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The aim of this work is twofold. First we focus on the complex phenomenon of electrogram
fractionation, due to the presence of discontinuities in the conduction properties of the cardiac tissue in
a bidomain model. Numerical simulations of paced activation may help to understand the role of the
membrane ionic currents and of the changes in cellular coupling in the formation of conduction blocks
and fractionation of the electrogram waveform. In particular, we show that fractionation is independent
of INa alterations and that it can be described by the bidomain model of cardiac tissue. Moreover, some
deflections in fractionated electrograms may give nonlocal information about the shape of damaged
areas, also revealing the presence of inhomogeneities in the intracellular conductivity of the medium at
a distance.

The second point of interest is the analysis of the effects of space–time discretization on numerical
results, especially during slow conduction in damaged cardiac tissue. Indeed, large discretization steps
can induce numerical artifacts such as slowing down of conduction velocity, alteration in extracellular
and transmembrane potential waveforms or conduction blocks, which are not predicted by the
continuous bidomain model. Several possible numerical and physiological explanations of these effects
are given. Essentially, the discrete system obtained at the end of the approximation process may be
interpreted as a discrete model of the cardiac tissue made up of isopotential cells where the effective
intracellular conductivity tensor depends on the space discretization steps; the increase of these steps
results in an increase of the effective intracellular resistance and can induce conduction blocks if a
certain critical value is exceeded.
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1 INTRODUCTION

A region of “damaged” cardiac tissue is characterized by

the presence of cellular membrane subregions having

altered excitability and spoiled intracellular conductivity;

in these regions the excitation wavefronts propagate in

anomalous way and may give rise to conduction blocks,

reentries and arrhythmias; in particular, non uniform

membrane properties and intercellular coupling may result

in local differences in the shape of the action potential and

may generate fractionated electrograms with multiple

deflections. Such waveforms are frequently recorded in

patients affected by coronary diseases, ventricular

tachycardia or with chronic infarct. Conduction of

excitation in pathological hearts is still not completely

understood and represents an interesting open subject of

research. Formulation of a mathematical model of

activation in pathological cardiac tissue is one tool for

gaining insight into the mechanism of conduction

abnormalities.

The activation sequence in cardiac tissue is determined

by both the active membrane current dynamics and the

loading effects of the underlying tissue, due to cellular

coupling through gap junctions. Although the accumu-

lation of extracellular potassium and the resulting resting

membrane potential depolarization are among the most

important determinants of impulse propagation failure in

ischemic heart [14,26,34], it seems clear that changes in

passive electric properties of cell membrane (i.e. cell-to-

cell coupling) and discontinuities in effective intracellular

resistivity contribute to generate conduction blocks and

other rhythm disturbances [27].

In this work, we employ the bidomain model [3] in

order to study cardiac excitation in the presence of

damaged regions, i.e. regions where the cellular

membrane has compromised excitability or altered
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intracellular conductivity. The aim of this work is to

simulate electrical phenomena occurring in cardiac

diseases, without referring to any specific pathology. We

rather want to focus on the possible drawbacks connected

with numerical approximations of continuous macro-

scopic models of cardiac activity, drawbacks that can

occur especially during the simulation of pathological

conduction, for instance in ischemic or infarcted tissue.

Therefore, we model pathological conditions which

may occur in real cardiac tissue, without explicit reference

to any specific disease. Our aim is to describe some

physiological and numerical aspects connected with the

simulation of such abnormal situations related to the

excitation process, focusing on the following two topics:

the first aspect is the occurrence of electrogram

fractionation, i.e. waveforms with multiple deflections,

in the presence of non homogeneous distribution of

membrane properties; the second one is the effect of

numerical discretization during the simulation of slow

conduction.

There still exist some controversies in characterizing

activation maps related to very slow conduction or to

regions with non homogeneous conductivity. In fact, in

such situations it is not clear how to identify a set of

activation times, from both an empirical and computational

point of view [2]. The instant of largest negative derivative

›ue=›t represents the most common criterion at an

experimental level for identifying activation times from

electrograms; however, the determination of activation

time in the region overlying an infarct is complicated

because surviving cells in this region do not have a uniform

conduction velocity and the electrograms often appear as

fractionated, i.e. with multiple deflections which compli-

cate the choice of the deflection corresponding to local

membrane depolarization [35,23]. Fractionated polyphasic

electrograms are frequently recorded during mapping

studies in patients with coronary artery disease, ventricular

tachycardia or chronic, healed myocardial infarction.

The mechanism that produces fractionation is not

completely understood. Results from experimental studies

suggest that in chronically infarcted ventricular myocar-

dium, slow conduction and fractionated electrograms

result from increased coupling resistance between other-

wise normal surviving regions of myocardium and not from

an abnormality of the membrane action potential [11]. This

finding is also confirmed by our numerical simulations. In

Ref. [23], it has been shown through computer modeling

and also in in vitro experiments that fractionated

electrograms can be produced as uniform wavefronts

encounter zones of slow conduction produced by increased

cell-to-cell coupling resistance. In these conditions, the

local activation time may not correspond to the largest or

fastest deflection in a polyphasic fractionated electrogram,

and this makes the experimental results hard to interpret. In

particular, neither criteria on the amplitude nor on the time

derivative of the extracellular potential are adequate to

identify the activation time and the unique valid criterion

is the analysis of the amplitude of the transmembrane

potential or sodium current time derivative. More recently,

Ellis et al. [10] analyzed the relation between hetero-

geneous intercellular coupling and electrogram fractiona-

tion, using a computer monodomain model of elements

grouped into cells heterogeneously coupled through

randomly varying gap junctional resistances.

In this work, we analyze the effects of discontinuities of

various nature in the passive and active properties of the

cardiac tissue on the extracellular electrograms, using a

bidomain model of myocardial tissue. This is a very

interesting problem, since recurrent discontinuities in

cellular coupling at different levels are present also in

normal cardiac tissue, and similar phenomena are likely to

occur also in normal hearts. In particular, these aspects are

analyzed in relation to variations of the discretization

parameters and to the effects of such discretization on

numerical results.

The plan of the work is the following. In the second

section, we define a bidomain model of activation in a

simplified 3D wall of anisotropic myocardium. In the third

section, we shortly describe the numerical approximation

method used and the setting of our simulations. In the

fourth section, we present our main results. The first set of

simulations, in Section 4.1, is devoted to the analysis of

electrogram fractionation in pathological conditions. In

Section 4.2, we analyze the effects of discretization in the

presence of areas of slow conduction. Indeed, large

discretization steps can induce numerical artifacts such as

slowing down of conduction velocity, alteration in

potential waveforms or conduction blocks, which are not

predicted by the continuous bidomain model. These topics

are discussed in the fifth section. Finally, some

conclusions are provided in the sixth section.

