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This paper deals with the modeling of the immune response to the evolution of the progression of
endothelial cells which have lost the differentiation and start their evolution towards metastatic states.
The modeling is developed in the framework of the so-called kinetic cellular theory. The model is
critically analyzed on the basis of analytic solutions, asymptotic behaviors and numerical simulations
that illustrate the scenarios predicted by the model. Finally, possible developments and generalizations
that could describe other known phenomena are pointed out.
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INTRODUCTION

As a major characteristics, tumor growth and degeneration

is linked to the evolution of its size and progression. A

recent paper by Greller et al. (1996) has given some new

ideas about the description of the maturation or

progression stages of cell populations. In their phenom-

enologic description the stage and velocity of progression

is not the same for all cells: it can vary from cell to cell, so

that it is possible to introduce a suitable statistical

distribution in terms of a progression variable and to study

its evolution. As an example, a few cells may have a high

progression, while the remaining ones may have a low

progression, characterizing normal cells. The presence of

progressed cells originates the competition with the

immune system if it is able to recognize their degenerate

characteristics. In turn, this action may be partially

inhibited by cells with large progression values.

Eventually, if cells reach a sufficiently high progression

state they may undergo uncontrolled mitosis and condense

into a solid form.

The links between the phenomenologic description

proposed in Greller et al. (1996) and the mathematical

model proposed in Bellomo and Forni (1994) (as well as

its developments reviewed in Bellomo and De Angelis

(1998)) can be immediately recognized, though the

contents of the two research lines were developed

independently. This paper is devoted to the deduction of

a mathematical formalization consistent with the phenom-

enologic description given in Greller et al. (1996).

The kinetic cellular theory proposed for instance in

Bellomo and Forni (1994) and Bellomo et al. (1996)

provides a description of the cellular system by equations

similar to those of the kinetic theory and its generaliz-

ations (Bellomo and Lo Schiavo, 1998). Specifically, this

class of models defines the evolution of the distribution

function over the activation states of a large population of

interacting cells. The above theory can be regarded as the

natural development of population dynamics models

applied to the analysis of tumor growth by Gyllenberg and

Webbs (1990). The specific role of various cell

populations is documented in several research papers,

e.g. Owen and Sherrat (1999) again on the analysis of

tumor dynamics or Perelson and Weisbuch (1997) within

general frameworks on the modeling of the immune

response.

The paper is organized as follows:

In this introduction the aims of the paper are illustrated.

“Phenomenology and scaling” section provides a

resumeè of the phenomenology of the system described

in Greller et al. (1996) elaborated from the viewpoint of

applied mathematicians.

“A conceptual modeling framework” section deals with

the design of a mathematical structure able to include a

variety of models related to the above system.
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“Some evolution models” section deals with the actual

statement of the equations by proper modeling of the

terms that have been introduced in the previous section.

In “Analytic solutions and asymptotic behaviors”

section analytical and asymptotic solutions are shown

for a large range of parameters.

The last section contains a critical analysis of the results

and indicates research perspectives towards further

developments.

This paper refers to the large bibliography reported in

the surveys collected in Adam and Bellomo (1996) and

Chaplain (1999). Additional bibliography can be found in

the review paper by Bellomo and De Angelis (1998).

PHENOMENOLOGY AND SCALING

The evolution of a cell, as described by various authors,

e.g. Forni et al. (1994), is regulated by the genes contained

in its nucleus. These genes can be either activated or

suppressed, when signals stimulate receptors on the cell

surface and are then transmitted to the nucleus of the cell.

The capability of receiving particular signals or the

degradation of the cells can modify the usual behavior of a

cell. In extreme situations, particular signals can induce a

cell to reproduce itself in the form of identical

descendants, the so-called clonal expansion or mitosis,

or to die, the so-called apoptosis or programmed death.

Tumor cells compete with the immune system and, if

not recognized and depleted, start to condense into a solid

form. The solid tumor interacts with other cells through

signals, which diffuse in the outer environment. The

sequential steps of the evolution of the system may be

summarized, from the viewpoint of a mathematician, as

follows.

1. Loss of the differentiation of cells and their

replication.

2. Interaction and competition at the cellular level with

immune and environmental cells. This stage includes

activation and inhibition of the immune system. This

action is also developed through cytokine signal

emission and reception which regulates cell activities.

3. Condensation of tumor cells into solid forms,

macroscopic diffusion and angiogenesis.

4. Detachment of metastases and invasion.

The phenomenologic description proposed in this paper

refers to the contents of Greller et al. (1996) and therefore

to a large population of interacting cells characterized by a

physical property called progression. Such a property is

not the same for all cells, but is statistically distributed

over the individuals of the population. Low progression

values correspond to standard non pathologic behavior of

the cell, high progression values correspond to loss of

differentiation up to metastatic attitude. This means that in

describing the evolution of a cell population towards

pathological states a new independent variable u referring

to the progression states needed to be added to those

usually used in discrete models (time) and in reaction–

diffusion models (time and space).

Each cell may have an inner evolution from low values

to large values of the progression. Still referring to the

description of Greller et al. (1996), we point out that the

authors leave some relevant phenomena open to

investigation and interpretation (possibly within a

mathematical framework). For instance, transition from

a normal state of endothelial cells to a progressing state is

assumed almost continuous, and the role of the contrast of

the immune system is not described in details. On the

other hand, the statistical distribution of the progressing

state is one of the aspects which is particularly

emphasized.

Qualitative behaviors of the evolution of the statistical

distribution of progressing cells are given in Fig. 1, which

gives two possible scenarios of progression and prolifer-

ation in metastatic states. Larger peaks refer to normal

cells characterized by a smaller progression state. As time

goes by, some cells may overcome a critical value, evolve

and proliferate. This evolution may be contrasted by the

immune system as indicated in Fig. 1a, or may not (when

the action of the immune system is not sufficient) and then

evolve toward metastatic states as indicated in Fig. 1b. The

figure anticipates the mathematical description which is

developed in what follows.

