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Verifiable criteria are established for the existence of positive periodic solutions and per-
manence of a delayed discrete periodic predator-prey model with Holling-type II func-
tional response N1(k + 1) = N1(k)exp{b1(k)− a1(k)N1(k− [τ1])− α1(k)N2(k)/(N1(k) +
m(k)N2(k))} and N2(k + 1) = N2(k)exp{−b2(k) + α2(k)N1(k − [τ2])/(N1(k − [τ2]) +
m(k)N2(k− [τ2]))}. Our results show that the delays in the system are harmless for the
existence of positive periodic solutions and permanence of the system. In particular our
investigation confirms that if the death rate of the predator is rather small as well as the
intrinsic growth rate of the prey is relatively large, then the species could coexist in the
long run.

Copyright © 2006 Y.-H. Fan and W.-T. Li. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In mathematical biology, the dynamics of the growth of a population can be described
if the functional behavior of the rate of growth is known. It is this functional behavior
which is usually measured in the laboratory or in the field. Among the relationships be-
tween the species living in the same outer environment, the predator-prey theory plays an
important and fundamental role. The dynamic relationship between predators and their
preys has long been and will continue to be one of the dominant themes in both ecology
and mathematical ecology due to its universal existence and importance (Berryman [4]).
These problems may appear to be simple mathematically at first sight, they are in fact very
challenging and complicated. There are many different kinds of predator-prey models in
the literature; for more details we can refer to [4, 7]. In general, a predator-prey system
takes the form

x′ = rx
(

1− x

K

)
−ϕ(x)y,

y′ = y
(
μϕ(x)−D

)
,

(1.1)
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where ϕ(x) is the functional response function, which reflects the capture ability of the
predator to prey. For more biological meaning, the reader may consult [7, 19]. Massive
work has been done on this issue. We refer to the monographs [8, 16, 21, 24] for gen-
eral delayed biological systems and to [18, 22, 23, 25, 26, 28, 29] for investigations on
predator-prey systems.

Until very recently, both ecologists and mathematicians chose to base their studies on
this traditional prey-dependent functional response predator-prey system which is called
prey-dependent model [12]. But there is a growing explicit biological and physiologi-
cal evidence [3, 11, 14, 17] that in many situations, especially when predators have to
search for food (and, therefore, have to share or compete for food), a more suitable gen-
eral predator-prey theory should be based on the so-called ratio-dependent theory, which
can be roughly stated as that the per capita predator growth rate should be a function of
the ratio of prey to predator abundance, and so should be the so-called ratio-dependent
functional response. This is strongly supported by numerous field and laboratory exper-
iments and observations [2, 9]. A general form of a ratio-dependent model is

x′ = rx
(

1− x

K

)
−ϕ

(
x

y

)
y,

y′ = y
(
μϕ
(
x

y

)
−D

)
.

(1.2)

Here the predator-prey interactions are described by ϕ(x/y) instead of ϕ(x) in (1.1). This
can be interpreted as when the numbers of predators change slowly (relative to the change
of their prey), there is often competition among the predators, and the per capita rate of
predation depends on the numbers of both prey and predator, most likely and simply on
their ratio. For the system (1.2) with periodic coefficients, in [5] we explored the existence
of periodic solutions with delays. In addition, most research works concentrate on the so-
called Michaelis-Menten-type ratio-dependent predator-prey model:

x′ = rx
(

1− x

K

)
− αxy

my + x
,

y′ = y
(
−d+

f x

my + x

)
;

(1.3)

see [3, 11, 14, 17, 27] and references therein. The functional response function ϕ(u) =
cu/(m + u), u = x/y, in the above model was used by Holling [10] as Holling-type II
functional response, it usually describes the uptake of substrate by the microorganisms
in microbial dynamics or chemical kinetics [7].

On the other hand, though most predator-prey theories are based on continuous mod-
els governed by differential equations, the discrete time models are more appropriate than
the continuous ones when the size of the population is rarely small or the population has
nonoverlapping generations [1, 21]. And in ecosystems, an important theme that inter-
ested mathematicians as well as biologists is whether the species in these systems would
survive in the long run. That is, whether the ecosystems are permanent. As far as we know,
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few investigations have been carried out for the permanence on delayed discrete ecolog-
ical systems since the dynamics of these systems are usually more complicated than the
continuous ones. Just as pointed out in [8], even if the coefficients are constants, the
asymptotic behavior of the discrete system is rather complex and “chaotic” than the con-
tinuous one. For example, consider the logistic equation

x′(t)= rx(t)
[

1− x(t)
K

]
, t ≥ 0, (1.4)

where r and K are both positive constants, and its corresponding discrete equation

x(n+ 1)= x(n)exp
{
r
[

1− x(n)
K

]}
, n= 0,1,2, . . . . (1.5)

It is known from the works of May [20] that for certain parameter values of r, the asymp-
totic behavior of the solutions of (1.5) is complex and “chaotic.” While the solutions of
(1.4) are normal.

