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In this paper we study the fixed points of the Log-linear discrete dynamics. We show
that almost all Log-linear dynamics have at most two fixed points which is a general-

ization of Soni’s result.
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1 INTRODUCTION

The log-linear discrete dynamics

ajl iy
cix™ e x .
Si(Xt X)) = =5 r @ i=1,...,n,
D1 GXY e X

have been studied originally as a socio-spacial
dynamic model by Dendrinos and Sonis [1]. Many
interesting phenomena, for example strange at-
tractors, pitch folk like bifurcations and invariant
circles [1-5] have been found to be contained in
them.

The log-linear dynamics maps depict a family
of dynamics defined systematically by matrix
A=(a;) and vector ¢= (cl,...,cn)T; like other
such families of dynamics (for instance the
Lotka—Volterra dynamics) they are a definitive
object of mathematical studies. Therefore a
thorough analysis of the log-linear dynamics is
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necessary because of the importance not only
from an applicational view point but also from a
pure mathematical view point.

In this paper we investigate the fixed points of
the dynamics as our first step of a more extended
mathematical study of the log-linear discrete dy-
namics. We define a real valued function on R,
which plays a key role in counting the number of
the fixed points found in the map, and we prove
that almost all dynamics have at most two fixed
points. This result is a generalization of Sonis’s
result [4].

2 DEFINITIONS AND NOTATIONS

We begin with some notations and definitions.
For an n-dimensional vector ¥ = (xi,... ,x,,)T,
let (X); be the ith component of X, i.e., (X);, = x;.

1
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Let

E =diag(1,...,1),
the n dimensional unit matrix,
i=(1,....0"TeR",

R ={eR"|x;>0fori=1,...,n},
A = [ReR"|Z-d=1 x>0
fori=1,...,n}.

For an nxn matrix 4 =(ay;), d denotes the ith
column vector of A4, i.e.,

67,' = (ali,...,a,,,-)T, A= (5],...,5,,).

Given an n X n matrix 4= (a;) and n positive real
numbers ¢y, ..., c,, we define a vector 4 and func-
tions g;, &, g, f; and f defined on R™" as follows:

5 = (logcy,... ,logc,,)T,

Qin

- a; .
gi(X)=cix™---xym, i=1,...,n,

E(®) = (g1(%), -, &n(®)),

n

8(F) =g-7=) a()
i=1

oy _ &i(%)

M) =gz

F@)=(AE), ..., u@E).

Since /' (¥) - @ =1, the map f gives dynamics on the
(n—1)-simplex A" !,

We call this dynamics the log-linear discrete
dynamics.

For a vector d = (di,...,dn) € R", let

Ald) = (@ + diil, ..., Gy + dyil).

If we modify a matrix 4 to a matrix A[J], then
the function g;(X¥) becomes

cix;zi]+dl . dy

aintd,
-‘x”m "

"= g@)x

and the function g(X) becomes

g(%)xh - xo.
This implies that the dynamics f do not change
under the modification 4 to A[d].
Therefore as the canonical form of a matrix 4,
we can consider, for example [1],

0, , 0
Ky ., X
* *

However we will not restrict a matrix 4 in the
canonical form, to keep a free hand for perturba-
tions in the set of n x n matrices M(n).

Let V={A4 € M(n)|det(4—E)=0} and M(n)=
M@m)—V={4€ M(n)|det(4—E)+#0}. Then since
det(4—E) is a polynomial function of a;’s, V'is a
(n*—1)-dimensional surface in n2-dimensional
space M(n). Hence V is a thin set in M(n) and
almost all matrices belong to M(n). Moreover
even if A is in V¥, one can modify A to A[d]
in A~4(n) except for the few and rare cases dis-
cussed later.

Suppose that 4 € A~4(n). We define functions of
a positive variable ¢ as follows:

(B
QOi(t =e_(§’.7)—i’ l:l,...,n,

@(1) = (#1(2), - - pa(0)),

and
(1) = B(1) - ,
where B=(A—E)~!. Note that O<I>(t) is not a

constant function and that @(z) € A""! if and only
if ®(r)=1.

3 FIXED POINTS

Suppose that X is a fixed point of f: that is
f(X)=X. We can find this fixed point of f by
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solving the nonlinear equation system

g1(%) = x18(%),

However we note that it is difficult to solve this
nonlinear equation system even numerically.

The following theorem shows that we can find
all fixed points of f by solving a single nonlinear
equation,

d(t)=1, t>0 (%)

whose numerical solutions can be easily obtained.

THEOREM 1 Let A€ M(n). Suppose that the
equation (%) has m distinct solutions t,...,tn.
Then f has just m fixed points $(t1), ..., J(tm).

