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Previously we suggested an original interpretation of quantum mechanics. The interpre-
tation supposes that quantum probability amplitudes are a manifestation of self-organ-
ization of nature at some deeper level of matter, performed in spatially and temporally
distributed manner. Instead of formal description of the concept, the paper shows in de-
tail how it works for basic quantum experiments.
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1. Introduction

Quantum mechanics is highly verified in numerous experiments theory of physical phe-
nomena at microscopic level. Still the formalism of quantum theory is very mysterious:
the theory formulates not in terms of some directly understood changes of physical fields
and particles at each space point during time, like classical field theory does. Instead, a
notion of quantum probability amplitude is introduced. Being squared, quantum am-
plitude (it is a complex number) provides a probability of certain transition from one
quantum state of a system (say, a particle) to another one.

The presented interpretation suggests that language of quantum amplitudes can, in
principle, be fully consistent with more traditional language of dynamical systems. It is
traditionally assumed by pure physicists that such an approach, known as hidden vari-
ables theories, is judged to be impossible due to Bell’s theorem experiments. In [5, 8] we
show that assumptions of Bell’s theorem do not cover all possible ways to introduce such
variables. Instead, Bell’s theorem assumes one very special type of hidden variables.

In this paper I pay attention only to detailed description of “how it works” for non-
linear dynamics specialists. Please refer to [5, 8] for detailed physical foundation of the
suggested approach.
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Figure 2.1. Simple 1-photon interference in Mach-Zehnder interferometer.

2. Simple interference

Let us assume the most fundamental quantum phenomenon: the interference. Figure 2.1
shows Mach-Zehnder interferometer. Experimenter supplies one photon in direction 1.
Standard quantum-mechanical description of this experiment is as follows.

At the 1st 50\50 beam splitter, quantum state of the photon is split in the superposition
of passed and reflected photons:

∣
∣ψ1

〉−→ 1√
2
· (∣∣ψ1′

〉

+ i ·∣∣ψ2′
〉)

. (2.1)

Recall that beam splitters rotate the phase of a photon state by π/2. Next, each mirror
also rotates each state in superposition (multiplies by i):

∣
∣ψ1′

〉

+ i ·∣∣ψ2′
〉−→ i · (∣∣ψ1′

〉

+ i ·∣∣ψ2′
〉)

. (2.2)

Next, path 2′ state is rotated by φ, and before falling onto 2nd 50\50 beam splitter, the
photon’s state is

∣
∣ψ1

〉−→ i√
2
· (∣∣ψ1′

〉

+ i · exp(i ·ϕ) ·∣∣ψ2′
〉)

. (2.3)

After passing the 2nd beam splitter, the state 1′ is split into superposition of states 1′′

and 2′′:
∣
∣ψ1′

〉−→ 1√
2
· (∣∣ψ1′′

〉

+ i ·∣∣ψ2′′
〉)

. (2.4)

The same does the 2′ state:

∣
∣ψ2′

〉−→ 1√
2
· (∣∣ψ2′′

〉

+ i ·∣∣ψ1′′
〉)

. (2.5)

Summing (2.4) and (2.5) and inserting in (2.3), finally we get

∣
∣ψ1

〉−→ i

2
· [(1− exp(iϕ)

) ·ψ1′′ + i · (1 + exp(iϕ)
) ·ψ2′′

]

. (2.6)
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As a result the probability for detector D1 to detect the photon is as follows:

P1 =
∣
∣
∣
∣

1
2
· (1− exp(iϕ)

) ·∣∣ψ1′′
〉
∣
∣
∣
∣

2

= 1
4
·∣∣1− exp(iϕ)

∣
∣

2 = sin2
(
ϕ

2

)

. (2.7)

Accordingly, the probability for detector D2 to detect the photon is P2 = cos2(ϕ/2).
If we have no phase shifter at path 2′ at all (φ= 0), we get that detector D1 never clicks.

Instead, detector D2 clicks each time.
Here is what hidden time concept provides for this experiment.
(1) At first, scout waves propagate from 1st beam splitter to detectors by all possible

paths (Figure 2.2(a)).
Scout waves propagate like standard classical electromagnetic waves. This is why we

put two mutually shifted waves at paths 1′′ and 2′′: they originate from summing 1′ and
2′. Please note that phase shifter provides some additional rotation of wave phase in the
path 2′.