Now we introduce some notations and definitions for the sake of convenience. Denote
Z, R, and R+ as the sets of all integers, real numbers, and nonnegative real numbers,
respectively. Let C denote the set of all bounded sequence f : Z→ R, C+ the set of all
f ∈ C such that f > 0, and Cω = { f ∈ C+ | f (k+ω)= f (k), k ∈ Z}, Iω = {0,1, . . . ,ω− 1}.
We also define

f M = sup
k∈Iω

f (k), f L = inf
k∈Iω

f (k), f = 1
ω

ω−1∑
k=0

f (k) (1.6)

for any ω-periodic sequence { f (k)}, where k ∈ Z.
In view of periodicity of the actual environment, we begin with the periodic continu-

ous ratio-dependent predator-prey system with Holling-type II functional response:

dN1(t)
dt

=N1(t)
[
b1(t)− a1(t)N1

(
t− τ1

)]− α1(t)N1(t)N2(t)
N1(t) +m(t)N2(t)

,

dN2(t)
dt

=N2(t)
[
− b2(t) +

α2(t)N1
(
t− τ2

)
N1
(
t− τ2

)
+m(t)N2

(
t− τ2

)
]

,

(1.7)

where N1(t) and N2(t) represent the densities of the prey population and predator popu-
lation at time t, respectively; τ1 ≥ 0 and τ2 ≥ 0 are real constants; bi :R→R and m,a1,αi :
R→R+ (i= 1,2) are continuous periodic functions with period ω > 0 and

∫ ω
0 bi(t)dt > 0

(i= 1,2); b1(t) stands for prey intrinsic growth rate, b2(t) stands for the death rate of the
predator, α1(t) and α2(t) stand for the conversion rates, m(t) stands for half capturing
saturation; the function N1(t)[b1(t)− a1(t)N1(t− τ1)] represents the specific growth rate
of the prey in the absence of predator; and N1(t)/(N1(t) +m(t)N2(t)) denotes the ratio-
dependent response function, which reflects the capture ability of the predator. Similar
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to the arguments of [6], we can obtain a discrete time analogue of (1.7):

N1(k+ 1)=N1(k)exp
{
b1(k)− a1(k)N1

(
k− [τ1

])− α1(k)N2(k)
N1(k) +m(k)N2(k)

}
,

N2(k+ 1)=N2(k)exp
{
− b2(k) +

α2(k)N1
(
k− [τ2

])
N1
(
k− [τ2

])
+m(k)N2

(
k− [τ2

])
}

,

(1.8)

where [t] denotes the integer part of t > 0.
The exponential form of (1.8) assures that, for any initial condition N(0) > 0, N(k)

remains positive. In the remainder of this paper, for biological reasons, we only consider
solutions N(k) with

Ni(−k)≥ 0, k = 1,2, . . . ,max
{[
τ1
]
,
[
τ2
]}

; Ni(0) > 0, i= 1,2. (1.9)

If [τ1]= [τ2]= 0, then system (1.8) reduces to

N1(k+ 1)=N1(k)exp
{
b1(k)− a1(k)N1(k)− α1(k)N2(k)

N1(k) +m(k)N2(k)

}
,

N2(k+ 1)=N2(k)exp
{
− b2(k) +

α2(k)N1(k)
N1(k) +m(k)N2(k)

}
.

(1.10)

Recently, Fan and Wang [6] considered the existence of positive periodic solution for
system (1.10) and obtained the following.

Theorem 1.1. Assume that the following conditions hold:
(H1) b1 > (α1/m),
(H2) α2 > b2.

Then (1.10) has at least one positive ω-periodic solution.
Huo and Li [13] further considered the permanent of system (1.10) and established

the following result.

Theorem 1.2. Assume that

bL1 >
αM1
mL

, αL2 > bM2 . (1.11)

Then system (1.10) is permanent.

In this paper, our aim is to consider the effect of delays for the existence of positive
periodic solutions and permanence of system (1.8). Our results show that delays in (1.8)
are harmless for the existence of positive periodic solutions and permanence of (1.8).
That is to say, we establish the following results.

Theorem 1.3. Assume that (H1) and (H2) hold. Then (1.8) has at least one positive ω-
periodic solution.

Since its proof is similar to that of [6], we omit it here.

Theorem 1.4. Assume that (H1) and (H2) hold. Then system (1.8) is permanent.
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Clearly, Theorem 1.3 extends Theorem 1.1; Theorem 1.4 extends and improves Theo-
rem 1.2 by weaker conditions (H1) and (H2) instead of (1.11). In particular our investi-
gation confirms that if the death rate of the predator is rather small as well as the intrinsic
growth rate of the prey is relatively large, then the species could coexist in the long run.

2. Proof of Theorem 1.4

In this section, we prove Theorem 1.4. Before proving our main result, we list the defini-
tion of permanence and prove a lemma.

Definition 2.1. System (1.8) is said to be permanent if there exists two positive constants
λ1 and λ2 such that

λ1 ≤ liminf
k→∞

Ni(k)≤ limsup
k→∞

Ni(k)≤ λ2, i= 1,2, (2.1)

for any solution (N1(k),N2(k)) of (1.8).

The following lemma will be useful to establish the main result.

Lemma 2.2. The problem

x(k+ 1)= x(k)exp
{
a(k)− b(k)x(k)

}
,

x(0)= x0 > 0,
(2.2)

has at least one periodic solution U if b ∈ Cω, a∈ C, and a is an ω-periodic sequence with
a > 0; moreover, the following properties hold:

(a) U is positive ω-periodic;
(b) U has the following estimations for its boundary:

a

b
exp

{− (|a|+ a
)
ω
}≤U(k)≤ a

b
exp

{(|a|+ a
)
ω
}

, (2.3)

especially,

a

b
exp{−aω} ≤U(k)≤ a

b
exp{aω}, (2.4)

if a∈ Cω.