Proof Suppose that f (¥) = X. Then g;(%) = x;t,
i=1,...,n, where t = g(X¥) ie.,

cixM e xgm =xt, i=1,...,n

Taking logarithms on both sides, we have

fy,~+2a,j logx; =logx;+logt, i=1,...,n,
J

(A—E)(logxi,...,logx,)" = =7+ (log?)i.
Since A—E has the inverse matrix B, one has

(log xi, ..., logx,,)T = —BYy+ logt - Bi,

logx; = —(BY),+logt- (Bid);, i=1,...,n.
Therefore one obtains
¢ (Bil); .
X = wi(t), i=1,...,n.

Since X -# = 1, ¢ is a solution of ®(¢)=1.
Conversely we show that if 7 is a solution of
the equation (), then @(7) is a fixed point of f.

First we notice that AB=B + E since E=
(A—E)B= AB—B. Then

gi((1)) = ci(o(0)™ - - (@alt))™
BN,
=\oE, ) T\,

ta,-; (Bﬁ')l+~--+a,~,,(8ﬁ)n

= C; = =
! e it (B'Y )| +"‘+ain(B7 )n

{(4BiD), {(BD)+1

= C; - = Cj =
! e(AB7 )i ! e(B'Y )it

=tpi(t), i=1,...,n,
and
g(B(1)) = E(@(0)) -
= (13 (1)) - i1 = 12(s)
Hence

s 8@ _e)
T =g ~w T

Therefore if 7 is a solution of the equation, then

[ (@) = % — o), i=1....m

so that @ (7) is a fixed point of f.

Finally if 7 and f are distinct solutions of the
equation, then o (7) # () since ¢ () is a mono-
tone function. Hence @(¢)),...,3(t,) are distinct.

In Section 5 we give Example 5 in which the
coefficients ¢y, ¢y, c3 are all equal to 1. Then the
equation has no solution. In general:

PROPOSITION 1 Suppose that A eﬂ(n) and ¢) =
---=¢, = 1. Then the equation (x) has:

1. one solution if (Bii), > 0,...,(Biu), >0,

2. one solution if (Bil), <O0,...,(Bii), <0,

3. no solution if (Bii); >0,(Bi); <0 for some
1<ij<n
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Proof 1In case (1) (resp. (2)), ®(¢) is an increas-
ing (resp. decreasing) function and

liTOQ(t) =0 (resp. 00), tlim ®(t) = oo (resp. 0).
— —00

Therefore the equation has unique solution. In
case (3)

¢ (Bit); .

B(1) > pi(t) = = tB7i >1  foranyt>1
e i

and
£ (BiD), 3

(1) > (1) = = 1B > 1 forany <1
e j

since ¥=0. Therefore the equation has no
solution.

4 THE NUMBER OF FIXED POINTS

In this section we prove that almost all log-linear
dynamics have at most two fixed points.
We first prove:

LEMMA 1 Suppose that

h(t) = ait™ + axt™ 4 - 4 a,t™,

where oy > ap > - > ay, and o, =0.

(1) Ifai,...,a,>0, then h(t) > 0 for all t > 0.
Q) If ap,...,ar >0, ari1,...,a,<0 for some
k(1<k<n), then

h(t) <0, 0<t<t,
h(ty) =0, =1,
h(t) >0, to<t

for some ty > 0.
Proof Note that

lim /(f) = oo.

t—00

Lemma 1 is true when #» = 2. We may therefore pro-
ceed by induction, assuming Lemma 1 true for n.

Let

h(t) = apt™ + apt®™ + - + apt® + apyq 1!

((11 >0[2 > >a,, >an+] :0)
Then
h/(t) = alaltal—l + azazt(lz—l 4. +anant(x,,—l

since a7 =0. We write 4'(¢) in the form

W' (t) =t k(2),
where
k(t) = byt? + - 4 byth,

J

bl = alal, . "bn = anan,

ﬂlzal—ana'“aﬂn:an_an:()'

Note that 8, > By >---> 8,=0. If ay, ..., dpy
>0, then by,...,6,> 0, s0 k(¢) > 0, t > 0 by the
assumption. Since A(0) = a,, >0 and A'(¥) >0
for all t >0, h(f) > 0 for all ¢ > 0, so that (1)
holds.

If a,...,a, >0 and a,;1 <0, then by,...,
b,> 0, so h(0) = a,;1 <0 and A'(t) >0 for all
t > 0. Since

lim A(t) = oo,

1—00

there exists #9 > 0 such that:

h(t) <0, 0<1t< 1,

h(tg) =0, =1,

h(t) >0, 1<t
If a,...,ax>0 and agyq1,...,a,.1 <0 for
some k (1<k<mn), then by,...,b >0 and

bry1,...,b,<0. Hence there exists #y >0 such
that:

(1) <0, 0<t<t,
h'(to) =0, t= 1,
h'(t) >0, 1<t
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Moreover since h(0)=a,+1 <0, A(t)<0 for 0<
t<ty.