The development of mathematical models should be

addressed to discuss the above phenomena and, specifi-

cally, to analyze the relevant features of the evolution with

special attention to the asymptotic behavior and to the

sensitivity of the parameters of the model.

A CONCEPTUAL MODELING FRAMEWORK

The aim of this section is to design a mathematical

framework corresponding to the phenomenologic descrip-

tion given in “Phenomenology and scaling” section. We

propose a system of two coupled nonlinear integro-

differential equations obtained by a balance relation used

to determine the number of cells which reach a certain

state either by their own maturation or by cell interactions.

Similarly to conservation equations in mechanics, this

structure should be regarded as a formal one to be

specialized into a specific model by means of a detailed

analysis and modeling of cellular interactions. We believe

that this gradual approach has some advantages. In fact,

the mathematical structure can be offered to the attention

of immunologists in order to improve the description of

cellular interactions. Indeed, the conceptual framework

should not be substantially modified by such a refinement

of the modeling. The contents of this section will be then

exploited, in the next one, to develop a specific model.
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This modeling will end up with the characterization of the

kernels of the integral terms of the evolution equations.

Cell Populations and States

The first step in the modeling process is the selection of

the cell populations which play the game, the definition of

the states which characterize them, and the type of

statistical representation.

Assumption 1. (Cell Populations). The system is

constituted by two interacting cell populations: environ-

mental and immune cells, labeled, respectively, by the

indexes i ¼ 1 and i ¼ 2:

FIGURE 1 Distribution of cells over the progression state u at different normalized times. Larger values of u correspond to more pathological states.
The smaller peaks refer to cell progressing toward more aggressive states, while the layer peaks refer to the normal cells. In (a) progression is contrasted
by the immune system. In (b) it is not.

MODELING TUMOR PROGRESSION 53



Assumption 2. (Cell State). The functional state of each

cell is described by the real variable u [ ½0;1Þ; which

identifies the progression for the environmental cells and

the activation for the immune cells. The progression state

is conventionally divided into two regions: D1 ¼ ½0; 1Þ
corresponding to normal cells; D2 ¼ ½1;1Þ corresponding

to progressing cells. If u , 1 endothelial cells have no

progression dynamics. On the other hand, u $ 1 cells

possess a certain progression velocity which may depend

or not on the state u.

Assumption 3. (Statistical Description). The statistical

description of the system is described by the distribution

density functions

Ni ¼ Niðt; uÞ; i ¼ 1; 2 ð3:1Þ

which are such that dni ¼ Niðt; uÞ du denotes the number

of cells per unit volume whose state is, at time t, in the

interval ½u; uþ du�: Moreover,

niðtÞ ¼

ð1

0

Niðt; uÞ du; ð3:2Þ

is the number of cells of the i-th population at the time t in

a reference unit volume.

If n0 is the number of environmental cells per unit

volume at t ¼ 0; the following normalization of Ni with

respect to n0 can be applied:

f iðt; uÞ ¼
1

n0

Niðt; uÞ: ð3:3Þ

The number of cells per unit volume which at time t

have a progression state in ½u1; u2� is then

n
½u1;u2�
i ¼ n0

ðu2

u1

f iðt; uÞ du:

Cellular Interactions

We consider the description of a general framework for the

modeling of cell interactions in view of the design of a

mathematical model suitable to define the evolution of the

distribution functions fi.

Assumption 4. The intrinsic progression and activation

of the i-th population is defined by means of the

progression velocity ci(u ) which describes the evolution

of the cell population in absence of other interactions. It is

such that under this condition in the interval ½t; t þ dt� the

cell of the i-th population changes its state from u to

uþ du ¼ uþ ciðuÞ dt:

Assumption 5. In addition to the natural progression,

the state of a cell or the number of cells with state u can

change because of

i) Mass conservative interactions between pairs of

cells, i.e. interactions which are not responsible for

proliferation or destruction of cells but only of a

change in the activation state for one or both

interacting cells.

ii) Proliferative—destructive interactions between cell

pairs;

iii) External sources or sinks of cells (or input/output),

e.g. production of immune cells by the bone marrow,

possibly pharmacologically stimulated, destruction

of tumor cells by medical treatment, injection of

cells.

Assumption 6. The evolution due to conservative

encounters modifies the progression of tumor cells and

the activation of immune cells. Cell interactions in the

case of mass conservative encounters will be defined by

means of two physical quantities: the encounter rate hij

and the transition probability density cij. In more detail,

conservative encounters between the cell of the i-th

population with state v and the cell of the j-th population

with state w are quantitatively described by the transition

rate

Tijðv;w; uÞ ¼ hijðv;wÞcijðv;w; uÞ; ð3:4Þ

where nijðv;wÞ denotes the number of encounters per unit

volume and unit time between cell pairs of the (i,j )-th

populations with states v and w, respectively, and

cij(v,w;u ) denotes the probability of transition of the i-

th cell to the state u, given its initial state v and the state w

of the encountering cells belonging to the j-th population.

Hence, Tijðv;w; uÞ denotes the number of encounters per

unit volume and unit time between cell pairs of the (i,j )-th

populations with states v and w, respectively, with

transition of the i-th cells into the state u.

Assumption 7. Proliferative encounters will be

described by two quantities: the proliferation rate pij and

the proliferation probability density wij. These encounters

occur between cell pairs belonging to the same or to

different populations, and generate new cells in one or

both populations. These interactions are quantitatively

described by the proliferation transition rate

Pijðv;w; uÞ ¼ pijðv;wÞwijðv;w; uÞ; ð3:5Þ

where pij(v,w ) denotes the number of cells produced per

unit volume and unit time due to the encounters of cell

pairs of the (i,j )-th populations with states v and w,

respectively, and wij(v,w,u ) is the probability density of

proliferation of the i-th cell in the state u by encounters of

cells belonging to the i-th and j-th populations with state v

and w, respectively, in the following. Hence, Pij(v,w,u )
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denotes the number of i-th cells in the state u per unit

volume and unit time which proliferate because of the

encounters between cell pairs of the (i,j )-th populations

with states v and w, respectively. It is assumed that

wijðv;w; uÞ ¼ dðv 2 uÞ; ð3:6Þ

that is daughter cells inherit the same activation state as

the mother cells.