Proof. First, we prove (a). Notice that in (1.8), let α1(k) ≡ 0, τ1 = 0, then (1.8) can be
reduced to

N1(k+ 1)=N1(k)exp
{
b1(k)− a1(k)N1(k)

}
,

N2(k+ 1)=N2(k)exp
{
− b2(k) +

α2(k)N1
(
k− [τ2

])
N1
(
k− [τ2

])
+m(k)N2

(
k− [τ2

])
}

,
(2.5)
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and the condition (H1) of Theorem 1.1 reduces to b1 > 0. By Theorem 1.3, (2.5) has at
least one positive ω-periodic solution provided that b1 > 0 and α2 > b2. This implies that

N1(k+ 1)=N1(k)exp
{
b1(k)− a1(k)N1(k)

}
(2.6)

has at least one positive ω-periodic solution under the assumptions b1 > 0. That is to say,

x(k+ 1)= x(k)exp
{
a(k)− b(k)x(k)

}
,

x(0)= x0 > 0,
(2.7)

has at least one positive ω-periodic solution provided that a > 0. The proof of (a) is com-
plete.

The first part of (b) can be proved by the same method as that in [6], we only need to
prove the second part of (b). In view of (a), set U(k)= exp{z(k)}, then

z(k+ 1)− z(k)= a(k)− b(k)exp
{
z(k)

}
; (2.8)

thus

0=
ω−1∑
k=0

(
z(k+ 1)− z(k)

)= aω−
ω−1∑
k=0

b(k)exp
{
z(k)

}
, (2.9)

this implies

(
z(k)

)L ≤ ln
(
a

b

)
≤ (z(k)

)M
. (2.10)

Denote z(ξ)= (z(k))L, where ξ ∈ Iω. By (2.8), z(k + 1)− z(k)≤ a(k), then for any k ∈ Iω
and k ≥ ξ, we have

k∑
i=ξ

(
z(i+ 1)− z(i)

)≤
k∑
i=ξ

a(i), (2.11)

since a∈ Cω,

k∑
i=ξ

(
z(i+ 1)− z(i)

)≤
k∑
i=ξ

a(i)≤ aω, (2.12)

this shows that

z(k+ 1)≤ z(ξ) + aω, for k ∈ Iω, k ≥ ξ. (2.13)

On the other hand,

z(k+ 1)− z(k)= a(k)− b(k)exp
{
z(k)

}≥−b(k)exp
{
z(k)

}
; (2.14)
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hence

ξ−1∑
i=k

(
z(i+ 1)− z(i)

)≥−
ξ−1∑
i=k

b(i)exp
{
z(i)

}

≥−
ω−1∑
i=0

b(i)exp
{
z(i)

}=−aω, for k ∈ Iω, k ≤ ξ − 1;

(2.15)

therefore

z(k)≤ z(ξ) + aω, for k ∈ Iω, k ≤ ξ − 1. (2.16)

By (2.13) and (2.16), we can obtain z(k)≤ z(ξ) + aω, for k ∈ Iω; thus

U(k)= exp
{
z(k)

}≤ a

b
exp{aω}, (2.17)

by a similar analysis as above, we can obtain

U(k)≥ a

b
exp{−aω}. (2.18)

This completes the proof of the second part of (b). �

To prove Theorem 1.4, we need the following several propositions. For the rest of this
paper, we consider the solution of (1.8) with initial conditions (1.9). For the definition of
semicycle and related concepts, we refer to [15].

Proposition 2.3. There exists a positive constant K1 such that limsupk→+∞N1(k)≤ K1.

Proof. Given any positive solution (N1(k),N2(k)) of (1.8), from the first equation of (1.8),
we have

N1(k+ 1)≤N1(k)exp
{
b1(k)− a1(k)N1

(
k− [τ1

])}
. (2.19)

Let N1(k)= exp{u1(k)}, then

u1(k+ 1)−u1(k)≤ b1(k)− a1(k)exp
{
u1
(
k− [τ1

])}
; (2.20)

thus

k−1∑
i=k−[τ1]

(
u1(i+ 1)−u1(i)

)≤
k−1∑

i=k−[τ1]

b1(i), (2.21)

which is equivalent to

u1(k)−
k−1∑

i=k−[τ1]

b1(i)≤ u1
(
k− [τ1

])
; (2.22)
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hence

N1
(
k− [τ1

])= exp
{
u1
(
k− [τ1

])}≥ exp

{
u1(k)−

k−1∑
i=k−[τ1]

b1(i)

}

=N1(k)exp

{
−

k−1∑
i=k−[τ1]

b1(i)

}
.

(2.23)

Therefore

N1(k+ 1)≤N1(k)exp

{
b1(k)− a1(k)N1(k)exp

{
−

k−1∑
i=k−[τ1]

b1(i)

}}
. (2.24)

Consider the following auxiliary equation:

z(k+ 1)= z(k)exp

{
b1(k)− a1(k)z(k)exp

{
−

k−1∑
i=k−[τ1]

b1(i)

}}
. (2.25)

By Lemma 2.2, (2.25) has at least one positive ω-periodic solution, denote it as z∗(k), we
have

z∗(k)≤ b1(
a1(k)exp

{−∑k−1
i=k−[τ1] b1(i)

}) exp
{
b1 +

∣∣b1
∣∣} :=H1. (2.26)

Let

z∗(k)= exp
{
u2(k)

}
, (2.27)

then

u1(k+ 1)−u1(k)≤ b1(k)− a1(k)exp
{
u1(k)

}
exp

{
−

k−1∑
i=k−[τ1]

b1(i)

}
,

u2(k+ 1)−u2(k)= b1(k)− a1(k)exp
{
u2(k)

}
exp

{
−

k−1∑
i=k−[τ1]

b1(i)

}
.