2 THE MATHEMATICAL MODEL

A macroscopic model of cardiac activation in a simplified

insulated three-dimensional wall of anisotropic myocar-

dium is considered [3–5,17]. The model is based on the

bidomain representation of the cardiac tissue, in the

presence of general anisotropy conditions, fiber rotation

laws and Hodgkin–Huxley-type gating equations for the

ionic current [13]. It is described by a reaction–diffusion

(R–D) system consisting of a semilinear parabolic–

elliptic system of partial differential equations coupled

with an ordinary differential system

xCmvt þ xIionðv; q̂Þ2 div MiðxÞ7v

¼ div MiðxÞ7ue þ Iappðx; tÞ in V£�0;T½

div MðxÞ7ue ¼ 2div MiðxÞ7v in V£�0;T½

q̂t þ f̂ðv; q̂Þ ¼ 0 in V£�0;T½

nT MiðxÞ7v ¼ 0 nT MðxÞ7ue ¼ 0 on ›V£�0;T½

vðx; 0Þ ¼ v0 q̂ðx; 0Þ ¼ q̂0 in V ð1Þ

where ue and v are the extracellular and transmem-

brane potentials, respectively, and q̂ ¼ ðq1; . . .; qpÞ [ Rp
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represents the vector whose components are the p

gating variables, describing the kinetics of the

membrane ionic channels; T . 0;V is a bounded and

open subset of R3 and n is the outward unit normal

vector to ›V; Mi, Me and M ¼ Mi þ Me are the

conductivity tensors for the intracellular, extracellular

and total media, which take into account the effect of

cardiac muscle anisotropic fiber structure and of the

anisotropic conduction on the macroscopic current flow.

Moreover, Cm is the surface capacitance of the

membrane, x is the ratio of the membrane area per

unit of tissue volume, Iapp is the stimulation current

applied to the intracellular space and f̂ : R £Rp ! Rp is

a nonlinear vector function.

Iion : R £ Rp ! R is the ionic current per unit area,

carried by the flow of ions across the membrane. Since, we

are interested only in the activation phase of action

potential, we use Ebihara–Johnson membrane model (EJ)

[9]. Nevertheless, numerical simulations of more complex

membrane models, such as Beeler–Reuter–Ebihara–

Johnson (BREJ) [8,29] or others, give substantially the

same results as regards the depolarization phase. On the

other hand, more recent models such as the one by Luo and

Rudy [20,21] improve Beeler–Reuter model by introdu-

cing the EJ fast sodium component for the depolarization

phase with only minor modifications to parameters

calibration and incorporating a slow inactivation gate to

represent slow recovery of the sodium channel during the

repolarization phase of an action potential. Therefore, in

our simulations, p ¼ 2; q1 ¼ m; q2 ¼ h and Iion is given by

Iionðv;m; hÞ ¼ �gNam 3hðv 2 vNaÞ þ �gLðv 2 vLÞ; ð2Þ

where ḡNa is the maximum sodium conductance, ḡL is the

specific conductance for repolarization currents, which is

assumed to be equal to membrane conductance at rest; vNa

is the equilibrium potential for sodium current and vL is the

equilibrium potential for repolarization currents, which

coincides with resting potential vr. The ionic current model

(2), that will be indicated as EJ in the following, is the sum

of two terms: the first one represents sodium current INa as

described by Ebihara and Johnson [9]. The second one is a

linear approximation of repolarization ionic currents

(potassium, leakage and others) [36].

The nonlinear term f̂(v,q̂ ) in the gating equations for m

and h is of the form

f̂ ¼ ðf 1; f 2Þ;

f i ¼ f iðv; qiÞ ¼ 2ðaqi
ðvÞ þ bqi

ðvÞÞqi þ aqi
ðvÞ;

i ¼ 1; 2;

where aqi
(v ) and bqi

(v ) are non linear functions of the

transmembrane potential as given in Ref. [9].

The Ebihara–Johnson model does not allow to modify

extracellular potassium concentration; hence, numerical

simulation of a non excitable tissue can be performed

by inactivation of fast sodium channels, namely by a

reduction of Naþ conductance [16], and by a shift of

resting potential vr toward more positive values [34]. The

loss of resting potential reduces the maximum upstroke

velocity of the action potential (v̇max) of a cell and alters

INa kinetics. At about vr ¼ 250 mV membrane excit-

ability is lost and, consequently, total propagation block is

present. Sodium conductance reduction can indeed result

from inactivation of sodium channels, since the inward

sodium current intensity depends on the fraction of open

sodium channels when the cell undergoes excitation and

on the size of the Naþ electrochemical potential gradient

(concentration of Naþ outside cell, in the extracellular

space, relative to Naþ concentration inside cell). More

precisely, in our numerical simulations of pathological

tissue the sodium membrane conductance is reduced to

about 37% of its normal value. Moreover, Kþ-induced

membrane depolarization is obtained by raising the

potential value vr at rest in the injured region [27,34]. The

parameter calibration was carefully chosen on the basis of

the literature.

Following Keener [17], numerical simulations have been

performed in rectangular plane sections of a 3D myocardial

wall. In this way, we are still able to analyze excitation

pathways around obstacles of damaged tissue inside the

ventricular wall. Most of the simulations refer to a slab with

parallel fibers (see Fig. 1), but the effects of fiber rotation

can be taken into account by introducing the tensors

Mi;e ¼
s i;ec2 þ s

i;e
t 0

0 s
i;e
t

0
@

1
A;

where s
i;e
l and s

i;e
t are the conductivity coefficients

along and across fibers, respectively,s i;e ¼ s
i;e
l 2 s

i;e
t ; c ¼

cosw; s ¼ sinw and w ¼ wðzÞ is the angle between x axis

and the unit vector al ¼ alðzÞ defining fiber direction at

level z. In this last case, moving from epicardium to

endocardium fiber direction rotates according to the low

w ¼ wðzÞ in planes perpendicular to z. Obviously, in Fig. 1

we have w ; 0; on the other side, when w varies with z, the

slab under consideration contains the traces of the fibers

lying over planes perpendicular to the z axis.

This model neglects the fiber layer curvature and the

fiber rotational structure is simplified; nevertheless, the

model incorporates the main structural and functional

macroscopic characteristics of a portion of ventricular

tissue during the excitation process. Therefore, the

numerical approximation of this simplified model allows

studying the influence of fibers rotation and of anisotropic

and inhomogeneous conduction on excitation process.