Assumption 8. Destructive encounters occur between

cell pairs of different populations, and generate a

destruction in one or both of them. These interactions

are quantitatively described by the destruction rate

dij(u,w ), which is the number of i-th cells with state v

destroyed as the result of the interaction with j-th cells

with state w.

The evolution equation obtained using the above

assumptions consists in the following system of two

coupled integro-differential equations:

›f i

›t
ðt; uÞ þ

›

›u
½ciðuÞf iðt; uÞ�

¼
X2

i¼1

ðG*
ij 2 L*

ij þ Gij 2 LijÞðt; uÞ þSiðt; uÞ; ð3:7Þ

where

G*
ij ¼

ð1

0

ð1

0

hijðv;wÞcijðv;w; uÞf iðt; vÞf jðt;wÞ dv dw;

ð3:8Þ

L*
ij ¼ f iðt; uÞ

ð1

0

hijðu;wÞf jðt;wÞ dw; ð3:9Þ

Gij ¼ f iðt; uÞ

ð1

0

pijðu;wÞf jðt;wÞ dw; ð3:10Þ

and

Lij ¼ f iðt; uÞ

ð1

0

dijðu;wÞf jðt;wÞ dw; ð3:11Þ

for i; j ¼ 1; 2.

The terms G* and L* correspond to the gain and loss of

cells in the state u due to conservative encounters,

respectively. The terms G and L correspond to the gain

and loss of cells due to proliferative and destructive

encounters, respectively. Finally, the source term Si

models external input, e.g. production from bone marrow

and natural death of cells.

The above model defines a framework for continuous

distribution functions. A slightly simpler framework can

be developed assuming that the state of the immune cells

is not continuously distributed, but simply concentrated on

two states: the active and inhibited ones. In this case, the

evolution of the immune cells is simply identified by the

number densities n2 ¼ n2ðtÞ; corresponding to active cells,

and n3 ¼ n3ðtÞ; corresponding to inhibited immune cells.

Considering that inhibited cells do not contribute to the

evolution of the progression factor, the model can refer to

f1 and n2 only. This new model will be called

semicontinuous. The various terms defined for the

continuous framework assume a slightly different mean-

ing which will be defined later.

The new mathematical framework consists of the

following system of coupled equations:

›f 1

›t
ðt; uÞ þ

›

›u
½c1ðuÞf 1ðt; uÞ�

¼

ð1

0

ð1

0

h11ðv;wÞc11ðv;w; uÞf 1ðt; vÞf 1ðt;wÞ dv dw

2 f 1ðt; uÞ

ð1

0

h11ðu;wÞf 1ðt;wÞ dw

þ

ð1

0

h12ðvÞc
*
12ðv; uÞf 1ðt; vÞ dv n2ðtÞ

2 h12ðuÞf 1ðt; uÞn2ðtÞ

þ f 1ðt; uÞ

ð1

0

m11ðu;wÞf 1ðt;wÞ dw

þ f 1ðt; uÞm12ðuÞn2ðtÞ þS1ðt; uÞ;

ð3:12aÞand

dn2

dt
ðtÞ ¼

ð1

0

h21ðwÞc
*
21ðwÞf 1ðt;wÞ dw n2ðtÞ

2 n2ðtÞ

ð1

0

h21ðwÞf 1ðt;wÞ dw

þ h22c
*
22n2ðtÞn2ðtÞ2 h22n2ðtÞn2ðtÞ

þ n2ðtÞ

ð1

0

m21ðwÞf 1ðt;wÞ dw

þ m22n2ðtÞn2ðtÞ þS2ðt; uÞ; ð3:12bÞ

where

mijð·Þ ¼ pijð·Þ2 dijð·Þ; ð3:13Þ

is the net proliferation rate, or

›f 1

›t
ðt; uÞ þ

›

›u
½c1ðuÞf 1ðt; uÞ�

¼

ð1

0

ð1

0

h11ðv;wÞc11ðv;w; uÞf 1ðt; vÞf 1ðt;wÞ dv dw

þ f 1ðt; uÞ

ð1

0

½m11ðu;wÞ

2 h11ðu;wÞ�f 1ðt;wÞ dw

þ n2ðtÞ

ð1

0

h12ðvÞc
*
12ðv; uÞf 1ðt; vÞ dv

þ ½m12ðuÞ2 h12ðuÞ�f 1ðt; uÞ;

ð3:14aÞ
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and

dn2

dt
ðtÞ ¼

ð1

0

½m21ðwÞ2 h21ðwÞ £ ð1

2 c*
21ðwÞÞ�f 1ðt;wÞ dwn2ðtÞ þ ½m22

2 h22ð1 2 c*
22Þ�n

2
2ðtÞ: ð3:14bÞ

The terms c*
12; c

*
21 and c*

22 have a slightly different

meaning than c12, c21 and c22, directly related to the

semicontinous character of the model. For instance, c*
21 #

1 represents the probability that an immune cell, after

interaction with a progressed cell, remains active, while

1 2 c*
21 represents the probability that an immune cell,

after interaction, moves into the population of the

inhibited immune cells.

Both classes of models represent a rather general

framework which can include the descriptions summar-

ized in “Phenomenology and scaling”. The specific

models proposed in “Some evolution model” will be

developed by relatively less general assumptions which

require, as we shall see, a detailed analysis and simulation

of cell interactions.

Moreover, we recall that the idea of discretizing the cell

states in the kinetic cellular theory was first introduced by

Lo Schiavo (1996). This idea is now developed by various

authors Arlotti et al. (1999). We also point out that the

model represented by Eqs. (3.12a) and (3.12b) includes

transition from one population to the other. The

mathematical framework for such a class of models was

first proposed in Arlotti et al. (2000).