(2.28)

Making the transformation u(k)= u1(k)−u2(k), we can obtain

u(k+ 1)−u(k)≤−a1(k)
[

exp
{
u(k)

}− 1
]

exp
{
u2(k)

}
exp

{
−

k−1∑
i=k−[τ1]

b1(i)

}
. (2.29)

Now we divide the proof into two cases according to the oscillating property of u(k).
First we assume that u(k) does not oscillate about zero, then u(k) will be either eventually
positive or eventually negative. If the latter holds, that is, u1(k) < u2(k), we have

N1(k) < z∗(k)≤ (z∗(k)
)M

. (2.30)
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Whereas if the former holds, then by (2.29), we know u(k + 1) < u(k), which means that
u(k) is eventually decreasing, also in terms of its positivity, we know that limk→∞u(k)
exists. Then (2.29) yields limk→∞u(k)= 0, which leads to

limsup
k→∞

N1(k)≤ (z∗(k)
)M

. (2.31)

Now we assume that u(k) oscillates about zero, by (2.29), we know that u(k) > 0 im-
plies u(k+ 1)≤ u(k). Thus, if we let {u(kl)} be a subsequence of {u(k)}, where u(kl) is the
first element of the positive semicycle of {u(k)}, then limsupk→∞u(k)= limsupl→∞u(kl).
Combining

u
(
kl
)≤u

(
kl−1

)−a1
(
kl−1

)[
exp

{
u
(
kl−1

)}−1
]

exp
{
u2
(
kl−1

)}
exp

{
−

kl−2∑
i=kl−1−[τ1]

b1(i)

}

(2.32)

with u(kl − 1) < 0, we know

u
(
klv)≤ a1

(
kl − 1

)[
exp

{
u
(
kl − 1

)}− 1
]

exp
{
u2
(
kl − 1

)}
exp

{
−

kl−2∑
i=kl−1−[τ1]

b1(i)

}

≤ a1
(
kl − 1

)
exp

{
u2
(
kl − 1

)}
exp

{
−

kl−2∑
i=kl−1−[τ1]

b1(i)

}

≤
(
a1
(
kl − 1

)
exp

{
u2
(
kl − 1

)}
exp

{
−

kl−2∑
i=kl−1−[τ1]

b1(i)

})M

.

(2.33)

Therefore

limsup
l→∞

u
(
kl
)≤

(
a1
(
kl − 1

)
exp

{
u2
(
kl − 1

)}
exp

{
−

kl−2∑
i=kl−1−[τ1]

b1(i)

})M

. (2.34)

By the medium of (2.27), we have limsupk→∞N1(k)≤ K1, where

K1 =H1 exp

{(
a1(k)H1 exp

{
−

k−1∑
i=k−[τ1]

b1(i)

})M}
. (2.35)

�

Proposition 2.4. Under the condition (H1), there exists a positive constant k1 such that
liminfk→∞N1(k)≥ k1.

Proof. Given any positive solution (N1(k),N2(k)) of (1.8), from the first equation of (1.8),
we have

N1(k+ 1)≥N1(k)exp
{
b1(k)− α1(k)

m(k)
− a1(k)N1

(
k− [τ1

])}
. (2.36)
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Set N1(k)= exp{u1(k)}, then

u1(k+ 1)−u1(k)≥ b1(k)− α1(k)
m(k)

− a1(k)exp
{
u1
(
k− [τ1

])}
, (2.37)

which yields

k−1∑
i=k−[τ1]

(
u1(i+ 1)−u1(i)

)≥
k−1∑

i=k−[τ1]

(
b1(i)− α1(i)

m(i)
− a1(i)K1

)
, (2.38)

that is,

u1
(
k− [τ1

])≤ u1(k)−
k−1∑

i=k−[τ1]

(
b1(i)− α1(i)

m(i)
− a1(i)K1

)
; (2.39)

thus

N1
(
k− [τ1

])= exp
{
u1
(
k− [τ1

])}

≤ exp

{
u1(k)−

k−1∑
i=k−[τ1]

(
b1(i)− α1(i)

m(i)
− a1(i)K1

)}

=N1(k)exp

{
−

k−1∑
i=k−[τ1]

(
b1(i)− α1(i)

m(i)
− a1(i)K1

)}
.

(2.40)

Therefore

N1(k+ 1)≥N1(k)exp

{
b1(k)− α1(k)

m(k)

− a1(k)N1(k)exp

{
−

k−1∑
i=k−[τ1]

(
b1(i)− α1(i)

m(i)
− a1(i)K1

)}}
.

(2.41)

Consider the following auxiliary equation:

z(k+1)=z(k)exp

{
b1(k)− α1(k)

m(k)
−a1(k)z(k)exp

{
−

k−1∑
i=k−[τ1]

(
b1(i)− α1(i)

m(i)
−a1(i)K1

)}}
.

(2.42)

By Lemma 2.2 and (H1), (2.42) has at least one positive ω-periodic solution, denoted as
z∗1 (k), then

z∗1 (k)≥ b1−
(
α1/m

)
(
a1(k)exp

{−∑k−1
i=k−[τ1]

(
b1(i)−α1(i)/m(i)− a1(i)K1

)})

× exp
{
− b1 +

(
α1

m

)
−
∣∣∣∣b1(k)− α1(k)

m(k)

∣∣∣∣
}

:=H2.