Note also that physical time does not go while these waves “move.”
(2) When any detector receives a scout wave, it sends a query wave (Figure 2.2(b)).

Query wave can be just reversed in “time” variable scout wave, since Maxwell equations
for free electromagnetic field is time-reversible. But in fact only intensity |ψ|2 of query
waves matters, not the phase. Intensity is a measure of survivability of waves sent by dif-
ferent detectors.

At Figure 2.2(b) a query wave from D2 is stronger (say, φ in (2.6) and (2.7) is rather
small, so P2 > P1), so it has more chances to win a query wave from D1. Still, as one
can see from Figure 2.2(c), we admit that nevertheless D1 wins. I do so to express that
intensity of a query wave means only the probability to win. D2 has, generally speaking, a
greater probability to win, but this time D1 wins. If we repeat the experiment many times,
the number of each detector’s clicks is proportional to its query wave intensity |ψ|2. It is
exactly what standard quantum mechanics provides.

After winning at the 2nd beam splitter, query wave of D1 propagates next by all possible
ways, that is, by ways provided by scout waves before (Figure 2.2(c)), that is, by 1′ and 2′.
Each way’s copy of that wave comes to the 1st beam splitter and they also compete there.
Since they are of equal intensity, they have equal chances to win the competition. In fact,
it is not essential which one wins, because each of these waves is representative of the
same single detector D1.

At Figure 2.2(d) path 2′ wins. Green signal means propagation of confirmation wave,
which finally comes to detector D1. Red signal is refusal wave (just like at Figure 2.2(c)),
it propagates up to it’s source, that is, 2nd beam splitter.

The trick here is that all the waves represented above do not propagate in physical time.
Only coming of confirmation wave (green) to D1 corresponds to an instant of physical
time. Though we have 3 passes of waves from a source to some detector, and eventhough
each of these passes obeys Maxwell’s equations for free electromagnetic field, finally total
time for a photon to travel to the detector is such as if the photon simply moves classically
from the source to the detector with light speed.
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Figure 2.2. (a) Hidden time at work: scout waves come to each detector by all paths. (b) Hidden time
at work: query waves start to compete. (c) Hidden time at work: the winner query wave propagates.
(d) Hidden time at work: detector D1 gets the photon.

This sounds very strange, but it is correct if one takes the following four postulates.
(a) Any photon’s exchange by charges is accomplished through presented mecha-

nism of 3 passes of waves.
(b) Only final coming of confirmation wave to some detector (a charge) corresponds

to an instant of physical time.
(c) Each detector charge serves all scout waves from different source charges it re-

ceives consequently; this means that a detector charge sends a query wave in re-
sponse to some scout wave only after a confirmation (or a refusal) is received for
a previously sent query wave.

(d) Detected physical time is simply a number of detected light quanta, properly nor-
malized for each experimental configuration.

One can find more detailed arguments in [5, 8].
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3. Delayed choice

“Delayed choice” experiment was originally suggested by J. A. Wheeler as a gedan-
kenexperiment. At the moment many versions of delayed choice experiment are proposed
and realized. We assume the simplest version as it is presented in [4].

Let us take that we have no phase shifter at the path 2′ of our Mach-Zehnder interfer-
ometer at Figure 2.1: φ= 0. In this case, D1 never clicks; instead, D2 clicks each time.

Next, suppose that “at the last moment” experimenter decides to perform another
experiment than he originally intended: he pulls 2nd beam splitter out of the photon’s
path 2′. “At the last moment” means, of course, before a moment of time, when classically
moving photon should reach the beam splitter.

In this case, the photon hits D1 and D2 with equal probabilities. In other words, pulling
out 2nd beam splitter “at the photon’s nose” gives the same result as if there were no 2nd
beam splitter from the very beginning.