SOME EVOLUTION MODELS

The general framework described in “A conceptual

modeling framework” section can generate specific

models after a detailed modeling of cell interactions.

Operating in the framework of semicontinuous models

here we develop some simple models related to all type of

interactions described in the preceding section and

represented in Fig. 2. More specifically, while evolving

towards metastatic states, progressing cells interact with

other cells of the body. The interaction with the immune

system may generate both the death of the progressing

cells and a decrease in the progression state. The

interaction with other environmental cells favors prolifer-

ation, e.g. because capillaries bring the necessary nutrient.

On the other hand, cells of the immune system react to the

presence of progressing cells by proliferating. However,

the interaction with tumor cells may inactivate or kill an

immune cell. In the following the previous scenario is put

in mathematical terms. However, an effort is made to keep

reasonably lower the number of parameters. Specifically

the framework is simplified assuming that Si ¼ 0; i.e. the

inlet from bone marrow equates the natural death of cells

and the output of interactions linearly depend on the state

of the interacting pairs.

The aim of this first proposal consists of obtaining an

immediate description of tumor progression and immune

competition to be analyzed at a quantitative level and

compared with experimental data. The model can

certainly be improved and refined following the critical

analysis developed in the previous section.

It is useful to introduce the stepwise function:

U½a;b�ðzÞ : U½a;b�ðzÞ ¼ 1 if z [ ½a; b�;

U½a;b�ðzÞ ¼ 0 if z Ó ½a; b�;
ð4:1Þ

which will be used in the calculations which follow.

Progression Velocity

Environmental cells which, for genetic modifications,

reach a state larger that the critical value u ¼ 1 start

progressing toward large values of u with velocity c1. On

the other hand, if u # 1; the progression velocity is equal

to zero: c1 ¼ 0:
The simplest modeling of the above feature is

c1 U cU½1;1ÞðuÞ: ð4:2Þ

In general, it is reasonable to assume that only a small

number of cells are initially in the progression region,

namely

1 ¼

ð1

1

f 1ð0; uÞ du ! 1: ð4:3Þ

Encounter Rate

It is assumed that all encounter rates are constant for all

interacting pairs and that

hij ¼ h ¼ 1; ;i; j ¼ 1; 2: ð4:4Þ

FIGURE 2 Cellular activities and interactions. Normal endothelial cells
contribute to the proliferation of progressing cells. Progressing cells try to
inhibit the immune system while immune cells proliferate when they
recognize progressing cells and fight against them.
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Hence we shall put the above constant equal to one, that

is equivalent to include the encounter rate into the time

scale.

Conservative Encounters

Consider separately all types of conservative encounters.

The denomination non trivial will be used to indicate

those encounters which modify the activation state of the

interacting cells.

Referring to conservative encounters of environmental

cells with other (either environmental or immune) cells,

the specialization of the probability densities c11 and c*
12

are assumed to be delta functions

c11ðv;w; uÞ ¼ dðu 2 m11ðv;wÞÞ; and

c*
12ðv; uÞ ¼ dðu 2 m12ðvÞÞ;

ð4:5Þ

where m1j corresponds to the output which may depend on

the activations of the interacting pairs. In more detail, we

assume the following.

Assumption 1. Environmental cells (progressed or not)

do not change their state when encountering other cells of

the same population. If the environmental cell is not

progressed, its state does not change when it encounters a

cell of the immune system. If a progressed cell encounters

an active immune cell, its state decreases, but cannot fall

beneath u ¼ 1:
This assumption can be formalized as follows:

c11ðv;w; uÞ ¼ dðu 2 vÞ; ð4:6aÞ

and

c12ðv; uÞ ¼ dðu 2 vÞU½0;1ÞðvÞ þ U½1;1ÞðvÞ £ dðu

2 ðv 2 a12ðv 2 1ÞÞÞ; ð4:6bÞ

where 0 # a12 , 1:

Referring to conservative encounters of immune cells

the only encounters with non trivial output are those

between active immune cells and progressed cell. The

result consists in producing an inhibited immune cell with

a probability 1 2 b21; where b21 [ ½0; 1� is the prob-

ability to remain active after the encounter:

c*
21ðwÞ ¼ 1·U½0;1ÞðwÞ þ ð1 2 b21ÞU½1;1ÞðwÞ;

c*
22 ¼ 1:

ð4:7Þ

Proliferative and Destructive Encounters

As above, we consider separately all types of proliferative

and destructive encounters. The denomination non trivial

will now be used to indicate those encounters which

generate a non vanishing net proliferation rate not equal to

zero.

. The net proliferation rate of endothelial cells with

activation state less than the critical value u ¼ 1; due to

encounters with other endothelial cells, is equal to zero.

On the other hand, when an endothelial cell falls into

the progressing state larger than one, it undergoes

uncontrolled mitosis generated by encounters with

nonprogressed cells, proliferation is assumed to be

proportional to u 2 1 so that one has a net proliferation

rate

m11ðu;wÞ ¼ g11ðu 2 1ÞU½1;1ÞðuÞU½0;1�ðwÞ: ð4:8Þ

. The interaction of a progressed cell, with state larger

than one, with the active immune system produces a

death rate independent of the status of the cell. The net

proliferation rate is equal to zero if the state is less than

one

m12ðuÞ ¼ 2d12U½1;1ÞðuÞ: ð4:9Þ

. The interaction of active immune cells with progressed

cells produces a net proliferation rate greater than zero

if the state of the progressed cells is greater than one.

m21ðwÞ ¼ g21U½1;1ÞðwÞ: ð4:10Þ

Evolution Models

The qualitative behavior of the solution of the general

model outlined in the previous section is not modified in

essence by some simplifying assumptions. For instance a

delta function can be used to represent conservative

interactions, so that double integrals reduce to simple

integrals and analytic solutions can be obtained for some

special cases. Actually, one may expect additional

stochasticity, e.g. variance larger than zero, but the

behavior of the solution is not modified significantly by

such an assumption.