(2.43)



Y.-H. Fan and W.-T. Li 11

Now make the change of variables:

z∗1 (k)= exp
{
u2(k)

}
, (2.44)

then

u1(k+ 1)−u1(k)≥ b1(k)− α1(k)
m(k)

− a1(k)exp
{
u1(k)

}
exp

{
−

k−1∑
i=k−[τ1]

(
b1(i)− α1(i)

m(k)
− a1(i)K1

)}
,

u2(k+ 1)−u2(k)= b1(k)− α1(k)
m(k)

− a1(k)exp
{
u2(k)

}
exp

{
−

k−1∑
i=k−[τ1]

(
b1(i)− α1(i)

m(i)
− a1(i)K1

)}
.

(2.45)

Denote u(k)= u1(k)−u2(k), we have

u(k+ 1)−u(k)≥−a1(k)
[

exp
{
u(k)

}− 1
]

exp
{
u2(k)

}

× exp

{
−

k−1∑
i=k−[τ1]

(
b1(i)− α1(i)

m(i)
− a1(i)K1

)}
.

(2.46)

If u(k) does not oscillate, then by a similar analysis as that in Proposition 2.3, we have

liminf
k→∞

N1(k)≥ (z∗1 (k)
)L
. (2.47)

Whereas if u(k) oscillates about zero, by (2.46), we know that if u(k) < 0, then u(k +
1)≥ u(k). Thus, if we denote {u(kl)} as a subsequence of {u(k)}, where u(kl) is the first
element of the negative semicycle of {u(k)}, then liminfk→∞u(k)= liminf l→∞u(kl). On
the other hand, from

u
(
kl
)≥ u

(
kl − 1

)− a1
(
kl − 1

)[
exp

{
u
(
kl − 1

)}− 1
]

exp
{
u2
(
kl − 1

)}

× exp

{
−

kl−2∑
i=kl−1−[τ1]

(
b1(i)− α1(i)

m(i)
− a1(i)K1

)}
,

(2.48)
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and u(kl − 1) > 0, we know

u
(
kl
)≥ a1

(
kl − 1

)[
1− exp

{
u
(
kl − 1

)}]
exp

{
u2
(
kl − 1

)}

× exp

{
−

kl−2∑
i=kl−1−[τ1]

(
b1(i)− α1(i)

m(i)
− a1(i)K1

)}

≥−a1
(
kl − 1

)
exp

{
u1
(
kl − 1

)}

× exp

{
−

kl−2∑
i=kl−1−[τ1]

(
b1(i)− α1(i)

m(i)
− a1(i)K1

)}

≥
(
−K1a1(kl − 1)exp

{
−

kl−2∑
i=kl−1−[τ1]

(
b1(i)− α1(i)

m(i)
− a1(i)K1

)})L

.

(2.49)

Therefore

liminf
l→∞

u
(
kl
)≥

(
−K1a1(kl − 1)exp

{
−

kl−2∑
i=kl−1−[τ1]

(
b1(i)− α1(i)

m(i)
− a1(i)K1

)})L

.

(2.50)

By the medium of (2.44), we have

liminf
k→∞

N1(k)

≥ (z∗1 (k)
)L

exp

⎧⎨
⎩
(
−K1a1(k)exp

{
−

k−1∑
i=k−[τ1]

(
b1(i)− α1(i)

m(i)
− a1(i)K1

)})L
⎫⎬
⎭ ;

(2.51)

hence liminfk→∞N1(k)≥ k1, where

k1 =H2 exp

⎧⎨
⎩
(
−K1a1(k)exp

{
−

k−1∑
i=k−[τ1]

(
b1(i)− α1(i)

m(i)
− a1(i)K1

)})L
⎫⎬
⎭ . (2.52)

�

Proposition 2.5. If (H2) holds, then there exists a positive constant K2 such that

limsup
k→∞

N2(k)≤ K2. (2.53)
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Proof. Given any positive solution (N1(k),N2(k)) of (1.8), from the second equation of
(1.8), we have

N2(k+ 1)=N2(k)exp

{
− b2(k) +

α2(k)N1
(
k− [τ2

])
N1
(
k− [τ2

])
+m(k)N2

(
k− [τ2

])
}

≤N2(k)exp

{
− b2(k) +

α2(k)K1

K1 +m(k)N2
(
k− [τ2

])
}

=N2(k)exp

{
α2(k)− b2(k)−α2(k)

[
m(k)N2

(
k− [τ2

])
K1 +m(k)N2

(
k− [τ2

])
]}

.

(2.54)

Set N2(k)= exp{u1(k)}, then

u1(k+ 1)−u1(k)≤ α2(k)− b2(k); (2.55)

thus

k−1∑
i=k−[τ2]

(
u1(i+ 1)−u1(i)

)≤
k−1∑

i=k−[τ2]

(
α2(i)− b2(i)

)
, (2.56)

which is equivalent to

u1(k)−
k−1∑

i=k−[τ2]

(
α2(i)− b2(i)

)≤ u1
(
k− [τ2

])
; (2.57)

hence

N2
(
k− [τ2

])= exp
{
u1
(
k− [τ2

])}≥ exp

{
u1(k)−

k−1∑
i=k−[τ2]

(
α2(i)− b2(i)

)}

=N2(k)exp

{
−

k−1∑
i=k−[τ2]

(
α2(i)− b2(i)

)}
.