Fiber direction rotates with depth and the combined effect

of anisotropic conduction and of fiber rotation is identified

as rotational anisotropy.

It has been known for many decades that myo-

cardial necrosis or mechanical injury leads to uncoupling

of damaged cells from normal cells. An increase of

gap junctional resistance induces electrical cell-to-cell
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uncoupling and ultimately conduction block. The

coupling threshold for induction of propagation block in

the presence of normal cellular excitability is very high

[30]; at decreased membrane excitability (as present in

myocardial ischemia), an already moderate decrease in

electrical coupling is expected to contribute to propa-

gation slowing and block [30]. Although a continuous

bidomain model of propagation does not incorporate a

microscopic description of gap junctional resistance,

cellular uncoupling can be simulated at a macroscopic

level by inserting regions of cardiac tissue with greater

effective intracellular resistivity. Therefore, in our

simulations of infarcted areas we modified the effective

conductivity tensor Mi: the conductivity coefficients of the

inner region are reduced to 5% of the normal values.

Although in some cases osmotic decrease of extracellular

space may contribute to cellular potassium loss and may

affect extracellular conductivities, in our simulations we

neglect such effects and modify only the intracellular

coefficients in the pathological region; indeed, in the inner

pathological region intracellular conductivities must be

reduced, since they are the macroscopic expression of the

cellular junctions depauperation, especially in the

transverse direction.

All the simulations performed in this work refer to a

square section (Fig. 1), with a rectangular subregion of

“pathological” tissue embedded in the middle having

altered domain properties. These alterations involve both

cell-to-cell coupling and membrane excitability as

specified above.

3 NUMERICAL APPROXIMATION

An integration method based on semidiscrete Galerkin

approximation of the R–D system and Crank–Nicholson

time-stepping is considered [33]. This method allows to

reduce considerably the overall computation time required

for solving Hodgkin–Huxley-type models. More pre-

cisely, system (1) is approximated in space by

means of finite element Galerkin method [28], with

piecewise linear, local support polynomials, yielding a

differential-algebraic system of the form

xCm

dv

dt
ðtÞ þ P21AivðtÞ þ P21iðvðtÞ; qðtÞÞ

¼ 2P21AiuðtÞ þ P21iaðtÞ

dq

dt
ðtÞ þ fðvðtÞ; qðtÞÞ ¼ 0 AuðtÞ þ AivðtÞ ¼ 0

qð0Þ ¼ q0 ¼ ðq1;0; q2;0Þ vð0Þ ¼ v0

ð3Þ

where vðtÞ ¼ ðv1ðtÞ; . . .; vNh
ðtÞÞT [ RNh , uðtÞ ¼

ðu1ðtÞ; . . .; uNh
ðtÞÞT [ RNh and qðtÞ ¼ ðq1ðtÞ; q2ðtÞÞ

T [
R2Nh ;t [ ½0; T� are the vectors whose components give

an approximation at time t of the nodal values of the

solutions v(t ), ueðtÞ; qiðtÞ, i ¼ 1; 2 over an uniform grid.

The mass matrix P ¼ ðPk;jÞ is definite positive of

dimension Nh, with Pk;j ¼
Ð
V
wkwj dx; k; j ¼ 1; . . .;Nh;

wr, r ¼ 1; . . .;Nh being the so called shape functions;

AðiÞ ¼ ðaðiÞ
rj Þ; aðiÞ

rj ¼
Ð
V
ð7wjÞ

T MðiÞ7wr dx; r; j ¼ 1; . . .;Nh;
are the symmetric semidefinite positive matrices of order

Nh £ Nh associated to the discretization of the elliptic

operators. Finally, iaðtÞ ¼ ð
Ð
V

IappðtÞwk dx; k ¼ 1; . . .;NhÞ
T

represents the discretization of the stimulus. The integrals

are computed by means of the approximated trapezoidal

rule (mass lumping ). System (3) is discretized by means of

Cranck–Nicholson method [24]. This yields the nonlinear

finite difference system

2xCm

Dt
ðvlþ1 2 vlÞ ¼ 2P21Aiv

lþ1 2 P21Aiv
l

2 P21iðvlþ1;mlþ1; hlþ1Þ

2 P21iðvl;ml; hlÞ2 P21Aiu
lþ1

2 P21Aiu
l þ P21ðiaðt

lÞ þ iaðt
lþ1ÞÞ

2

Dt
ðqlþ1 2 qlÞ ¼ 2fðvlþ1;qlþ1Þ2 fðvl; qlÞ þ ql

Aulþ1 þ Aiv
lþ1 ¼ 0; l ¼ 0; 1; . . .;M 2 1:

FIGURE 1 Scheme of the domain used in the simulations. The vertical dotted lines represent fiber direction in all the simulations except Fig. 8, where
fibers rotate with z. The nodes of the uniform grid marked by a dot are labelled from top to bottom, from 1 to 6 (Panel A) and from A to G (Panel B).
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The nonlinear terms iðvlþ1; qlþ1Þ and fðvlþ1; qlþ1Þ are then

linearized by means of the second order Taylor expansion

fðy lþ1Þ ¼ fðy lÞ þ fyðy
lÞðy lþ1 2 y lÞ:

The overall time discretization method turns out to be

second order accurate [33] and yields the linear algebraic

system

2xCm

Dt
I þ P21Ai þ Jl

� �
vlþ1 þ P21Aiu

lþ1

þ Dl
1mlþ1 þ Dl

2hlþ1 ¼ bl
1

2
Dt

2
Dl

3vlþ1 þ I þ
Dt

2
Dl

4

� �
mlþ1

¼ 2
Dt

2
Dl

3vl þ I þ
Dt

2
Dl

4

� �
ml þ Dt bl

2

2
Dt

2
Dl

5vlþ1 þ I þ
Dt

2
Dl

6

� �
hlþ1

¼ 2
Dt

2
Dl

5vl þ I þ
Dt

2
Dl

6

� �
hl þ Dt bl

3

Aiv
lþ1 þ Aulþ1 ¼ 0;

where, for k ¼ 1; . . .;Nh;

Jl ¼ diagðJ lðkÞÞ; J lðkÞ ¼ xð �gNaðm
l
kÞ

3hl
k þ �gLÞ;

Dl
i ¼ diagðDl

iðkÞÞ; i ¼ 1; . . .; 6;

Dl
1ðkÞ ¼ 3x �gNaðm

l
kÞ

2hl
kðv

l
k 2 vNaÞ;

Dl
2ðkÞ ¼ x �gNaðm

l
kÞ

3ðvl
k 2 vNaÞ;

