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We present sufficient conditions for global asymptotic stability of cascade discrete-time
systems. Considering failure of the global asymptotic stability in some cascade systems,
we give an estimate of the region of attraction of the systems.
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1. Introduction

Cascade systems have received much attention (see [1–6]). A currently active area of re-
search in cascade systems is the study of the discrete-time systems, because a lot of cascade
continuous-time systems are usually discretized in engineering as sampled-data systems.
Hence in this paper we focus on the cascade discrete-time systems given by

x(n+ 1)= f
(
x(n), y(n)

)
,

y(n+ 1)= g
(
y(n)

)
, x ∈Rn, y ∈Rm,

(1.1)

where f and g are assumed to be C1 mapping with f (0,0)= 0 and g(0)= 0.
To conveniently study some properties of the system (1.1) in detail, we rewrite the

above system in the following form:

x(n+ 1)= f
(
x(n)

)
+h
(
x(n), y(n)

)
,

y(n+ 1)= g
(
y(n)

)
, x ∈Rn, y ∈Rm,

(1.2)

where f and h satisfy the following conditions:

f (x(n))= f (x(n),0),

h
(
x(n), y(n)

)= f
(
x(n), y(n)

)− f
(
x(n),0

)
, f (0)= 0, h(x,0)= 0.

(1.3)
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2 Some results on cascade discrete-time systems

Throughout this paper we make the following standing assumptions for (1.1) or (1.2).

Assumption 1.1. The equilibrium point x = 0 of (1.4) is globally asymptotically stable:

x(n+ 1)= f
(
x(n),0

)= f
(
x(n)

)
. (1.4)

Assumption 1.2. The equilibrium point y = 0 of (1.5) is globally asymptotically stable:

y(n+ 1)= g
(
y(n)

)
. (1.5)

A main problem is the stability of the equilibrium point o= (0,0) with respect to the
system (1.1) or (1.2). A well-known result on this problem was obtained in [2].

Theorem 1.3. Suppose that Assumptions 1.1 and 1.2 hold, and every solution to (1.1) or
(1.2) is bounded, then the equilibrium point o= (0,0) of (1.1) or (1.2) is globally asymptot-
ically stable.

The result may be the most general statement of cascade systems without taking into
consideration the x-subsystem in (1.1) or (1.2). However, the boundedness of solutions
to (1.1) or (1.2) is very hard to verify. Therefore a key problem is what conditions may be
used to replace the boundedness of solutions. To get an insight into this problem, Yang [6]
studied what structure and growth rate of the connection term can fail the boundedness
of solutions of a cascade system. In addition, it was proposed in [6] that the conditions
‖h(x, y)‖ ≤ k(y)(h+h‖x‖), where h and h are two positive constants and k(y) is a contin-
uous function with k(0) = 0, together with an additional condition should be sufficient
to guarantee the boundedness of solutions to (1.2) under Assumptions 1.1 and 1.2. How-
ever the concrete additional condition was not presented in [6]. In this paper we will give
such an additional condition.

The paper is organized as follows. In Section 2 we give Theorem 2.1 as an answer to
the above question. In Section 3 an approximate theorem is obtained for a specific class
of time-varying systems, in which we discuss that every solution of the system can be
approximated by the corresponding zero-input system and estimate convergence rate.
Finally we present an interesting result that gives an estimate of the region of attraction
of the system (1.2) under Assumptions 1.1 and 1.2.

2. Further result on global asymptotic stability

In this section we study the problem mentioned in the introduction, and give the follow-
ing theorem whose key point is to put some conditions on f .

Theorem 2.1. Suppose that Assumptions 1.1 and 1.2 hold, and
(a) lim‖x‖→∞(‖ f (x)‖/‖x‖)= μ < 1,
(b) ‖h(x, y)‖ ≤ k(y)(h+ h‖x‖), where h and h are two positive constants and k(y) is a

continuous function with k(0)= 0,
then the equilibrium point of the system (1.2) is globally asymptotically stable.
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Proof. According to Theorem 1.3, if every solution of the system (1.2) is bounded, Theo-
rem 2.1 holds. So we only prove the boundedness of solutions to (1.2). For this purpose,
we suppose that the trajectory x(n), n∈N, of x-subsystem with certain given initial value
x0, y0 is unbounded.