(2.58)

Therefore

N2(k+ 1)≤N2(k)exp

{
α2(k)− b2(k)

−α2(k)

[
m(k)N2(k)exp

{−∑k−1
i=k−[τ2]

(
α2(i)− b2(i)

)}
K1 +m(k)N2(k)exp

{−∑k−1
i=k−[τ2]

(
α2(i)− b2(i)

)}
]}

.

(2.59)

Here we use the monotonicity of the function u/(a+u).
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Consider the following auxiliary equation:

z(k+ 1)= z(k)exp

{
α2(k)− b2(k)

−α2(k)

[
m(k)z(k)exp

{−∑k−1
i=k−[τ2]

(
α2(i)− b2(i)

)}
K1 +m(k)z(k)exp

{−∑k−1
i=k−[τ2]

(
α2(i)− b2(i)

)}
]}

.

(2.60)

By the same method as that in [6], (2.60) has at least one positive ω-periodic solution,
denote it as z∗2 (k), then through some simple calculations, we have

z∗2 (k)≤
(
α2− b2

)
K1

b2
(
m(k)exp

{−∑k−1
i=k−[τ2]

(
α2(i)− b2(i)

)})L

× exp
{
α2− b2 +

∣∣α2(k)− b2(k)
∣∣} :=H3.

(2.61)

Let

z∗2 (k)= exp
{
u2(k)

}
, (2.62)

then

u1(k+ 1)−u1(k)≤ α2(k)− b2(k)

−α2(k)

[
m(k)exp

{
u1(k)

}
exp

{−∑k−1
i=k−[τ2]

(
α2(i)− b2(i)

)}
K1 +m(k)exp

{
u1(k)

}
exp

{−∑k−1
i=k−[τ2]

(
α2(i)− b2(i)

)}
]

,

u2(k+ 1)−u2(k)= α2(k)− b2(k)

−α2(k)

[
m(k)exp

{
u2(k)

}
exp

{−∑k−1
i=k−[τ2]

(
α2(i)− b2(i)

)}
K1 +m(k)exp

{
u2(k)

}
exp

{−∑k−1
i=k−[τ2]

(
α2(i)− b2(i)

)}
]
.

(2.63)

Denote u(k)= u1(k)−u2(k), we have

u(k+ 1)−u(k)

≤−α2(k)

[
m(k)K1 exp

{
u2(k)

}
exp

{−∑k−1
i=k−[τ2]

(
α2(i)− b2(i)

)}
K1 +m(k)exp

{
u2(k)

}
exp

{−∑k−1
i=k−[τ2]

(
α2(i)− b2(i)

)}
]

×
[

exp
{
u(k)

}− 1

K1 +m(k)exp
{
u2(k)

}
exp

{
u(k)

}
exp

{−∑k−1
i=k−[τ2]

(
α2(i)− b2(i)

)}
]
.

(2.64)
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First we assume that u(k) does not oscillate about zero, then u(k) will be either even-
tually positive or eventually negative. If the latter holds, that is, u1(k) < u2(k), we have

N2(k) < z∗2 (k)≤ (z∗2 (k)
)M

. (2.65)

Whereas if the former holds, then by (2.64), we have u(k + 1) < u(k), which means that
u(k) is eventually decreasing, also in terms of its positivity, we obtain that limk→∞u(k)
exists. Then (2.64) leads to limk→∞u(k)= 0, this implies

limsup
k→∞

N2(k)≤ (z∗2 (k)
)M

. (2.66)

Now we assume that u(k) oscillates about zero; in view of (2.64), we know that u(k) >
0 implies u(k + 1) ≤ u(k). Thus, if we let {u(kl)} be a subsequence of {u(k)}, where
u(kl) is the first element of the positive semicycle of {u(k)}, then limsupk→∞u(k) =
limsupl→∞u(kl). Also, from

u
(
kl
)≤ u

(
kl − 1

)

−α2
(
kl−1

)[ m
(
kl−1

)
K1 exp

{
u2
(
kl−1

)}
exp

{−∑kl−2
i=kl−1−[τ2]

(
α2(i)−b2(i)

)}
K1 +m

(
kl−1

)
exp

{
u2
(
kl−1

)}
exp

{−∑kl−2
i=kl−1−[τ2]

(
α2(i)−b2(i)

)}
]

×
[

exp
{
u
(
kl−1

)}−1

K1+m
(
kl−1

)
exp

{
u2
(
kl−1

)}
exp

{
u
(
kl−1

)}
exp

{−∑kl−2
i=kl−1−[τ2]

(
α2(i)−b2(i)

)}
]

,

(2.67)

and u(kl − 1) < 0, we know

u
(
kl
)≤ α2

(
kl − 1

)

×
[

m
(
kl−1

)
K1 exp

{
u2
(
kl−1

)}
exp

{−∑kl−2
i=kl−1−[τ2]

(
α2(i)− b2(i)

)}
K1 +m

(
kl − 1

)
exp

{
u2
(
kl − 1

)}
exp

{−∑kl−2
i=kl−1−[τ2]

(
α2(i)−b2(i)

)}
]

×
[

1−exp
{
u
(
kl−1

)}
K1+m

(
kl−1

)
exp

{
u2
(
kl−1

)}
exp

{
u
(
kl−1

)}
exp

{−∑kl−2
i=kl−1−[τ2]

(
α2(i)−b2(i)

)}
]
.