Since A'(f)> 0 for all ¢ > ty and lim,_ A(f) =
oo, there exits #j > fo > 0 such that:

h() <0, 0<t<t,
h(tg) =0, t=1,
h(t) >0, 15<t.

Therefore (2) holds.

THEOREM 2  Almost all log-linear dynamics have
at most two fixed points.

Proof It suffices to show that the equation (x)

®(t)=1, t>0 (*)
has at most two solutions.
Without the loss of generality, we may write

(1) = ait™ + -+ + ait™ + const.

where a;,...,aq;>0and a1 >ar >---a.

If ap,...,a; > 0 (resp.<0), then by the same
arguments as the proof of Proposition 1, equa-
tion (x) has a unique solution.

Suppose the a,...,a, > 0 and gy, ..
for some k (1<k </). Then

Lop<0

(I’l(l) = alalt“‘—l + -+ a;alto"“l
— alallal—l(bltﬂl N bllﬁ’),

where
Bir=01—ay...,0r=0—

e b, =
=- b =—

alal'

bhy=1, b

.
a1a)

Note that 81> ---> 06, =0, by,...,br > 0 and

biy1,...,b;<0. By Lemma 1, there exist ¢, >0
such that:

(1) <0, 0<i1<uy,

&' (19) =0, =1,

(1) >0, 1<t

Therefore ®(r) is monotonically decreasing for
t<ty and ®(¢) is monotonically increasing for
t> 1.

Since

lim ®(7) = oo,

tl—lg-lO(D(t) =% t—00

the number of solutions is 0, 1 or 2 depending on
the value of @ (zy). Hence the number of the fixed
points is at most two.

Remark We suppose in Theorems 1 and 2 that
A—E is invertible. As the coefficients of A are
taken randomly, the probability that 4A—FE is
noninvertible is zero. However, when the coef-
ficients are restricted to integers, or when one
changes an entry of A4 continuously, one often
has to consider a matrix 4 with det(4—FE) = 0.
So we will study the case A—FE when it is non-
invertible.

Suppose that det(4—F) = 0. In this case one
may try to modify A to A[d] so that det(4[d]—
E)#£0.

Let C=(c;) = A—E. Since

det(A[d] — E) = det(C[|d]) = det(C)
+ d; det(iZ, Coyens En)

+ dndet(E'l,. .. ,5,,.-1,17),

one can choose d so that det(A]d] — E) # 0 ex-
cept for the case where

det(z}‘, G, .,En) == det(a,. .. ,En—l,ﬁ) =0.

ExXAMPLE Let

Then

-1 0 0
det(A —E)=det] 0 1 1] =0
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and
1 00 (—~1 1 0)
det]1 1 1] =det] 0 1 1
1 2 2 1 1 2
(-1 0 1
=det] 0 1 1] =0
L1 2 1)

So one cannot modify A to A[d] with det(A[d]
—E) #0. For this example, one can get fixed
points by simple calculations.

Suppose that ¢; =1. Then ¥ = (x1, x2, X3)T is a
fixed point if and only if

X1+x2+x3=1, X1,X%2,x3 > 0,

2
C2X1X2X3 = C3(X1x2X3) = 1.

This system of equations has no solution except
for the case where

_ 2

ca=cy, c>27,

in which case the fixed points make a closed
curve in the 2-simplex.

5 EXAMPLE

In this section we give some numerical examples
illustrating the forms of the function ®(z).
Example 1:

a=1, =1, =1,
3 1 -1
A= 1 1 0
-3 -1 3

Then

Oty =t+t*+13

is monotonically increasing and the equation has
one solution.

Example 2:
a=1, =1, a=1,
-1 -1 1
A=1-1 1 0
3 1 -1
Then
1
‘D(I)Z—t-+—2+;-3'

is monotonically decreasing and the equation has
one solution.

Example 3:
a=1, ¢c=17 ¢ =50,
0 1 -2
A=13 0 25
2 .05 0
Then
0.768706
(1) = 0.209128:% + 01235761 4 4 = Faceec

has one minimum (< 1) and the equation has two
solutions.

Example 4:
01:1, 02——‘—7, C3=50,
1 -2
A=13 0 —2.57419151135
2 05 0
Then

0.771993

B 02 0.500423
D(r) = 0.209128:°< + 0.124635¢ + 70345789
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has one minimum (= 1) and the equation has one
solution.

Example 5:
a=1 ao=1, c=1,
0 1 -2
A=1|3 0 =25
2 05 0
Then
1
__ .02 | .0.488889
() =177+t + £0.355556

has one minimum (> 1) and the equation has no
solution.
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