Based on the above modeling of cell interactions, we

are able to derive the evolution equation. Technical

calculations lead to the following result for u , 1:

›f 1

›t
¼ 0: ð4:11Þ
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On the other hand, for u $ 1 the model writes

›f 1

›t
ðt; uÞ þ c

›f 1

›u
ðt; uÞ ¼ n2ðtÞ

£
1

1 2 a12

f 1t;
u 2 a12

1 2 a12

2 f 1ðt; uÞ

þ g11ð1 2 1Þðu 2 1Þf 1ðt; uÞ

2 d12n2ðtÞf 1ðt; uÞ;

dn2

dt
ðtÞ ¼ 2b21n2ðtÞ

ð1

1

f 1ðl; uÞ du

þ g21n2ðtÞ

ð1

1

f 1ðt; uÞ du:

ð4:12Þ

and is characterized by six phenomenologic parameters:

c is the progression velocity of endothelial cells. It

appears only in the equations describing the critical region

u . 1: The case c ¼ 0 corresponds to non-progressing

cells, i.e. not evolving toward metastatic states.

a12 is the parameter corresponding to the ability of

the active immune cells to reduce the progression of

endothelial cells in the critical region u . 1: The

parameter takes values in [0,1). The value a12 < 1

corresponds to maximum weakening ability, while a12 ¼

0 to total lack of such an ability.

b21 is the parameter corresponding to the ability of

progressing cells to inhibit the immune cells. The

parameter takes values in [0,1]. For b21 ¼ 1 one has

maximum inhibition ability, while b21 ¼ 0 corresponds to

lack of inhibition ability.

g11 is the proliferation rate of progressing cells due to

their interaction with endothelial cells with state u smaller

than one.

g21 is the proliferation rate of immune cells due to

their interaction with progressing cells.

d12 is the (positive) parameter corresponding to the

ability of active immune cells to destroy progressing cells.

Before proceeding further in the discussion of the

qualitative behavior of the solution of Eq. (4.12), it is

useful to observe from Eq. (4.11), where one can focus on

the evolution of progressed cells only ðu $ 1Þ introducing

the variable z ¼ u 2 1 and rewriting the set of equations as

follows

›f 1

›t
ðt; zÞ þ c

›f 1

›z
ðt; zÞ ¼ n2ðtÞ½af 1ðt;azÞ2 ð1

þ dÞf 1ðt; zÞ� þ gzf 1ðt; zÞ;

dn2

dt
ðtÞ ¼ nn2ðtÞ

ð1

0

f 1ðt; zÞ dz;

ð4:13Þ

where

a ¼
1

1 2 a12

; g ¼ g11ð1 2 1Þ;

n ¼ g21 2 b21; d ¼ d12:

ð4:14Þ

The analysis carried out in the sequel of the paper and

all related figures will then focus on the evolution of the

progressing tail of the distribution function, that is the

smaller peaks drawn in Fig. 1.

Referring to the parameters listed in Eq. (4.14) the

following remarks can be made.

i) The parameter a is such that a $ 1; larger values of

a corresponding to greater ability of immune cells to

control the progression of endothelial cells.

ii) The parameter n $ 21 vanishes when the inter-

action of immune cells with progressed cells

generates a balance between the proliferation rate

and the inhibition–destruction rate caused by

progressed cell. In this case n2 remains constant in

time. When these two phenomena are not balanced

n – 0: In particular, if inhibition is stronger than

proliferation n , 0 and n2 decreases in time.

The first equation in (4.13) is characterized by a

hyperbolic operator on the left hand side and a nonlocal

term on the right hand side. The latter term affects the

evolution in time of f1(t,z ) through the evolution at higher

value of progression ðaz $ zÞ: This implies that

f 1ðt ¼ 0; zÞ ¼ 0; z . zs ) f 1ðt; zÞ ¼ 0;

;z . zs þ ct;

i.e. if the initial distribution has bounded support in [0,zs],

the solution has bounded support for any finite time, too.

Integrating Eq. (4.13) over z yields

dF

dt
ðtÞ ¼ cbðtÞ þ gF1ðtÞ2 dn2ðtÞFðtÞ; ð4:16Þ

where

FðtÞ ¼

ð1

0

f 1ðt; zÞ dz; ð4:17Þ

is related to the total number of progressive cells,

F1ðtÞ ¼

ð1

0

zf 1ðt; zÞ dz; ð4:18Þ

is the first moment of f1, and b(t ) is the inflow at z ¼ 0; i.e.

the degeneration of endothelial cells in progressing cells.

In addition to FðtÞ ; F0ðtÞ; further information on the

progression can be obtained by looking at the evolution of

(4.15)
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higher moments:

FkðtÞ ¼

ð1

0

zkf 1ðt; zÞ dz: ð4:19Þ

A hierarchy of evolution equations for the moments

can be obtained integrating Eq. (4.13) times z k.One then

has

dFk

dt
ðtÞ ¼ ckFk21ðtÞ þ

1

a k
2 1 2 d

� �
n2ðtÞFkðtÞ

þ gFk1ðtÞ; k ¼ 1; 2; 3; . . . ð4:20Þ

In more detail, with an abuse of terminology, one can

define the mean progression and standard deviation (or

second central moment) as

mðtÞ ¼
F1ðtÞ

FðtÞ
; ð4:21Þ

sðtÞ ¼
F2ðtÞ

FðtÞ
2 m2ðtÞ

� �1=2

: ð4:22Þ

Taking for sake of simplicity bðtÞ ¼ 0; one can then

rewrite Eq. (4.16) and the first two equations of the

hierarchy (4.20) in terms of the following system of

ordinary differential equations:

dF

dt
¼ ðgm 2 dn2ÞF;

dm

dt
¼ c 2 1 2

1

a
n2mþ gs2; ð4:23Þ

ds2

dt
¼ 21 2

1

a2
s2 þ 1 2

1

a

2

m2n2 þ gFc
3;

where

Fc
3ðtÞ ¼

1

FðtÞ

ð1

0

½z 2 mðtÞ�3f 1ðt; zÞ dz: ð4:24Þ

We remark that the above system (4.23) is not a closed

set of equations, unless g ¼ 0:

ANALYTIC SOLUTIONS AND ASYMPTOTIC

BEHAVIORS

In order to provide a qualitative description of the role of

the parameters in the evolution, we first consider some

simpler cases and then discuss some aspects of the

asymptotic behavior in the general case. Indeed,

considering that the full problem is nonlinear (its solution

is not a simple superposition of separate effects), the

analysis of simpler models is useful without any doubt. In

fact, a description of the behavior of the solution in simple

configurations, when some biological effects are

negligible, suggests which are the crucial parameters to

be investigated by asymptotic analysis or numerical

simulation in the general case. Last, but not least,

exact solutions provide test cases for computer

simulations.