From a standard quantum mechanical viewpoint, the explanation is as follows. We
take into account all classically possible paths in space-time for the photon; each path
provides its own complex-valued amplitude ψi. Total amplitude of considered transition
is the sum

∑

ψi for all paths.
So, when the 2nd (upper part at Figure 2.1) beam splitter is removed from the inter-

ferometer at a proper time, each classically possible path in space-time does not encounter
that beam splitter on its way. Thus destructive interference for D1 disappears.

What explanation will hidden time approach provide for delayed choice experiment?
First, let us take for simplicity that 2nd beam splitter is not removed indeed from its
position; instead it is in some way switched off to be transparent for light. Switching off is
accomplished by some electromagnetic signal. Again, we can take for simplicity that this
signal consists of a single quantum of light.

Recall that according to rule (a) (Section 4) this quantum propagates obeying the same
general mechanism we outlined before. This means that initially a scout wave of this quan-
tum arrives to the beam splitter (Figure 3.1(a)). We assume that we switch off the beam
splitter “at the nose” of the photon which propagates within the interferometer. This
means that scout wave of switching photon arrives (in hidden time!) to the beam splitter
earlier than the scout wave of interferometer photon.

According to rule (c) from Section 4, this means that the beam splitter (we take it as
if it is a single charge) serves switching photon first. Interferometer’s photon scout waves
stand unserved (and with no further propagation) until switching photon is ultimately
served: that is, until it is absorbed or rejected by the beam splitter.

So, the beam splitter sends query wave in response to switching photon’s scout wave
(Figure 3.1(b)). Then, it receives confirmation wave, that is, the switching photon itself
(Figure 3.1(c)). Of course, we suggest that the beam splitter receives confirmation rather
than refusal, since we assume that we do switch off the beam splitter!

Only after switching off the beam splitter (which is equivalent to receiving confirma-
tion wave in hidden time) scout waves of interferometer’s photon propagate next from
the beam splitter to detectors. And now they do not interfere (Figure 3.1(d)), since the
beam splitter is practically absent!
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Figure 3.1. (a) Hidden time at work: scout wave of control photon comes to 2nd beam splitter. (b)
Hidden time at work: query wave of control photon comes from 2nd beam splitter. (c) Hidden time
at work: confirmation wave of control photon comes to 2nd beam splitter. (d) Hidden time at work:
scout waves do not interfere since beam splitter is transparent.

So in this case query waves from D1 and D2 compete to each other at the 1st beam
splitter, like at Figure 2.2(d), and finally any detector can click.

4. Entanglement: the core

Again, we start from what standard quantum theory provides for entanglement. In quan-
tum optics domain we can get entangled photons most simply by 50\50 beam splitter
(Figure 4.1). Let us take that we send horizontally polarized photon to input 1 and verti-
cally polarized photon to input 2 of the beam splitter. Since the 50\50 beam splitter adds
a phase factor i to redirected “half” of each photon, we have at the outputs

|H〉1
∣
∣V〉2 −→ 1

2
· (|H〉1′ + i · |H〉2′

) · (|V〉2′ + i · |V〉1′
)

= 1
2
· (|H〉1′ |V〉2′ − |H〉2′ |V〉1′ + i · (|H〉1′ |V〉1′ + |H〉2′ |V〉2′

))

.

(4.1)

Under the condition of detecting a single photon per each detector, this state is finally
projected onto

|H〉1|V〉2 −→ 1
2
· (|H〉1′ |V〉2′ − |H〉2′ |V〉1′

)

. (4.2)
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Figure 4.1. 50\50 beam splitter produces entanglement of two photons.

This state is “maximally entangled”: detecting |H〉 in one detector inevitably leads to
detecting |V〉 in the other, and otherwise.

On the other side, imagine that we use not |H〉 and |V〉 polarizations for input pho-
tons; instead, we use arbitrary |P1〉 and |P2〉—the derivation of final result does not de-
pend on this substitution. Next, let us take that P1 = P2 = P, that is, our photons are
indistinguishable. In that case, (4.1) reduces to

|P〉1|P〉2 −→ i

2
· (|P〉1′ |P〉1′ − |P〉2′ |P〉2′

)

. (4.3)

State (4.3) means that each time only one detector clicks or, in other words, the pho-
tons always go together and never separately! It is Hong-Ou-Mandel effect.

