by iteration of LC, in-
cluding the Milnor attractor

Figure 4.1

These models were proposed by more than a dozen authors for a wide variety of rea-
sons. They all incorporate nonlinear terms particularly or other quadratic nonlinearities.
Surprisingly, in most cases, the basin of attraction undergoes changes which present a real
interest and where we can see a large richness of the bifurcations situations and new struc-
tures of basins and invariant sets. The characteristic of these maps gives rise to specific
singularities which induce important effects on the geometrical and dynamical proper-
ties of the phase plane. Some of these results have been shown before for the Hénon maps
(see Figure 4.1); others are new even in this restricted context (see Figures 4.2 and 4.4).
Some require delicate proofs and others follow with a bit of work from the general theory
cited here.

We choose a=−1, b = 0, h= 0.9, d =−0.9 and we vary c. Figure 4.3 shows basins of
two coexisting attractors.

For ε = −1, a = −3, b = 0, h = −0.01, c = 0.01, and d = 1, we show the shape of
chaotic attractor transformed into a relaxation cycle (Figure 4.4), that is, a combination
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(a) c =−1.56 (b) c =−1.58

(c) c =−1.67 (d) c =−1.78

Figure 4.3. (a) The colors correspond to the basins of the two existing attractors: the invariant closed
curve and a 4-periodic orbit. (b) The closed curve grows in size (c) and (d) for c =−1.67 to−1.78 the
period-4 chaotic attractor near the boundary crises.

of smooth movement and sudden jumps, further with two inserted copies of the bifur-
cation diagram. It is a cycle where the relaxation jump enters a chaotic zone from which
the cycle again simplifies through a period halving route to order. This is the disordered
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(a) (b)

Figure 4.4. Emergence of the relaxation cycle and its basin.

phases of the cycle which occur in the transitions between phases of prosperity and de-
pression.

5. Conclusion

In this paper, specific bifurcations arising in maps of cubic type have been studied. These
bifurcations concern the evolution of chaotic attractors, which appear or disappear by
contact bifurcations, with their own basin boundary. In such maps, chaotic attractors can
be issued of a succession of period doubling bifurcations [5, 11]. The dynamical structure
is at once complicated and simple, because it is infinite in quantity. These maps have
an extremely rich dynamical structure, the complicated internal structure gives different
scenarios of bifurcations.
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