Dl
3ðkÞ ¼ ð1 2 ml

kÞ
›amðv

l
kÞ

›vl
k

2
›bmðv

l
kÞ

›vl
k

ml
k;

Dl
4ðkÞ ¼ amðv

l
kÞ þ bmðv

l
kÞ

Dl
5ðkÞ ¼ ð1 2 hl

kÞ
›ahðv

l
kÞ

›vl
k

2
›bhðv

l
kÞ

›vl
k

hl
k;

Dl
6ðkÞ ¼ ahðv

l
kÞ þ bhðv

l
kÞ;

bl
1 ¼

2xCm

Dt
I 2 P21Ai þ Jl

� �
vl 2 P21Aiu

l þ Dl
1ml

þ Dl
2hl 2 2P21iðvl; qlÞ þ P21iaðt

lþ1Þ þ P21iaðt
lÞ;

bl
2 ¼ ð2ðamðv

l
1Þ þ bmðv

l
1ÞÞm

l
1 þ amðv

l
1Þ; . . .;2ðamðv

l
Nh
Þ

þ bmðv
l
Nh
ÞÞml

Nh
þ amðv

l
Nh
ÞÞT ;

bl
3 ¼ ð2ðahðv

l
1Þ þ bhðv

l
1ÞÞh

l
1 þ ahðv

l
1Þ; . . .;2ðahðv

l
Nh
Þ

þ bhðv
l
Nh
ÞÞhl

Nh
þ ahðv

l
Nh
ÞÞT :

At every time step t l, the totally discretized system can

be rewritten in the block form

Glvlþ1 þ Aiu
lþ1 ¼ Elvl 2 Aiu

l þ Fl

Aiv
lþ1 þ Aulþ1 ¼ 0;

ð4Þ

where the gating equations have been incorporated into

the terms G l, E l and F l. The algebraic system (4) is solved

by means of a nested iterative method. The outer iteration

is given by a block Gauss–Seidel scheme

vlþ1;0 ¼ vl ulþ1;0 ¼ ul

for j ¼ 0; 1; . . .; n Glvlþ1;jþ1 ¼ 2Aiu
lþ1;j þ gl ð5Þ

Aulþ1;jþ1 ¼ 2Aiv
lþ1;jþ1; ð6Þ

with gl ¼ Elvl 2 Aiu
l þ Fl: At each step of this outer

iteration, we have to solve two linear algebraic systems of

order Nh, for which different linear solvers have been used

and compared [33].

The procedure for computing the activation time is the

following: at first, the values of ›INa=›t are obtained from

INa by means of a second order centered difference; then

the maximum of j›INa=›tj is localized on an interval

containing three successive time instants and a local

quadratic interpolant of j›INa=›tj is built; subsequently the

activation time is computed as the instant at which such

interpolant is maximum.

All the simulations presented in the following refer to

uniform grids over a square section, with a rectangular

subregion of “pathological” tissue embedded in the middle

(Fig. 1). The position of the depressed area is such to allow

the occurrence of uniform propagation. To minimize

discretization errors associated with the discontinuity in

domain properties at the interface between the “normal”

and the “pathological” areas, a thin border region was

inserted with domain properties intermediate between

those of the two regions. The employed discretization step

Dt ¼ 0.02 ms and Dx ¼ Dz ¼ 0.005 cm were chosen so

that further reduction did not produce any significant

variation of the numerical results. The space discretization

steps were then doubled in order to analyze the numerical

artifacts associated with non accurate numerical approxi-

mations of the bidomain model. The relative error between

the two different simulations may reach 20% in the region

of normal propagation.

4 RESULTS

Several numerical simulations have been performed in

order to analyze the effect of changes in cellular coupling
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and in membrane excitability on propagation velocity and

on the associated generation of fractionated electrograms.

In order to eliminate other factors that may contribute to

the generation of such phenomena, we consider at first a

cardiac section with fibers parallel to x axis ðw ¼ 0Þ: Fiber

rotation will be considered later on.

The first group of simulations (“Electrogram fractio-

nation” section) highlights the relation between cellular

coupling variations and the appearance of fractionation in

the electrograms. Our simulations showed that fractio-

nation occurs in the presence of discontinuities in the

conductivity properties of the cardiac tissue, regardless of

the membrane model employed. On the contrary, it seems

that the membrane current model plays a role in the

generation of conduction blocks, since a cell having a

decreased membrane excitability requires a greater

stimulating current to raise it to threshold and the loading

effect of the underlying tissue prevents the excitation of

the tissue still at rest. In this regard, it is worth noticing

that conduction blocks can actually occur in the

simulation of propagation in a bidomain wall of infarcted

myocardium, for instance in the presence of excessive

inactivation of INa or depolarization of vr. Nevertheless, in

some cases, in a discretization of continuous macroscopic

models like the bidomain, the occurrence of propagation

failure has to be considered a numerical artifact. This topic

will be treated in “Effects of discretization–Conduction

blocks” section, where also other determinants of

conduction blocks are considered, such as fiber rotation.

4.1 Electrogram Fractionation

The first group of simulations refers to a section of

dimension 0.5 cm £ 0.5 cm (Fig. 1), where fibers are

parallel to x axis and an uniform stimulation is applied

along z axis to simulate plane wave propagation along

fibers, with intensity iapp ¼ Iapp=x ¼ 1:44 mA=cm2: The

conductivity values along x and z direction and the sodium

conductance value for the pathological and intermediate

regions are listed in Table I; the remaining parameters

coincide with those of Table II. Propagation is relatively

fast in x direction and slow in z direction, because of

anisotropic conductivities.

Numerical simulations show that the inward sodium

current reduction in the pathological area yields a

reduction of the rate ðdv=dtÞ and amplitude of

depolarization, of conduction velocity, of the electrotonic

current flux, of INa current and of extracellular potential

amplitude. In some cases, further depolarization and

inactivation of the Naþ channels may decrease excitability

of cardiac fibers to such an extent that it may also generate

conduction blocks. In fact, the fraction of Naþ channels

available for opening is determined largely by the level of

membrane potential at which an action potential is

initiated. For cardiac cells with persistently low levels of

resting potentials (which may be between 260 and

270 mV) caused by disease, a significant fraction of the

Naþ channels is inactivated and, therefore, unavailable for

activation by a depolarizing stimulus. Conduction may be

blocked in regions where cells are depolarized at about

vr ¼ 250 mV: Thus, in a diseased region, there may be

some areas of slow conduction and some areas of

conduction blocks, possibly depending on the level of

resting potential and on the corresponding degree

of inactivation of sodium channels. This combination

may cause reentry of excitation.