Since lim‖x‖→∞(‖ f (x)‖/‖x‖)= μ < 1, for ε1 = (1 +μ)/2, there exists a positive constant
η that satisfies η > h such that if ‖x‖ ≥ η, then

∥
∥ f (x)

∥
∥ < ε1‖x‖. (2.1)

Since ‖ f (x)‖ is continuous, we define a continuous function G: Rn→R by

G(x)= ∥∥ f (x)
∥
∥. (2.2)

It is easy to see that max‖x‖≤η G(x)= b < +∞. Let A=G−1(b) and λ=maxx∈A‖x‖.
By Assumption 1.2, for the given initial value y0, we have

lim
n→∞k

(
y(n)

)= k(0)= 0. (2.3)

It follows that for ε2 = (1− ε1)/2(h+ 1), there exists N(y0) > 0 such that

k
(
y(n)

)
< ε2, ∀n > N

(
y0
)
. (2.4)

Now we establish the following obvious inequality, which is useful in proving the state-
ment. If ‖x(n)‖ > η and k(y(n)) < ε2, then

∥
∥x(n+ 1)

∥
∥≤ ∥∥ f (x(n)

)∥∥+ k(y)
(
h+h

∥
∥x(n)

∥
∥)

≤ ε1
∥
∥x(n)

∥
∥+

1− ε1

2

∥
∥x(n)

∥
∥= μ+ 3

4

∥
∥x(n)

∥
∥.

(2.5)

Since the trajectory x(n) of x-subsystem with initial value x0, y0 is unbounded, there
exists a positive constant Ñ(x0) that satisfies Ñ(x0) > N(y0) such that

∥
∥x
(
Ñ
(
x0
))∥∥ > η. (2.6)

In view of (2.5) we have that if n > Ñ(x0), then

∥
∥x(n)

∥
∥≤max

(∥
∥x
(
Ñ
(
x0
))∥∥,b+

1− ε1

2

(
h+hλ

)
)

, (2.7)

showing that the trajectory x(n) is bounded, which is a contradiction to the above hy-
pothesis.

Therefore all solutions to (1.2) are bounded. The proof is complete. �

Remark 2.2. The following example shows that condition (a) in Theorem 2.1 is “neces-
sary” when condition (b) holds under Assumptions 1.1 and 1.2.



4 Some results on cascade discrete-time systems

Example 2.3.

x(n+ 1)= f (x(n)) + 4x(n)y(n),

y(n+ 1)= g
(
y(n)

)
, x ∈R, y ∈R,

(2.8)

where

f (x)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x2

1− x
, x < 0,

x2

1 + x
, x ≥ 0,

g(y)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y

1− y
, y < 0,

y

1 + y
, y ≥ 0,

(2.9)

and h(x, y)= 4xy with k(y)= |y|, h= 0 and h= 4.
In the above system, it is easy to verify that the other conditions in Theorem 2.1 hold

except for condition (a) and to prove that there exist x0 = 1, y0 = 1 such that when n≥ 1,
x(n) > n+ 1, which implies that the trajectory with x0 = 1, y0 = 1 is unbounded.

3. An approximate theorem

This section is devoted to studying the convergence rate of solutions of the nonlinear
system that can be described by

x(n+ 1)= f
(
x(n), y(n)

)
, x ∈Rn, y ∈Rm, (3.1)

where f (0,0) = 0 and y is an input that converges to zero. Usually the system (3.1) is
complicated, so we hope to estimate the convergence rate of solutions of (3.1) by studying
the convergence rate of solutions of its zero-input system

x(n+ 1)= f
(
x(n),0

)= f
(
x(n)

)
, x ∈Rn (3.2)

with f (0)= 0.
When the input y(n) satisfies an appropriate exponential bound, we consider the par-

ticular case of (3.1) when the input enters additively, that is,

x(n+ 1)= f
(
x(n)

)
+ cy(n), x ∈Rn, y ∈Rm, (3.3)

where c ∈Rn×m is a constant matrix.
Before discussing the system (3.3), we assume that the following condition is satisfied:

C1 : f :Rn→Rn is a contraction mapping, that is,

∥
∥ f
(
x1
)− f

(
x2
)∥∥≤ r

∥
∥x1− x2

∥
∥, 0 < r < 1, ∀x1,x2 ∈Rn. (3.4)

In the following arguments, let x(n) denote the trajectory of (3.2) and let x(n) denote the
trajectory of (3.3).

