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We consider a class of vector nonlinear discrete-time Volterra equations in space lp and
derive estimates for the norms of solutions. These estimates give us explicit stability con-
ditions, which allow us to avoid finding Lyapunov functionals.

1. Introduction and statement of the main result

Volterra difference equations arise in the mathematical modeling of some real phenom-
ena, and also in numerical schemes for solving differential and integral equations (cf.
[7, 8] and the references therein).

One of the basic methods in the theory of stability and boundedness of Volterra differ-
ence equations is the direct Lyapunov method (see [1, 3, 4] and the references therein).
But finding the Lyapunov functionals for Volterra difference equations is a difficult math-
ematical problem.

In this paper, we derive estimates for the c0- and lp-norms of solutions for a class of
vector Volterra difference equations. These estimates give us explicit stability conditions.
To establish the solution estimates, we will interpret the Volterra equations with matrix
kernels as operator equations in appropriate spaces. Such an approach for Volterra dif-
ference equations has been used by Kolmanovskii and Myshkis [7], Kolmanovskii et al.
[8], Kwapisz [9], Medina [10, 11], and Gil’ and Medina [6]. Under some restriction, our
results generalize the main results from [6, 8, 11].

Let Cn be an n-dimensional complex Euclidean space with the Euclidean norm
‖ · ‖Cn . For a positive r ≤∞, put

ωr =
{
h∈C

n : ‖ · ‖Cn ≤ r
}
. (1.1)

As usual, c0 = c0(Cn) is the Banach space of sequences of vectors from Cn equipped with
the norm

‖h‖c0 = sup
k

∥∥hk∥∥Cn

(
h= (hk)∞k=1 ∈ c0, hk ∈C

n, k = 1,2, . . .
)

(1.2)
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and lp = lp(Cn) (1 < p <∞) is the Banach space of sequences of vectors from Cn equipped
with the norm

‖h‖lp =
[ ∞∑

k=1

∥∥hk∥∥pCn

]1/p

,
(
h= (hk)∞k=1 ∈ lp, hk ∈C

n, k = 1,2, . . .
)
. (1.3)

Let

ajk
(
h1, . . . ,hj−1

) (
h1, . . . ,hj−1 ∈ ωr ; k < j, j = 1,2, . . .

)
(1.4)

be n×n matrices dependent on j− 1 arguments. Consider the equation

xj =Gj
(
x1, . . . ,xj−1

)
+

j−1∑
k=1

ajk
(
x1, . . . ,xj−1

)
xk ( j = 1,2, . . .), (1.5)

where the mappings Gj : C( j−1)n→Cn have the properties

f j := sup
h1,...,hj−1∈ωr

∥∥Gj
(
h1, . . . ,h−1

)∥∥
Cn <∞ ( j = 1,2, . . .). (1.6)

Moreover, G1 ∈Cn is given and

f := { f1, f2, . . .
}∈ lp(C). (1.7)

In addition, it is assumed that

vjk = sup
h1,...,hj−1

∥∥ajk

∥∥
Cn <∞ (k < j, j = 1,2, . . .), (1.8)

Np(V) :=

 ∞∑

j=1

( j−1∑
k=1

v
p′

jk

)p/p′
1/p

<∞ (1.9)

with

1
p′

+
1
p
= 1. (1.10)
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To formulate the result, denote

mp(V)=
∞∑
k=0

Nk
p(V)
p
√
k!

,

Qp(V)= sup
j=1,2,...

[ j−1∑
k=1

v
p′

jk

]1/p′

.

(1.11)

Now we are in a position to formulate the main result of the paper.

Theorem 1.1. Let conditions (1.7) and (1.9) hold. Then a solution x = (x1,x2, . . .) of (1.5)
satisfies the inequalities

‖x‖lp ≤mp(V)‖ f ‖lp ,
‖x‖c0 ≤ ‖ f ‖c0 +Qp(V)mp(V)‖ f ‖lp , (1.12)

provided

‖ f ‖c0 +mp(V)Qp(V)‖ f ‖lp < r. (1.13)

Note that due to the Hölder inequality,

mp(V)=
∞∑
k=0

akNk
p(V)

ak p
√
k!

≤
[ ∞∑

k=0

akp
′
]1/p′[ ∞∑

k=0

N
pk
p (V)

akpk!

]1/p

(1.14)

for any positive a < 1. So

mp(V)≤ (1− ap
′)−1/p′

exp

[
N

p
p (V)

pap

]
. (1.15)

In particular, taking

a= p

√
1
p

, (1.16)

we have

mp(V)≤ bp exp
[
N

p
p (V)

]
, (1.17)

where

bp =
(

1− 1
pp′/p

)−1/p′

. (1.18)
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2. Proof of Theorem 1.1

First, assume that r =∞. Then conditions (1.7) and (1.9) imply

∥∥xj∥∥Cn ≤ f j +
j−1∑
k=1

vjk
∥∥xk∥∥Cn ( j = 1,2, . . .). (2.1)

Define on lp = lp(R) the operator V by

[Vh] j =
j−1∑
k=1

hk. (2.2)

Here, [h] j means the jth coordinate of the element h ∈ lp(R). The operator V is a
quasinilpotent one. So, due to the well-known lemma from the book by Dalec’kiı̆ and
Kreı̆n (see [2, Lemma 3.2.1]) (the comparison principle),

∥∥xj∥∥Cn ≤ yj , (2.3)

where yj is a solution of the equation

yj = f j +
j−1∑
k=1

vjk yk ( j = 1,2, . . .). (2.4)

Rewrite this equation as

y = f +V y. (2.5)

Lemma 2.1. Let conditions (1.7) and (1.9) hold. Then a solution y of (2.5) satisfies the
inequality

‖y‖lp ≤mp(V)‖ f ‖lp . (2.6)

Proof. Rewrite (2.5) as

y = (I −V)−1 f . (2.7)

By [5, Lemma 4.3],

∥∥Vk
∥∥
lp ≤

Nk
p(V)
p
√
k!

. (2.8)

Since

(I −V)−1 =
∞∑
k=0

Vk, (2.9)
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we have

∥∥(I −V)−1
∥∥
lp ≤mp(V), (2.10)

concluding the proof. �

Lemma 2.2. Let conditions (1.7) and (1.9) hold. Then a solution y of (2.5) satisfies the
inequality

‖y‖c0 ≤ ‖ f ‖c0 +mp(V)‖ f ‖lp . (2.11)

Proof. From (2.5) it follows that

‖y‖c0 ≤ ‖ f ‖c0 +‖V y‖c0 . (2.12)

But due to Hölder’s inequality

‖V y‖c0 ≤ sup
j=1,2,...

[ j−1∑
k=1

v
p′

jk

]1/p′

‖y‖lp =Qp(V)‖y‖lp , (2.13)

now (2.12) and Lemma 2.1 yield

‖y‖c0 ≤ ‖ f ‖c0 +Qp(V)‖y‖lp ≤ ‖ f ‖c0 +Qp(V)mp(V)‖ f ‖lp (2.14)

as claimed. �

Proof of Theorem 1.1. If r =∞, then the required result follows from Lemmas 2.1 and 2.2.
Let now r <∞. By a simple application of the Urysohn lemma and Lemma 2.2, we get the
required result. �
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