Another factor that may cause slow conduction and

blocks necessary for reentry is an increase of gap

junctional resistance which induces electrical cell-to-cell

uncoupling, leading to a reduced spread and magnitude of

the side-to-side current along the myocardial fibers [14].

Figure 2 shows the transmembrane potential (A), the

sodium current (B), the extracellular potential (C)

waveforms at the nodes selected in Fig. 1, Panel A and

the isochrone level lines of the activation time (D). The

discretization steps employed are Dx ¼ Dz ¼ 0:005 cm

and Dt ¼ 0:02 ms:
Looking at the different waveforms and at the sodium

current profiles, we see evident differences from one node

to another. In the presence of such heterogeneous signals,

it is sometimes difficult to differentiate true propa-

gating electrical activity (local cardiac activation) from

electrotonic depolarization. Uniform propagation occurs

TABLE I Parameter values for the pathological and intermediate regions, used in the simulations of the action potential in the presence of a subregion
with depressed EJ membrane

Intermediate Value Infarcted Value

si
l 0.5 mS/cm si

l 0.1 mS/cm
si

t 0.05 mS/cm si
t 0.01 mS/cm

�gNa 24 mS/cm2 ḡNa 13 mS/cm2

vr 270 mV vr 260 mV

TABLE II Parameters values in normal tissue

Parameter Value

iapp current 1.44 mA/cm2

iapp duration 0.5 ms
x 2000 cm21

vNa 33.4 mV
�gL 0.05 mS/cm2

Cm 1.0mF/cm2

si
l 2.0 mS/cm

si
t 0.2 mS/cm

se
l 8.0 mS/cm

se
t 2.0 mS/cm

ḡNa 35.0 mS/cm2

vr 280 mV
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if a patch of membrane can supply enough current to

depolarize itself and charge the capacitance of the

neighboring tissue, which has yet to depolarize. Otherwise

current flow is no longer regenerative, only an electrotonic

deflection appears and conduction will eventually

terminate. In [40] Witkowski et al. proposed the presence

of a balanced inwardly and outwardly directed transmem-

brane charge, obtained from the ratio of the inward (A2) to

outward (Aþ) area under the cardiac transmembrane

current curve ðA2ðImÞ=AþðImÞ; where Im ¼ Cmvt þ IionÞ;
as a criterion to differentiate propagating from electro-

tonic deflections. They identified the value

A2ðImÞ=AþðImÞ < 1 as an index of propagating activity

and the value A2ðImÞ=AþðImÞ < 0 as corresponding to

electrotonic deflection. The values in between these two

extremes ð0:0 , A2ðImÞ=AþðImÞ , 0:9Þ were termed

transitional and correspond to a depressed activation.

Under these conditions, we cannot be certain if the

observed signals represent high-level electrotonic inter-

actions versus some level of decrementing conduction.

The area under the cardiac transmembrane current curve

was computed using the iterated trapezoidal quadrature

rule. Another possible location-dependent quantitative

measure of conduction is the safety factor of Wang and

Rudy [39]. In this work, we assume the value

A2ðImÞ=AþðImÞ ¼ 0:2 as the threshold value for discrimi-

nating between true local cardiac activation and electro-

tonic depolarization. When such a threshold value is not

reached, the membrane patch is considered inactive and

the mesh point under consideration is regarded as

inexcitable; at this node the activation time selected as

maximizing ›INa=›t is not significant and is ignored when

tracing the activation isochrones.

As a consequence of fiber orientation, depolarization

proceeds from bottom to the top, parallel to x axis and

enters the pathological region from below and following a

diagonal path. In this region, we record a severely

depressed conduction velocity, but the ratio of negative to

positive area under the Im curves attests to the presence of

true local propagated activation over the entire volume.

When an action potential propagates at a constant

velocity, a biphasic electrogram is usually recorded by a

unipolar electrode near the surface of the tissue; on the

contrary, when the action potential passes through regions

with discontinuous membrane properties and hetero-

geneous distribution of cell-to-cell coupling resistance the

corresponding electrograms deviate from normal and may

present several deflections, occurring at the times when

the activation wavefront crosses the discontinuity

barriers [23].

In Fig. 2, Panel C, we can notice the presence of

fractionated electrograms, occurring when the wavefront

crosses the boundary of the region having reduced

conductivity. The potential waveforms at some of the

nodes from 1 to 6 are plotted separately in Fig. 3, in order

to better show this phenomenon. While node 6 is charac-

terized by a biphasic extracellular potential where the

fastest deflection corresponds to local activation, the other

FIGURE 2 Time course of v (Panel A), INa (Panel B) and ue (Panel C) at the nodes whose locations are marked in Fig. 1, Panel A. The transmembrane
potential waveforms are numbered with the index of the node they refer to. INa is expressed in mA/cm2. Panel D displays isochrone level lines of
activation time with a time step of 1 ms, computed as the instant of maximum j›INa/›tj. A line stimulus is applied at an edge along the z axis, with a
duration of 0.5 ms to initiate propagation. Discretization steps: Dx ¼ Dz ¼ 0:005 cm and Dt ¼ 0:02 ms:
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nodes exhibit polyphasic electrograms with a dominant

deflection at about 5–6 ms, which corresponds to the time

when the front reaches the slow conducting region and

which is not an index of local activation at that node. This

deflection represents a passive extracellular current, which

does not modify the transmembrane potential and which

gives distance (non local) informations on the shape and

dimension of the depressed region. At node 1, the second

deflection corresponds to the real local activation, as

attested by the INa and Im profiles, while at the nodes 2

and 4 the deflection corresponding to local activation,

respectively, at 13.74 and 7.8 ms, is little pronounced.

Finally, the small deflection occurring at about 16 ms at

nodes 2, 4, 6 corresponds to the time when the wavefront

reaches the upper boundary of the depressed region;

therefore, the discontinuity in the conductivity properties

of the medium affects also nodes like 6, lying in the

normal region and which should not present alterations in

the waveform profiles. All these results are in agreement

with the ones in [23], where a monodomain model of a

cardiac sheet imbedded into an unbounded conducting

medium is considered versus the present bidomain model

of an insulated cardiac slab. The slower the conduction in

the inner region, the more this phenomenon is evident. In

fact, it is known [36,33] that slow conduction produces

extracellular electrograms with smaller amplitude and less

steep deflections with respect to the ones occurring during

fast propagation. As the propagation velocity of the

excitation wavefront in the inner region slows down, the

polyphasic nature of electrograms becomes more evident,

the deflection amplitude, corresponding to local acti-

vation, becomes smaller and less steep. However, it is

worth noting that propagation speed reduction is not able

to cause electrogram fractionation by its own.