The following approximation theorem shows that if y(n) satisfies an exponential
bound, that is,

∥
∥y(n)

∥
∥≤ κan, for n≥ 0, (3.5)
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where κ is a positive constant and 0 < a < 1, then every trajectory x(n) is approximated
by the trajectory corresponding to the zero input, in the sense that

∥
∥x(n)− x(n)

∥
∥ < εηn, ∀ε > 0, η = max(r,a) + 1

2
, (3.6)

provided that n is sufficiently large.

Theorem 3.1. Suppose that C1 holds, and y(n) is an Rm-valued function such that the
bound (3.5) holds, then for every trajectory of (3.3) there is a trajectory of (3.2) such that
(3.6) is satisfied.

Proof. The difference between the trajectories x(n) and x(n) with the same initial value
x0 satisfies

∥
∥x(n+ 1)− x(n+ 1)

∥
∥= ∥∥ f (x(n)

)
+ cy(n)− f

(
x(n)

)∥∥

≤ ∥∥ f (x(n)
)− f

(
x(n)

)∥∥+‖c‖∥∥y(n)
∥
∥,

(3.7)

where ‖c‖ =max1≤i≤n max1≤ j≤m |ci j|.
Using condition C1, we have

∥
∥x(n+ 1)− x(n+ 1)

∥
∥≤ r

∥
∥x(n)− x(n)

∥
∥+‖c‖∥∥y(n)

∥
∥. (3.8)

Letting b(n)= ‖x(n)− x(n)‖, one has

b(n+ 1)≤ rb(n) +‖c‖∥∥y(n)
∥
∥≤ rb(n) +‖c‖κan. (3.9)

Subsequently, we have

b(n+ 1)
ηn+1

≤ r

η

b(n)
ηn

+‖c‖κ an

ηn+1
. (3.10)

Letting z(n)= b(n)/ηn, we get

z(n+ 1)≤ r

η
z(n) +‖c‖κ an

ηn+1
. (3.11)

Furthermore, we easily have

S(n+ 1)≤ r

η
S(n) +

n∑

i=0

‖c‖κ an

ηn+1
≤ r

η
S(n) + σ , (3.12)

where S(n)=∑n
i=0 z(n) and σ =∑∞

i=0‖c‖κ(an/ηn+1).
Since S(n)≤ S(n+ 1), one has

S(n)≤ S(n+ 1)≤ r

η
S(n) + σ ,

S(n)≤ ση

η− r
.

(3.13)



6 Some results on cascade discrete-time systems

By monotone convergence theorem, we have that S(n) is convergent, which implies
that

lim
n→∞z(n)= 0. (3.14)

Therefore (3.6) holds. The proof is complete. �

Now we study a generalization of the above result and consider the cascade system
(1.2),

x(n+ 1)= f
(
x(n)

)
+h
(
x(n), y(n)

)

y(n+ 1)= g
(
y(n)

)
, x ∈Rn, y ∈Rm,

(3.15)

where h(x, y) also satisfies the following condition:

∥
∥h
(
x(n), y1(n)

)−h
(
x(n), y2(n)

)∥∥≤m
∥
∥y1(n)− y2(n)

∥
∥θ , ∀y1, y2 ∈Rm, (3.16)

where θ and m are two positive constants.
Before stating our result, we also make the following assumption:

C2 : g :Rm −→Rm satisfies
∥
∥g
(
y1
)−g(y2

)∥∥≤ r
′∥∥y1−y2

∥
∥, 0 < r

′
< 1, ∀y1, y2 ∈Rm,

(3.17)

and (3.6) should be written as follows:

∥
∥x(n)− x(n)

∥
∥≤ εηn, ∀ε > 0, η = max(r,r′) + 1

2
, (3.18)

provided that n is sufficiently large.
Now, by the above similar arguments we give the following result.