Specifically, focusing on progressing cells ðz . 0Þ only,

we consider the following particular cases.

Case I. a ¼ 1; g ¼ n ¼ d ¼ 0

This trivial case corresponds to no influence of the

immune system on the progressing cells and a

balance between proliferation and inhibition of immune

cells. This implies that n2 is constant and f1 evolves

according to

›f 1

›t
þ c

›f 1

›z
¼ 0; ð5:1Þ

which means that the initial distribution “progresses”

unchanged along the characteristics z 2 ct ¼ const:
Referring to Eq. (4.23), (if bðtÞ ¼ 0) then F ¼ const;
mðtÞ ¼ m0 þ ct and s ¼ const; that is the mean pro-

gression state of the cell population constantly

increases, though the total number of cells remains

constant.

Case II. a . 1; g ¼ n ¼ d ¼ 0

In this case the unique action of the immune system on

the progressing cells is the conservative control of its

progression. In addition, a balance between proliferation

and inhibition of immune cells occurs and tumor cells

neither proliferate nor are destroyed. Again, n2 has a

constant value but f1 evolves according to the non local

equation

›f 1

›t
þ c

›f 1

›z
¼ n2½af 1ðt;azÞ2 f 1ðt; zÞ�: ð5:2Þ

From Eq. (4.23) one has that (if bðtÞ ¼ 0) F(t ) is

constant and

mðtÞ ¼
ac

ða 2 1Þn2

þ C exp 2 1 2
1

a
n2t;

s2ðtÞ ¼ Aþ s2
0 2 A 2 2a

c

n2

C þ C 2

� �
exp 2 1

2
1

a2
n2t þ 2a

c

n2

þ C exp 2 21 2
1

a
n2t

2 C 2 exp 2 2 2
1

a
n2t;

where

A ¼
a2c2

ða2 2 1Þn2
2

; C ¼ m0 2
ac

ða 2 1Þn2

;

and m0 and s0 are the initial values of m(t ) and s(t ).
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It can be noticed that as t ! 1; m(t ) and s(t ) tend

respectively to the constants

m1 ¼
a

ða 2 1Þ

c

n2

; s1 ¼
affiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 2 1
p

c

n2

;

independently of the initial data.

Actually, from Eq. (4.20) one can observe that all

moments Fk tend to

F1
k ¼

k!a kðkþ1Þ=2Qk
j¼1 ða

j 2 1Þ

ck

nk
2

�F;

where �F is the constant value of F. This suggests the

possibility that Eq. (5.2) admit steady state solutions. In

fact, the source term on the right hand side of Eq. (5.2) acts

a backscattering of the unknown f1 at a backward distance

z=a: The steady state solution is then characterized by a

balance between transport and backscattering effect. The

steady state solutions f 1
1 satisfy the ordinary differential

equation

1

l

df 1
1

dz
þ f 1

1 ¼ af 1
1 ðazÞ; ð5:3Þ

where l ¼ n2=c:
The solution f 1

1 can be represented in terms of a set

of functions that characterizes the solution of the

standard exponential-rate equations. By the set

of functions ð21Þke2la kz we can represent the function

f 1
1 as

f 1
1 ðzÞ ¼

X1
k¼0

ð21ÞkAke2la kz: ð5:4Þ

Substituting the latter expression into the differential

Eq. (5.3) one obtains that the amplitudes Ak are related by

the recursive relation

Ak ¼
a

a k 2 1
Ak21; ;k $ 1; ð5:5Þ

so that any amplitude can be written in terms of the zero-th

one as follows:

Ak ¼
a kQk

j¼1 ða
j 2 1Þ

A0; ;k $ 1: ð5:6Þ

The steady state solution f 1
1 can then be written as

f 1
1 ðzÞ ¼ A0 e2lz þ

X1
k¼1

ð21Þka kQk
j¼1 ða

j 2 1Þ
e2la kz

" #
; ð5:7Þ

where A0 is proportional to the integral of the solution f 1
1

and can be evaluated exploiting the conservation of f 1
1

ensured by Eq. (4.16)ð1

0

f 1
1 ðzÞ dz ¼

ð1

0

f 1ðt ¼ 0; zÞ dz ¼ �F: ð5:8Þ

One then has

�F ¼ A0

1

l
þ

1

l

X1
k¼1

ð21ÞkQk
j¼1 ða

j 2 1Þ

" #
; ð5:9Þ

or

A0 ¼
l �F

1þ
P1

k¼1
ð21ÞkQk

j¼1
ða j21Þ

: ð5:10Þ

The normalized stationary state

f 1
1 ðzÞ

�F
¼

l

1þ
P1

k¼1
ð21ÞkQk

j¼1
ða j21Þ

e2lz

þ
X1
k¼1

ð21Þka kQk
j¼1 ða

j 2 1Þ
e2la kz; ð5:11Þ

is plotted in Fig. 3 versus Z ¼ lz for different values of

a. It gives the stationary distribution of potentially

progressing cells, which is reached thanks to the

control of the immune system and to the absence of

net proliferation/death of both tumor and immune

cells. Higher values of a correspond to an immune

system more effective in controlling the progression of

endothelial cells. As a consequence, the stationary

solution has a peaked maximum near z ¼ 0: Smaller

values of a correspond to an immune system less

effective in controlling the progression of endothelial

cells and the population of endothelial cells reaches a

stationary configuration characterized by a higher

mean progression. In fact, both m 1 and s 1 decrease

with a.