4.2 Effects of Discretization–Conduction Blocks

The use of coarse grids in the numerical discretization of

the bidomain problem (1), can induce in the approximate

solution a behavior which differs from the one predicted

by the continuous model; more precisely, the wavefront

propagation exhibits features that resemble those of

discrete cellular models. In this section, we analyze the

effects of discretization in the presence of areas of slow

conduction. It should be remarked that, since in our case

the discrete model derives from the approximation of a

continuous bidomain model, any behavior, which is not

consistent with the continuous theory can only be due to

numerical artifact, and cannot be viewed as an improve-

ment on continuous theory. Nevertheless, being aware

about the differences that can occur using coarse rather

than fine grids, can be useful for two reasons:

1. it warns against misunderstandings and wrong

interpretations of numerical results;

2. it may give informations and hints about possible

different results that can be obtained using discrete

cellular models of cardiac tissue.

The simulation of Figs. 2 and 3 has been repeated

using a coarse space mesh with discretization steps Dx ¼

Dz ¼ 0:01 cm and Dt ¼ 0:02 ms and is displayed in Figs. 4

and 5. In Fig. 4, we can see high frequency oscillations in

the fractionated extracellular potential profiles. It is worth

FIGURE 3 Time course of v (Panel A), ue (Panel B), INa (Panel C) and Im (Panel D) at the nodes 1, 2, 4 and 6, whose locations are marked in Fig. 1,
Panel A. v and ue are expressed in mV, while INa and Im in mA/cm2. The ratio of negative to positive area under the Im curves is given in the lower right
corner of each box of Panel D. Discretization steps: Dx ¼ Dz ¼ 0:005 cm and Dt ¼ 0:02 ms:
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noting that they have no physiological meaning, but

merely a numerical origin. They appear at times when the

wavefront propagates slowly in the injured region. In fact,

the wavefront conduction velocity varies from a maximum

of 0.0519 cm/ms at nodes in the normal region to a

minimum of 0.0016 cm/ms and the waveform oscillations

occur during the time interval when the wavefront crosses

the slow conduction region. As we can see from Figs. 2

and 3, these spurious oscillations can be reduced and

completely suppressed by reducing the space mesh. On the

contrary, no improvement in the quality of waveforms

derives from a reduction of Dt only.

A very interesting aspect of Fig. 4 is the presence of a

considerable slackening of conduction speed in the

FIGURE 4 Same format as in Fig. 2 but using a coarse mesh with steps: Dx ¼ Dz ¼ 0:01 cm and Dt ¼ 0:02 ms:

FIGURE 5 Same format as in Fig. 3 but using a coarse mesh with steps: Dx ¼ Dz ¼ 0:01 cm and Dt ¼ 0:02 ms:
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longitudinal direction, immediately after the interface

with the injured region; the wavefront travels around the

obstacle represented by the depressed area and enters it

following a lateral path. However, differently from Fig. 2,

in this case the local circuit current is unable to propagate

through the inner region and it is only sufficient to

depolarize passively (i.e. electrotonically) the tissue.

Therefore, two depolarization wavefronts enter the

damaged area: one from below, having severely depressed

conduction velocity, and the other from above, following

lateral excitation pathways. The former is responsible for

the depolarization of nodes from 6 back to 3. Conduction

is so depressed, that it fails before reaching node 2 (we can

see from Fig. 5, Panel D that no local cardiac activation is

present at node 2). The latter gives rise to a new

depolarization current at the internal nodes, which were

not sufficiently excited from below. However, this current

cannot activate cellular membrane at the center of the

depressed region (Fig. 4, Panel D), since the membrane is

not completely recovered at those points (see in particular

nodes 2 and 3). This can be argued by looking at INa course

at node 3, where the only negative INa peak corresponds to

the front moving from below, while the second

depolarization current does not produce any active

membrane response, but only an electrotonic deflection.

The simulation of Figs. 4 and 5 has been repeated in the

case of depressed EJ membrane with a strongly depressed

leakage current. The ionic current in both the normal and

the pathological region is of Ebihara and Johnson type,

with gL ¼ 0:001 ms=cm2: The other physiological para-

meters are the same as in the previous simulations, with

Dx ¼ Dz ¼ 0:01 cm and Dt ¼ 0:02 ms: Fibers are parallel

to x axis and a uniform stimulation is applied along z axis.

Time courses of transmembrane and extracellular

potentials are plotted in Fig. 6. At nodes 5 and 6 the

largest electrogram deflection corresponds to local

activation, while at the other nodes it corresponds to the

moment when the front reaches the boundary of the

depressed region.

It should be remarked that the absence of leakage

current prevents the occurrence of conduction block, even

in the presence of large meshes. The wavefront propagates

through all the tissue, even if propagation speed varies

according to the variation of conductivity coefficients

inside the domain. Sodium current intensity at nodes in the

injured region is reduced, yet it gives rise to an active

response of the tissue. In fact, membrane excitability and

the excitation threshold are highly determined by ionic

current; if we modify such current term, excitation

threshold may change and the same mesh that gave

misleading information and blocks before, now can

describe propagation more faithfully. Therefore, we can

conclude that the formation of numerical blocks is

conditioned by many factors, such as ionic current, resting

potential value, cell-to-cell coupling, since all these

factors influence conduction speed.

Propagation is also conditioned by loading effects of the

underlying tissue and by the dimension of the damaged

region. Figure 7 refers to an inner depressed region of

dimension 0:31 cm £ 0:25 cm: Discretization steps are

Dx ¼ Dz ¼ 0:005 cm and Dt ¼ 0:02 ms and parameters

values are listed in Tables I and II. The waveforms are

FIGURE 6 EJ membrane with severely depressed leakage current: same format as in Fig. 2. Discretization steps: Dx ¼ Dz ¼ 0:01 cm and Dt ¼
0:02 ms:
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plotted at nodes A, B, C, D, E, F and G, corresponding to

points ð48Dx; jDyÞ; j ¼ 79; 77; 50; 48; 46; 42; 40 (see

Fig. 2, Panel B).

As we can see from the time course of transmembrane

potential at nodes C, D and E, the wavefront propagating

from below is not sufficient to excite tissue inside the

depressed region and this generates a conduction block. In

particular, at node D INa is identically equal to zero.

Subsequently, the wavefront enters the inner region

following lateral pathways, proceeding at first across fiber;

however, it cannot activate the still partially depolarized

tissue, as we can see from the INa profile at node C.