Theorem 3.2. Suppose that C1 and C2 hold, then for every solution of (3.3) there is a tra-
jectory corresponding to the zero input such that (3.18) is satisfied.

Remark 3.3. If the input is globally exponentially stable, we will get a similar result.

4. An estimate of the region of attraction

Consider the cascade system (1.2), that is,

x(n+ 1)= f
(
x(n)

)
+h
(
x(n), y(n)

)= f
(
x(n), y(n)

)
,

y(n+ 1)= g
(
y(n)

)
, x ∈Rn, y ∈Rm,

(4.1)

under Assumptions 1.1 and 1.2.
From [2], we know that under the above assumptions the system (1.2) is likely not

globally attractive, but the local region of attraction of the system (1.2) is existent. On the
basis of the above result we have the following theorem.
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Theorem 4.1. Suppose that Assumptions 1.1, 1.2, and C1 hold. Then for any bounded open
set U = {x | ‖x‖ < ρ}, where ρ is a positive constant, there exists a neighborhood V of y =
0∈Rm such that U ×V = {(x, y) | x ∈U , y ∈V} is the region of attraction of (1.2).

Proof. Since condition C1 holds and f is a C1 function, it follows that

‖D f ‖ = ∥∥D f (x,0)
∥
∥≤ r < 1. (4.2)

Denoting U = {x | ‖x‖ < ρ}, we define I :Rm→R to be a continuous function defined
by

I(y)=max
x∈U

∥
∥∂x f (x, y)

∥
∥, (4.3)

where U is the closure of the set U .

Thus the continuity of I(y) ensures the existence of a neighborhood V ′ of y = 0 such
that if y ∈V ′, then I(y) < (r + 1)/2.

Since f is a C1 mapping, we let d =maxy∈V ′ ‖∂ f (0, y)/∂y‖ and get

∥
∥x(n+ 1)

∥
∥= ∥∥ f (x(n), y(n)

)∥∥≤ r + 1
2

∥
∥x(n)

∥
∥+d

∥
∥y(n)

∥
∥, (4.4)

where V ′ is the closure of the set V ′.
Letting V = V ′ ∩M, where M = {y | ‖y‖ < (1− r)ρ/2d}, we have that if x0 ∈U , y0 ∈

V , x(n)∈U , for n > 0.

According to (4.4), one has

lim
n→∞

∥
∥x(n+ 1)

∥
∥≤ r + 1

2
lim
n→∞

∥
∥x(n)

∥
∥+d lim

n→∞
∥
∥y(n)

∥
∥. (4.5)

By Assumption 1.2, it can be seen that

lim
n→∞y(n)= 0. (4.6)

Putting (4.6) into (4.5), one has

lim
n→∞

∥
∥x(n+ 1)

∥
∥= 0. (4.7)

Hence

lim
n→∞

∥
∥x(n+ 1)

∥
∥= 0. (4.8)

Therefore the set U ×V is the region of attraction of (1.2). �

Now we apply the above theorem to study an example. For simplicity, we strict our
attention to the two-dimensional case, and discuss the following system.
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Example 4.2.

x(n+ 1)= rx(n) +
(

3
2

)
y(n)x(n)p, y(n+ 1)= 1

2
y(n), (4.9)

where x ∈R, y ∈R, 0 < r < 1, p > 1.

According to the paper [6], system (4.9) is not globally asymptotically stable. Ap-
plying Theorem 4.1 to (4.9), we can easily have the neighborhood V = {y | |y| < (1−
r)/3pρp−1}, if U = {x | |x| < ρ} such that U × V is the region of attraction of (4.9),
and it shows when p, r, and ρ become larger, the neighborhood V becomes smaller.
Discussing the system with r = 1/2, p = 2 studied by [2], we similarly give the neighbor-
hood V = {y | |y| < 1/12ρ} if U = {x | |x| < ρ} such that U ×V is the region of attraction
of the system.

References

[1] A. Astolfi, New results on the global stabilization of minimum-phase nonlinear systems, Automatica
34 (1998), no. 6, 783–788.

[2] A. Iggidr and M. Bensoubaya, New results on the stability of discrete-time systems and applications
to control problems, Journal of Mathematical Analysis and Applications 219 (1998), no. 2, 392–
414.
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