Figure 4 shows how the solution computed numerically

integrating Eq. (5.2) for a ¼ 10=7 tends toward the

analytical solution given by Eq. (5.11). The initial

distribution has a compact support: in biological

terms, there is initially a maximum value of progression

for the cells. Due to the hyperbolic character of

Eq. (5.2), this characteristic is preserved, that is at

any finite time there is a maximum progression value

related to the maximum initial progression and the

progression velocity c. It can be noticed, however, that,

being the asymptotic solution for t !þ1; the steady

solution (5.11) has not a compact support. It is strictly

positive for all z . 0 and goes to zero exponentially for

large z. As analytically expected, the total number of

progressing cells is unchanged. They tend toward more

pathological states, but are controlled by the immune

system.

Case III. a ¼ 1; n ¼ 0; g . 0; d . 0

This case corresponds to a balance between prolifer-

ation and inhibition of immune cells and to a destruction

ability of immune cells toward progressing cells. In turn,

progressing cells undergo proliferation. Again n2 is
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constant, while f1 evolves according to

›f 1

›t
ðt; zÞ þ c

›f 1

›z
ðt; zÞ ¼ ðgz 2 dn2Þf 1ðt; zÞ; ð5:12Þ

which can be integrated giving for z . ct

f 1ðt; zÞ ¼ f 0
1ðz 2 ctÞ exp gzt 2 dn2t 2

gc

2
t 2

n o
; ð5:13Þ

where f 0
1 is the initial condition. The solution for z , ct

depends on the boundary condition at z ¼ 0: For instance,

it identically vanishes if there is no inflow of progressing

cells. The discussion of the more general case with non-

vanishing boundary data is similar. We will then only

focus on what happens for z $ ct:
Considering the characteristic line through the point

ðt ¼ 0; z ¼ z0Þ with z0 , dn2=g and such that f 0ðz0Þ . 0;

FIGURE 4 Evolution of the statistical distribution f1 of progressing cells toward the stationary solution for a12 ¼ 0:3 (a ¼ 10/7). The line drawn for
t ¼ 7 is the analytic solution (5.11).

FIGURE 3 Steady states for a ¼ 10=ð10 2 iÞ; i ¼ 1; . . .; 9:Higher values of a correspond to higher maxima nearer Z ¼ lz ¼ 0 and to immune systems
more effective in controlling tumor progression.
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the behavior of the solution along it exhibits a minimum

f min
1

f 0
1ðz0Þ

¼ exp 2
ðdn2 2 gz0Þ

2

2gc

� �
;

at t ¼ ðdn2 2 gz0Þ=gc and then an exponential growth to

infinity. If from the beginning f1 has support that goes

beyond z ¼ dn2=g (i.e. if there are some cells with initial

progression state above this threshold value), then from

that characteristic on the solution immediately grows

without passing through a minimum (see Fig. 5). This

behavior characterizes also the case d ¼ 0 (even allowing

n – 0). In this case the immune system has no effect on

the progressing cells, though it is affected by their

presence.

These features are presented in Figs. 5 and 6. In

particular, Fig. 5 refers to the evolution along the

characteristics and therefore on the temporal evolution of

the number of cells which initially have a given

progression state z0. It can be observed that for smaller

values of z0 the tumor seems to disappear, but the

remaining cells progress on becoming more and more

aggressive, eventually leading to a final burst of the

number of cells. Fig. 6a,b give the evolution of f1(t,z ) in

the case in which the initial support is contained or not in

½0; dn2=g�: Note also in this case how the tumor seems to

be destroyed, before the sudden growth at higher

progression states.

Case IV. a . 1; g ¼ 0; n – 0; d . 0

This particular case corresponds to no proliferation of

progressing cells, while the conservative and destructive

action of the immune system act. In turn, the immune

system is affected by the presence of progressing cells.

There is no balance between proliferation and inhibition of

immune cells. However, because of the absence of the

growth term for the progressing cells Eqs. (4.13) and

(4.16) give rise to the following closed system of ordinary

differential equations

dF

dt
ðtÞ ¼ cbðtÞ2 dn2ðtÞFðtÞ;

dn2

dt
ðtÞ ¼ nn2ðtÞFðtÞ;

ð5:14Þ

which, assuming bðtÞ ¼ 0; possesses the first integral

nFðtÞ þ dn2ðtÞ ¼ const: ð5:15Þ

The equilibrium solutions present either F or n2

vanishing.

If A ¼ dn0 þ nF0 – 0; where n0 and F0 are the initial

values of n2(t ) and F(t ), the solution of Eq.(5.14) can be

written as

n2ðtÞ ¼
An0

dn0 þ nF0e2At
;

FðtÞ ¼
AF0e2At

dn0 þ nF0e2At
:

ð5:16Þ

If n , 2dn0=F0 , 0; e.g. if the aggressive behavior of

progressed cells towards the immune system or the

quantity of progressing cells is strong enough, then n2(t )

tends to zero, i.e. the immune system becomes completely

FIGURE 5 Temporal evolution of G ¼ f 1ðt; zðtÞÞ=f 1ð0; z0Þ for a ¼ c ¼ g ¼ 1; n ¼ 0 and dn2 ¼ 4 along the characteristics zðtÞ ¼ z0 þ ct: From right to
left the lines correspond to z0 ¼ 1; 2; 3; 4; 5: In particular, the full line corresponds to the evolution along the characteristic through the point
z0 ¼ dn2=g ¼ 4:
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ineffective. Otherwise, F(t ) tends to zero, i.e. progressed

cells are destroyed. The effect of a . 0 is to slow down

the progression but as it is associated to a conservative

action and the progression does not influence the evolution

(i.e.g ¼ 0) it does not have any effect on the total number

of progressing cells.