Finally, we emphasize that block formation is

conditioned also by fibers rotation and from the position

of the injured regions with respect to the direction of

propagating wavefront [19]. Figure 8 refers to a normal

cardiac tissue containing a depressed Ebihara–Johnson

subregion according to scheme of Fig. 1, Panel A, with

parameters specified in Tables I and II. In this simulation,

fibers are supposed to rotate according to the law

w(z ) ¼ 2pz/3 2 p/2 and a point stimulus is applied near

the origin, with a duration of 0.5 ms to initiate

propagation. The activation time is computed as the

instant which maximizes j›INa=›tj and the isochrones are

traced on the region recognized as active, i.e.

A2ðImÞ=AþðImÞ . 0:2: In Panel D, the excitation wave-

front propagates towards north-east and travels around the

depressed region. Isochrones are distorted from elliptic

shape because of fibers orientation; in fact, conductivities

in the x and z directions are equal at level z ¼ 0; since they

are both across fiber, and become progressively more

different as we reach the endocardium at z ¼ 0:5:
Differently from Fig. 2, we can now observe the formation

of a conduction block, since the local circuit current is

unable to propagate throughout the inner region and to

lead the whole tissue to threshold. In particular, node 2

exhibits a transitional severely depressed activation: from

the transmembrane potential profile (Panel A), we observe

a first depolarization current (electrotonic deflection),

sustained by a second depolarization current, which

corresponds to a very small inward sodium current

(Panel B). The ratio of negative to positive area under the

Im curve is equal to 0.22. This discrepancy from Fig. 2 is

due to the different angle of interaction of the wavefront

with the obstacle. Again we observe the occurrence of

electrogram fractionation (Panel C).

5 DISCUSSION

The difficulties connected with the numerical simulation

of slow propagation have been observed in the

monodimensional core-conductor model in [33,36,38].

For an action potential propagating along a cilindrical

fiber, Spach [36] showed that large space discretization

steps yielded numerical results differing from those

FIGURE 7 Time course of v (Panel A), INa (Panel B), ue (Panel C) at the nodes whose locations are marked in Fig. 1, Panel B. The transmembrane
potential and sodium current profiles are labelled with the index of the node they refer to. Panel D displays isochrone level lines of activation time with a
time step of 1 ms, computed as the instant of maximum j›INa=›tj: A line stimulus is applied at an edge along the z axis, with a duration of 0.5 ms to
initiate propagation. Discretization steps: Dx ¼ Dz ¼ 0:005 cm and Dt ¼ 0:02 ms:
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predicted by the theory related to the continuous model.

The sensitivity of the numerical results to the choice of

space steps in the discretization of the cable equation

depends strongly on the value of the propagation velocity

and was already observed by Cooley and Dodge [6].

Although conduction blocks can really occur in the

presence of uncoupled cells or depressed membrane, yet it

is important to underline the fact that the block in Fig. 4 is

strictly correlated to space discretization of the con-

tinuous model and must be considered as a numerical

artifact; in fact, Figs. 2 and 3, obtained using the finer steps

Dx ¼ Dz ¼ 0:005 cm; show a greater propagation speed in

the depressed region. This proves that coarse meshes in

relation to propagation speed, besides introducing

spurious oscillations in the waveforms, can also generate

altered conduction speed and conduction blocks. More

precisely, while conduction velocity in the outer region is

such to allow the use of a 0.01 cm step, in the inner region

propagation becomes so slow as to require the use of

smaller space steps in order to describe excitation

wavefront propagation faithfully.

It should be excluded that the presence of the

oscillations on the electrogram profiles obtained with

coarse meshes results from the algorithm used in the

simulations to solve the discrete problem, i.e. the nested

iterations (5)–(6) for the solution of the final finite

difference system. Neither it is due to the singular nature

of the R–D system which imposes to select, at each

iteration, among the infinitely many solutions u the one

having zero potential average on the cardiac domain.

Obviously, if we increase conductivities in the injured

region it is possible to eliminate these spurious

oscillations, which are a consequence of the coarseness

of the mesh with respect to the conduction velocity.

Therefore, the simulation of pathological processes and of

slow conduction requires the use of spatial refinement

techniques in order to avoid artifacts affecting the

numerical simulation of the action potential propagation.

In our numerical method, the discretization steps can be

chosen in a wide range of values. In fact, the analysis of

spectral stability [24] of the numerical method reveals that

the stability of the final finite difference system (4) is

assured at every time step t l if

Cl
1ðkÞ þ Cl

2ðkÞ þ 1 . 0; k ¼ 1; . . .;Nh; ð7Þ

where

Cl
1ðkÞ ¼

Dt 2

4
Dl

1ðkÞ 1 þ
Dt

2
Dl

4ðkÞ

� 	21

Dl
3ðkÞ;

Cl
2ðkÞ ¼

Dt 2

4
Dl

2ðkÞ 1 þ
Dt

2
Dl

6ðkÞ

� 	21

Dl
5ðkÞ:

Typically, stability constraints establish a bond between

Dt and Dx, Dz such that a decrease in Dx, Dz yields a

decrease in Dt to have stable results. Condition (7), where

only Dt appears, is always verified in our simulations and

the time step choice is conditioned mostly by accuracy

requirements rather than by stability constraints. On the

contrary, the numerical solution is highly conditioned by

FIGURE 8 Same format as in Fig. 2. A line stimulus is applied at the origin, with a duration of 0.5 ms to initiate propagation. Discretization steps:
Dx ¼ Dz ¼ 0:005 cm and Dt ¼ 0:02 ms:
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changes in Dx, Dz, especially when slow conduction is

present. Even if no stability constraints between space and

time steps exist, nevertheless, an “accuracy constraint”

holds for the space steps, independent of Dt. Therefore,

they have to be chosen appropriately in order to avoid

numerical artifacts, especially during slow conduction. In

fact, slow propagation is characterized by higher values of

the space derivatives of v and this explains the need for

smaller space steps in order to describe accurately the

rapid spatial changes of transmembrane potential.

Convergence of Galerkin semidiscretization of con-

tinuous bidomain models was studied in Ref. [31] and

[32]. The several error estimates established in [31] and

[32] show that the error constants depend on parameters

which characterize the cardiac tissue and affect the

propagation velocity. Such error estimates can be quite

poor if the diffusive term of problem (1) is small compared

to the reactive term, such as during slow propagation. In

this situation, the error constants may be quite large and

the performance of the pure Galerkin method can be poor

if the space steps are not sufficiently small.

Joyner [15] described the constraint on the space step

for a monodimensional propagation in terms of the space

constant, defined as the number l such that the profile of

the deviation from equilibrium of the potential, resulting

from a constant subthreshold stimulus applied at a

single point, is an exponential proportional to e2x=l

(see also [18] for a definition of l ); he found that the

effects of discretization become evident when approx-

imatively the condition

Dx=l # K; ð8Þ

is violated, where the constant K depends on the

membrane model and on the intracellular conductivities.