(2.68)

Consider the function

g(x)= 1− x

p+ qx
, p > 0, q > 0, 0≤ x ≤ 1. (2.69)

It is easy to show that g(x) has the property g(x)≤ g(0). Therefore (2.68) yields

u
(
kl
)≤ α2

(
kl − 1

)
m
(
kl − 1

)
exp

{
u2
(
kl − 1

)}
exp

{−∑kl−2
i=kl−1−[τ2]

(
α2(i)− b2(i)

)}
K1 +m

(
kl − 1

){
u2
(
kl − 1

)}
exp

{−∑kl−2
i=kl−1−[τ2]

(
α2(i)− b2(i)

)} ,

(2.70)
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that is,

limsup
l→∞

u
(
kl
)

≤
(
α2
(
kl − 1

)
m
(
kl − 1

)
exp

{
u2
(
kl − 1

)}
exp

{−∑kl−2
i=kl−1−[τ2]

(
α2(i)− b2(i)

)}
K1 +m

(
kl − 1

)
exp

{
u2
(
kl − 1

)}
exp

{−∑kl−2
i=kl−1−[τ2]

(
α2(i)− b2(i)

)}
)M

≤ (α2
(
kl − 1

))M
.

(2.71)

By the medium of (2.27), we have limsupk→∞N2(k)≤ K2, where

K2 =H3 exp
{(
α2(k)

)M}
. (2.72)

�

Proposition 2.6. Under the conditions (H1) and (H2), there exists a positive constant k2

such that liminfk→+∞N2(k)≥ k2.

Proof. Given any positive solution (N1(k),N2(k)) of (1.8), from the second equation of
(1.8), we have

N2(k+ 1)

=N2(k)exp

{
− b2(k) +

α2(k)N1
(
k− [τ2

])
N1
(
k− [τ2

])
+m(k)N2

(
k− [τ2

])
}

=N2(k)exp

{
α2(k)− b2(k) +α2(k)

[
N1
(
k− [τ2

])
N1
(
k− [τ2

])
+m(k)N2

(
k− [τ2

]) − 1

]}

=N2(k)exp

{
α2(k)− b2(k)−α2(k)

[
m(k)N2

(
k− [τ2

])
N1
(
k− [τ2

])
+m(k)N2

(
k− [τ2

])
]}

,

(2.73)

then

N2(k+ 1)≥N2(k)exp

{
α2(k)− b2(k)− α2(k)m(k)N2

(
k− [τ2

])
k1

}
. (2.74)

In view of

N2(k+ 1)=N2(k)exp

{
− b2(k) +

α2(k)N1
(
k− [τ2

])
N1
(
k− [τ2

])
+m(k)N2

(
k− [τ2

])
}

≥N2(k)exp
{− b2(k)

}
,

(2.75)
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if we let N2(k)= exp{u1(k)}, then we can obtain u1(k+ 1)−u1(k)≥−b2(k). Thus

k−1∑
i=k−[τ2]

(
u1(i+ 1)−u1(i)

)≥
k−1∑

i=k−[τ2]

(− b2(i)
)
, (2.76)

that is,

u1
(
k− [τ2

])≤ u1(k) +
k−1∑

i=k−[τ2]

b2(i); (2.77)

hence

N2
(
k− [τ2

])= exp
{
u1
(
k− [τ2

])}≤ exp

{
u1(k) +

k−1∑
i=k−[τ2]

b2(i)

}

=N2(k)exp

{ k−1∑
i=k−[τ2]

b2(i)

}
.

(2.78)

Therefore from (2.74), we have

N2(k+ 1)≥N2(k)exp

{
α2(k)− b2(k)− α2(k)m(k)

k1
N2(k)exp

{ k−1∑
i=k−[τ2]

b2(i)

}}
.

(2.79)

Consider the auxiliary equation

z(k+ 1)= z(k)exp

{
α2(k)− b2(k)− α2(k)m(k)

k1
z(k)exp

{ k−1∑
i=k−[τ2]

b2(i)

}}
. (2.80)

By Lemma 2.2 and (H2), (2.80) has at least one positive ω-periodic solution, denoted as
z∗3 (k), then

z∗3 (k)≥
(
α2− b2

)
k1(

α2(k)m(k)exp
{∑k−1

i=k−[τ2] b2(i)
})

× exp
{−α2 + b2−

∣∣α2(k)− b2(k)
∣∣} :=H4.

(2.81)

If we set

z∗3 (k)= exp
{
u2(k)

}
, (2.82)
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then

u1(k+ 1)−u1(k)≥ α2(k)− b2(k)− α2(k)m(k)
k1

exp
{
u1(k)

}
exp

{ k−1∑
i=k−[τ2]

b2(i)

}
,

u2(k+ 1)−u2(k)= α2(k)− b2(k)− α2(k)m(k)
k1

exp
{
u2(k)

}
exp

{ k−1∑
i=k−[τ2]

b2(i)

}
.

(2.83)

And let u(k)= u1(k)−u2(k), we have

u(k+ 1)−u(k)

≥−α2(k)m(k)
k1

[
exp

{
u(k)

}− 1
]

exp
{
u2(k)

}
exp

{ k−1∑
i=k−[τ2]

b2(i)

}
.