Case V. a . 1; g . 0; n – 1; d ¼ 0

In this case tumor progression is only hampered by the

conservative action of the immune system. Equation

(4.22) reduces to

dF

dt
ðtÞ ¼ g

ð1

0

zf 1ðt; zÞ dz ¼ gmðtÞFðtÞ . 0; ð5:17Þ

which states that F always increases.

On the other hand, the solution of Eq. (4.13) for g . 0

is larger that the one corresponding to g ¼ 0 dealt with in

Case II. Therefore, the right hand side is always larger

than a strictly positive number, which implies that F goes

to infinite with time and the number of progressing cells

explodes.

The description of particular cases allows to enlighten,

at some extent, the solution of the general case that

typically could evolve according to the following

scenarios.

1. The presence of progressed cells stimulates the

duplication of immune cells.

2. The immune cells have a double action on progressed

cells: conservative and destructive. For small pro-

gression the latter is dominant, the number of

FIGURE 6 The statistical distribution f1(t,z ) of progressing cells is plotted in (a) for the same values of the parameters as in Fig. 5 and in (b) for
dn2 ¼ 0:4: In (b) the number of progressing cells constantly increases. In (a) it explodes after having nearly vanished.
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progressed cells decreases and the mean progression is

controlled (recall the second equation in (4.13) and

Case I).

3. As F becomes smaller and smaller n2 tends to a

constant.

4. A few cells may reach a progression state such that the

right hand side of the first equation in (4.13) returns

positive. This might give raise to a renewed tumor

growth and consequential immune response.

The possible dynamics pointed out by this discussion

motivates the need for a more detailed study of the

qualitative behavior of the solution in the general case.

A main applicative interest is in devising for which set

of parameters a, g, n, d, c the solution of Eq. (4.13) is

stable in a suitable sense. As the integral of f1, appearing in

the equations is related to the number of progressed cells

and some terms in the equations ensure conservation, it is

quite natural to look for solutions with bounded L 1 norm,

i.e. with bounded mass

kf 1kL 1 ;
ð1

0

f 1ðt; zÞ dz ; FðtÞ , M

where M is independent of time.

A conceivable additional investigation item is to check

whether for some values of the parameters F tends to zero.

However, from a biological point of view the knowledge

of such a behavior provides only a partial answer. The

critical time at which the tumor mass starts to decrease

depends on the parameters of the model. Of course, the

critical time could be much longer than the human life.

Moreover, the function F should tend to zero without

passing through maximum values not compatible with the

survival of the organism. According to the parameters,

such a value can be overcome even if the model foresees a

theoretical asymptotic damping of F for very large times.

CRITICAL ANALYSIS AND RESEARCH

PERSPECTIVES

The contents of this paper were developed with direct

reference to the paper by Greller et al. (1996), which

shows that in describing the evolution of a cell population

towards pathological states it is necessary to introduce a

new independent variable which describes the different

behavior of cells according to their progression states.

Indeed, a general framework and related models have

been proposed to describe in mathematical terms most of

the phenomena phenomenologically described in Greller

et al. (1996) and characterized by the fact that the behavior

at a certain time and position depends not only on the

number of cells involved, but also on their progression

states.

In some particular regimes, the model shows a simple

enough structure to allow the determination of analytic

solutions and asymptotic behavior. The analysis of the

above simplified models provides useful information on

the asymptotic behavior in the general case.

The general framework proposed in “A conceptual

modeling framework” section can be further developed in

order to describe some interesting phenomena which have

not been explicitly considered in this paper. For instance,

the reproduction rate is here assumed to be proportional to

the progression state. On the other hand, in situations like

chronic myelogenous leukemia, the growth rate is nearly

constant for progression values less than a certain value

(giving rise to a long phase in which the tumor is

controlled and physiologically tolerated) and then rapidly

increases when this threshold value is reached (giving rise

to an acute and probably mortal phase).

Moreover, non constant growth terms would also give

rise to phenomena like clonal dominance. In fact, those

states characterized by a larger growth coefficient would

eventually be dominant. Clonal dominance can also be

described by a progression velocity that vanishes at a

given value of progression. This would cause a crowding

of the characteristics towards this asymptotic value.

The production of immune cells by the bone marrow

can be modeled as an external source term in the equation

for the immune system. This term can be constant,

providing a constant input or might be time dependent,

modeling the possibility to stimulate pharmacologically

the production of immune cells. Further, medical actions

can be modeled operating on the left-hand-side term as in

Firmani et al. (1999).

Looking again at Greller et al. (1996), it results that in

some cases the introduction of a single progression state is

not sufficient, but more progression states are to be

defined. In fact, the framework developed in this paper

allows to deal only with those cases in which different

ordering of two distinguishable genetic events lead to the

same tumor state. Introducing at least two progression

variables u1 and u2 would allow to explain situations in

which the ordering of the genetic events leads to different

dynamics because of different paths in the progression

plane (u1,u2).

It is plain that several additional phenomena can be

taken into account. Listing them would not be difficult and

some of them are also outlined in Greller et al. (1996). The

difficulty is mainly in providing a consistent mathematical

description. In some cases, the development of the model

of this paper may be simply a technical problem, in other

cases the development can be obtained only by a deep

analysis of the system.

In principle, the modeling may even require the

modification of the general structure of the equations

proposed in “A conceptual modeling framework” section.

Indeed, we think that this is going to be an interesting field

of research and speculations for applied mathematicians.

A further relevant aspect refers to the analysis of the

connections between the microscopic description, devel-

oped at a cellular level, proposed in this paper and the

macroscopic description developed starting by suitable
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conservation equations (see for instance De Angelis and

Preziosi (2000)). In fact, the framework presented here

does not take space and cell motion into account and this

has to be done to relate these models with classical

reaction–diffusion models. On the other hand, it is clear

from the phenomenological description given by Greller

et al. (1996) that the macroscopic evolution of a tumor

depends on the progression state of its cells and therefore

reaction–diffusion models should take into account that

progression is a statistically distributed characteristic of

cells influencing their global behavior. In this respect, this

paper should be considered as a first step toward the above

research program.
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