Shaw et al. [34] observed that the constraint (8) should be

respected in order for each patch of discretization to be

equipotential and for the solutions to numerically

converge. In other words, Dx must be small enough so

that variations in v across the patch can be neglected. As

the conductivities decrease, l decreases because v varies

faster with distance, i.e. ›v=›x is greater, and Dx must be

made smaller to preserve the equipotential condition.

It is also possible to provide a physiological explanation

of this phenomenon, if we look at the waveform variations

obtained using large space steps relative to propagation

speed:

. reduction of propagation velocity;

. reduction of the sodium current peak;

. higher values of v̇max;

. changes in the time profiles of the electric potentials

(extracellular, transmembrane);

. reduction of extracellular potential amplitude.

These changes are very similar to the ones which

would be obtained in simulations of slowed conduction

with sufficiently fine space grids [33,36]. Indeed,

for large Dx, Dz more resistance is incorporated in a

single element of decomposition, and the discretized

system presents slower conduction than one should expect

from the continuous model; the early part of the action

potential is prolonged due to the reduced current from

cell-to-cell, whereas the rate of rise of the action potential

is increased because, once excitation is established, there

is less current flow on to the next region to be excited.

Using coarse space meshes makes the fully discrete

system (4) differ from the continuous model. Thus, the

discrete system can be seen as a discrete cellular model

taking into account the inhomogeneous and anisotropic

distribution of cell-to-cell connections.

This aspect was analyzed by Keener [18] in the case of

monodimensional propagation. Shortly, we can say that

the semidiscrete equations (3), deriving from the

application of the finite element method associated to

suitable numerical quadrature formulas as from the finite

difference method, may be interpreted as a discrete

cellular model where the cardiac cells are viewed as

isopotential, excitable, discrete objects rather than

arranged in a continuum. These discrete cells exchange

a current flux and the effective total intracellular

conductivity tensor among the cells is given by P21Ai,

according to equation (3); therefore, as the space steps

(appearing on the diagonal of P) grow, the effective

intracellular resistance increases, until a critical value is

reached where conduction block occurs: the electrotonic

current from a cell to the neighbors is then insufficient to

raise potential above threshold and, consequently,

propagation breaks off.

There are significant differences between the behavior

of propagating action potential for the continuous model

(1) and its semidiscrete approximation (3). Indeed, while

in the continuous bidomain model increasing intracellular

resistance slows propagation, but can never cause it to fail,

a traveling solution of Eq. (3) may not exist for fixed Dx,

Dz and increasing intracellular resistance. Analogously, if

we fix the resistance and let Dx, Dz vary, we find that

propagation is impossible for Dx, Dz larger than a certain

critical value, which is a monotonic increasing function of

membrane excitability since a more excitable cell requires

less stimulating current to raise it to threshold.

Simulations will produce results that are correct for the

continuous model only when the continuous and the

semidiscrete problems have the same behavior. Any new

behavior that results from a semidiscretization of the

model (1) can only be due to numerical artifact.

Nevertheless, the simulation will exhibit propagation

failure for certain large values of Dx, Dz even though this

is inconsistent with the continuous model that is being

approximated.

However, since conduction blocks indeed occur in real

hearts, although the formation of conduction blocks in the

presence of low space resolution represents a numerical

artifact, it may be interesting if it is referred to the analog

discrete model which takes into account the discontinuous

cellular nature of the cardiac tissue.

PATHOLOGICAL CARDIAC ACTION 179



Further investigation should be devoted to the analysis

of the role of calcium current in preventing numerical

blocks in 2D simulations, using more complex membrane

models. One dimensional studies [34] show that in some

cases the calcium current can support slow propagation

and delay the onset of block by increasing the electrotonic

source current. In [33] preliminary numerical simulations

of a BREJ two dimensional slab show that, although the

secondary calcium current sustains depolarization, for

certain choices of the discretization steps it may not be

sufficient to avoid conduction blocks.

6 CONCLUSIONS

In this work, we analyze the complex phenomenon of

electrogram fractionation, due to discontinuities and

alterations in cellular coupling. Our simulations show

that fractionation is independent of INa alterations and

that it can be described by the bidomain model of cardiac

tissue. Some deflections in fractionated electrograms may

give nonlocal informations about the shape of damaged

areas with respect to the wavefront position. When an

action potential propagates at a constant velocity, a

biphasic electrogram is recorded by a unipolar electrode

near the surface of the tissue; on the contrary, when the

action potential passes through regions with disconti-

nuous membrane properties and heterogeneous distri-

bution of cell-to-cell coupling resistance the

corresponding electrograms deviate from normal and

may present several deflections, occurring at the times

when the activation wavefront crosses the discontinuity

barriers. Moreover, inhomogeneities of the medium may

affect also the waveforms at points located in normal

regions, revealing the presence of pathological conditions

at a distance.

Another issue considered in this work is the generation

of conduction blocks. Our simulations show that the

generation of conduction blocks depends on:

1. the employed membrane current model;

2. the intracellular conductivity properties of the tissue;

3. the resting potential value.

Moreover, propagation and block formation are also

conditioned by loading effects of the underlying tissue, by

the dimension of the damaged region, by fibers rotation

and by the position of the injured regions with respect to

the direction of the propagating wavefront.

However, in a numerical approximation of the bidomain

model of cardiac tissue, conduction blocks may derive

from low space resolution and represent numerical

artifacts. The simulation of pathological processes and

of slow conduction requires the use of spatial refinement

techniques to avoid artifacts, which may occur in the

numerical simulations of action potential propagation.

Indeed, the use of low spatial resolution in the simulation

of slow propagation in pathological tissue can induce a

reduction of conduction velocity, blocks and other

numerical artifacts, which are not consistent with the

continuous bidomain model theory. This is due to the fact

that the discrete system, obtained at the end of any

approximation process, may be interpreted as a discrete

model of the cardiac tissue made up of isopotential cells.

In this model the effective intracellular conductivity tensor

depends on the space discretization steps and the increase

of these steps results in an increase of the effective

intracellular resistance and can induce conduction blocks

if a certain critical value is exceeded. In other words, in a

discretization of continuous macroscopic cardiac tissue

models, propagation failure may represent a numerical

artifact.

Nevertheless, since conduction blocks indeed occur in

real hearts, the formation of conduction blocks in the

presence of low space resolution is interesting if it is

referred to the analog discrete cellular model which, in

some sense, takes into account the discontinuous nature of

the cardiac tissue.
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