Here is what hidden time concept can offer to explain entanglement. At the inputs
of 50\50 beam splitter we have |H〉 scout wave at input 1 and |V〉 wave at input 2
(Figure 4.2(a)).

Recall that the beam splitter splits each wave:

∣
∣ψ1

〉−→ 1√
2
· (∣∣ψ1′

〉

+ i ·∣∣ψ2′
〉)

. (4.4)

Recall also that in hidden time model each term of this sum represents some new
thread of a scout wave. When we multiply such sums, from hidden time view, this means
that each term thread in each sum becomes “tied” or “married” to each term thread in
the other sum. So, each term in each factor is split again, while the factor of splitting is
the number of terms in a paired factor.

Thus after leaving the beam splitter we have 2 ×2= 4 groups of tied (or married) scout
waves (Figure 4.2(b)):

S1
out =

∣
∣H1′

〉∣
∣V2′

〉

, S2
out =

∣
∣H1′

〉∣
∣V1′

〉

,

S3
out =

∣
∣H2′

〉∣
∣V1′

〉

, S1
out =

∣
∣H2′

〉∣
∣V2′

〉

.
(4.5)
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Figure 4.2. (a) Entanglement: the input state. (b) Entanglement: 4 bunched output states. (c) Output
states compete as independent units.

Let us refer to each group of tied threads as a bunch. Each of these bunches of scout
waves correspond (with appropriate factors) to some term in (4.1) (when in expanded
view). Each bunch has a kind of connection knot, where single-photon waves are “tied.”
Any scout wave within bunch can be viewed as to be “married” with its partner. We mark
it by a kind of “marriage rings” at Figure 4.2(b).

When we say “the second photon” we mean that it is in some way distinguishable from
the first photon. Turn back to a series of Figure 2.2. The second beam splitter of the Mach-
Zehnder interferometer does not make additional splitting of daughter scout waves, since
they are indistinguishable!

In standard quantum mechanical formalism we add amplitudes for indistinguishable
events and multiply them for distinguishable (independent) events. The same we do for
scout wave threads in hidden time theory!
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Next, imagine that each one-photon scout wave in each bunch behaves just the same
way we described above: it travels to appropriate detector and is (possibly) summed there
with identical copies of itself (if any) (that should be copies within the same bunched
state! In other words, each one-photon scout wave within a bunched thread can divide
and converge along its way like in 1-photon Mach-Zehnder interferometer), like it takes
place in simple interference. Then that detector sends a query wave with intensity equal
to squared sum of received scout waves.

Previously we suggested that the phase is inessential for a query wave. Let us now as-
sume that it is not so: a query wave has phase variable, but it is constant along the way
back from appropriate detector, and equal to the phase of scout wave at this detector. So
each (one-photon) query wave provides a standard (one-photon!) quantum mechanical
amplitude for a particular detector.

When any (one-photon) query wave comes from its detector to bunch connection knot
(green circle in Figure 4.2(b)) it meets its partner within the bunch. Amplitudes of both
waves are multiplied as complex numbers. So we get each of the values of S1

out, S
2
out, S

3
out,

S4
out to be physically calculated in hidden time.

The following is quite trivial: bunched states compete to each other just like we dis-
cussed above for ordinary query waves in one-photon experiment (Figure 4.2(c)). This
competition leads for some single bunched state to win, and each detector gets its photon
(if any) for this winner state.

5. Entanglement: change of basis

We want to argue that hidden time model of entanglement does not simply look like true
quantum entanglement, but is exactly equivalent to what quantum mechanics provides.
Let us have an entangled two-component system:

ΨAB = 1√
2
· (∣∣0A

〉∣
∣1B

〉−∣∣1A
〉∣
∣0B

〉)

. (5.1)

Let us change observation basis in the following way:

∣
∣XA,B

〉= 1√
2

(∣
∣0A,B

〉

+
∣
∣1A,B

〉)

,

∣
∣YA,B

〉

A,B =
1√
2

(∣
∣0A,B

〉−∣∣1A,B
〉)

.