(2.84)

If u(k) does not oscillate, then by a similar analysis as that in Proposition 2.3, we have

liminf
k→∞

N2(k)≥ (z∗3 (k)
)L
. (2.85)

Whereas if u(k) oscillates about zero, by (2.84), we know that u(k) < 0 implies u(k +
1)≥ u(k). Thus, if we denote {u(kl)} as a subsequence of {u(k)}, where u(kl) is the first
element of the negative semicycle of {u(k)}, then liminfk→∞u(k)= liminf l→∞u(kl). On
the other hand, the combination of

u
(
kl
)≥ u

(
kl − 1

)− α2
(
kl − 1

)
m
(
kl − 1

)
k1

× [exp
{
u
(
kl − 1

)}− 1
]

exp
{
u2
(
kl − 1

)}
exp

{ kl−2∑
i=kl−1−[τ2]

b2(i)

} (2.86)

and u(kl − 1) > 0 gives

u
(
kl
)≥ α2

(
kl − 1

)
m
(
kl − 1

)
k1

[
1− exp

{
u
(
kl − 1

)}]
exp

{
u2
(
kl − 1

)}

× exp

{ kl−2∑
i=kl−1−[τ2]

b2(i)

}

≥−α2
(
kl − 1

)
m
(
kl − 1

)
k1

exp
{
u1
(
kl − 1

)}
exp

{ kl−2∑
i=kl−1−[τ2]

b2(i)

}

≥
(
− α2

(
kl − 1

)
m
(
kl − 1

)
k1

K2 exp

{ kl−2∑
i=kl−1−[τ2]

b2(i)

})L

.

(2.87)
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Therefore

liminf
l→∞

u
(
kl
)

≥
(
− α2

(
kl − 1

)
m
(
kl − 1

)
k1

K2 exp

{ kl−2∑
i=kl−1−[τ2]

b2(i)

})L

.
(2.88)

By the medium of (2.82), we have

liminf
k→∞

N1(k)

≥ (z∗3 (k)
)L

exp

{(
− α2(k)m(k)

k1
K2 exp

{ k−1∑
i=k−[τ2]

b2(i)

})L}
.

(2.89)

Hence liminfk→∞N1(k)≥ k2, where

k2 =H4 exp

{(
− α2(k)m(k)

k1
K2 exp

{ k−1∑
i=k−[τ2]

b2(i)

})L}
. (2.90)

�

Proof of Theorem 1.4. From Propositions 2.3–2.6, we can easily know that system (1.8) is
permanent. The proof is complete. �

We remark that, in the above discussions, we have obtained that under the conditions
(H1) and (H2), system (1.8) has at least one periodic solutions and it is also permanent.
Naturally we may conjecture whether the existence of positive periodic solutions of sys-
tem (1.8) implies its permanence or the permanence of system (1.8) implies the existence
of positive periodic solutions. This is a more challenging and interesting problem for fu-
ture study.
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[15] V. L. Kocić and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with
Applications, Mathematics and Its Applications, vol. 256, Kluwer Academic, Dordrecht, 1993.

[16] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Mathematics
in Science and Engineering, vol. 191, Academic Press, Massachusetts, 1993.

[17] Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system,
Journal of Mathematical Biology 36 (1998), no. 4, 389–406.

[18] W.-T. Li, Y.-H. Fan, and S. Ruan, Periodic solutions in a delayed predator-prey model with non-
monotonic functional response, submitted.

[19] R. M. May, Complexity and Stability in Model Ecosystems, Princeton University Press, New Jersey,
1973.

[20] , Biological populations obeying difference equations: stable points, stable cycles, and chaos,
Journal of Theoretical Biology 51 (1975), no. 2, 511–524.

[21] J. D. Murry, Mathematical Biology, Springer, New York, 1989.
[22] M. L. Rosenzweig, Paradox of enrichment: destabilization of exploitation ecosystem in ecological

time, Science 171 (1971), 385–387.
[23] S. Ruan and D. Xiao, Global analysis in a predator-prey system with nonmonotonic functional

response, SIAM Journal on Applied Mathematics 61 (2001), no. 4, 1445–1472.
[24] Y. Takeuchi, Global Dynamical Properties of Lotka-Volterra Systems, World Scientific, New Jersey,

1996.
[25] L.-L. Wang and W.-T. Li, Existence and global stability of positive periodic solutions of a predator-

prey system with delays, Applied Mathematics and Computation 146 (2003), no. 1, 167–185.
[26] , Periodic solutions and permanence for a delayed nonautonomous ratio-dependent

predator-prey model with Holling type functional response, Journal of Computational and Ap-
plied Mathematics 162 (2004), no. 2, 341–357.

[27] D. Xiao and S. Ruan, Global dynamics of a ratio-dependent predator-prey system, Journal of Math-
ematical Biology 43 (2001), no. 3, 268–290.

[28] D. Xiao and Z. Zhang, On the uniqueness and nonexistence of limit cycles for predator-prey systems,
Nonlinearity 16 (2003), no. 3, 1185–1201.



Y.-H. Fan and W.-T. Li 21

[29] H. Zhu, S. A. Campbell, and G. S. K. Wolkowicz, Bifurcation analysis of a predator-prey system
with nonmonotonic functional response, SIAM Journal on Applied Mathematics 63 (2002), no. 2,
636–682.

Yong-Hong Fan: School of Mathematics and Information, Ludong University, Yantai,
Shandong 264025, China
E-mail address: fanyh02@st.lzu.edu.cn

Wan-Tong Li: School of Mathematics and Statistics, Lanzhou University, Lanzhou,
Gansu 730000, China
E-mail address: wtli@lzu.edu.cn

mailto:fanyh02@st.lzu.edu.cn
mailto:wtli@lzu.edu.cn