(5.2)

If |0〉 and |1〉 denote polarization states, then such change of basis means that we rotate
optical axes of crystals we use by π/2 counterclockwise. From these equations we find that

∣
∣0A,B

〉= 1√
2

(∣
∣XA,B

〉

+
∣
∣YA,B

〉)

,

∣
∣1A,B

〉= 1√
2

(∣
∣XA,B

〉−∣∣YA,B
〉)

.

(5.3)
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Figure 5.1. Married |H1′ 〉 scout wave is split by birefringent crystal into married |o〉 and |e〉 scout
waves, each of half intensity.

If we substitute these expressions into (5.1), we get

ΨA,B = 1
2
√

2

[(∣
∣XA

〉

+
∣
∣YA

〉)(∣
∣XB

〉−∣∣YB
〉)− (∣∣XA

〉−∣∣YA
〉)(∣
∣XB

〉

+
∣
∣YB

〉)]

= 1
2
√

2

[∣
∣XA

〉∣
∣XB

〉−∣∣XA
〉∣
∣YB

〉

+
∣
∣YA

〉∣
∣XB

〉−∣∣YA
〉∣
∣YB

〉

−∣∣XA
〉∣
∣XB

〉−∣∣XA
〉∣
∣YB

〉

+
∣
∣YA

〉∣
∣XB

〉

+
∣
∣YA

〉∣
∣YB

〉]

=− 1√
2

(∣
∣XA

〉∣
∣YB

〉−∣∣YA
〉∣
∣XB

〉)

.

(5.4)

So in (X , Y) basis we get the same entangled state (change of overall phase by π has
no physical sense) as in (0, 1) basis. It is crucial for us here whether hidden time model is
able to reproduce this feature of standard quantum theory.

We suggest that such a change of basis makes no difficulties for hidden time approach.
Since at the input and output of a beam splitter we have |0〉 and |1〉 ket states only, we
have no changes of hidden time signals until they reach optical devices (birefringent crys-
tals). In other words, in hidden time we have |H〉|V〉 single-photon waves and the same
bunched waves for two photons as before:

S1
out =

∣
∣H1′

〉∣
∣V2′

〉

, S2
out =

∣
∣H1′

〉∣
∣V1′

〉

,

S3
out =

∣
∣H2′

〉∣
∣V1′

〉

, S1
out =

∣
∣H2′

〉∣
∣V2′

〉

.
(5.5)

Next, if we rotate the crystal located at the path 1′, it is exactly this location, after which
|H1′ 〉 or |V1′ 〉 scout wave (alone or within a bunch) is split into sum of ordinary |o〉 and
extraordinary |e〉 waves—Figure 5.1.

Like before, |o〉 and |e〉 scout waves propagate to detectors, then come back to split-
ting point, that is, the birefringent crystal we use, and compete there. Next, regardless of
which of two branches |o〉 and |e〉 wins, initial scout wave S1

out = ‖H1′ 〉|V2′ 〉 propagates
backward with its own intensity and phase to the beam splitter we use to compete there
with other bunched (married) states we have in the system.

In other words, from a hidden time viewpoint, change of basis at detection location
does not affect competition of initial scout waves.
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So, within hidden time approach, entanglement is indeed independent of change of
basis.

6. Entanglement: delayed choice

From previous description it should be clear that using time-varying analyzers in entan-
glement experiments, like in classical experimental work [2], brings no new challenge to
hidden time approach.

The core idea is very simple:
(1) first, scout waves find all detectors and “frozen” physical states of all devices in-

volved, the very time is “frozen;”
(2) second, scout waves come back to their sources and compete there;
(3) third, winner waves return to appropriate detectors and “unfreeze the time.”

This general scheme just ignores our naive tricks with fast switching of analyzers. We
think we are fast to switch the devices we use, but hidden time does not think so.

7. Conclusions

Suggested hypothesis views basic quantum phenomena as a manifestation of self-
organized computations of collectives of particles, performed in spatially and temporally
distributed manner. Some possible consequences for physical theory and applications are
discussed in [5–8]. Other consequences are planned for further papers.

It is notable that the idea of back propagation was formulated many times to interpret
quantum mechanics [1, 3]. Still, the idea of hidden time, which is a trivial and obvious
next step, has not been yet formulated.
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