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In this paper, a model of cellular tumor dynamics in competition with the immune system is proposed.
The characteristic scale of the phenomenon is the cellular one and the model is developed with
probabilistic methods analogous to those of the kinetic theory. The interacting individuals are the cells
of the populations involved in the competition between the tumor and the immune system. Interactions
can change the activation state of the tumor and cause tumor proliferation or destruction. The model is
expressed in terms of a bi-linear system of integro-differential equations. Some preliminary
mathematical analysis of the model as well as computational simulations are presented.
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INTRODUCTION

Immunologists have recently shown an increasing interest

in mathematical modeling of tumor dynamics in

competition with the immune system, possibly under the

action of external medical treatment. Models can simulate

medical treatment and support choosing and applying

suitable therapeutic strategies. Mathematical modeling in

medicine and immunology has a long tradition and has

known important successes. It can promote both

improvement of clinical therapies and developing of

mathematical theories. For instance, the therapy based on

the mathematical work by Lasota et al. (1981) was

successfully applied on patients by Ważewska-Czyżewska

(1981).

The reader is addressed to review papers devoted to

modeling, analysis, numerical simulations and control of

tumor/immune system interactions. In particular, we

mention the review papers by Bellomo and De Angelis

(1998) and Bellomo and Preziosi (2000), which provide a

rather complete description of the state of the art, and the

review papers by Chaplain (1996), Byrne (1999), Owen

and Sherratt (1999) and Please et al. (1999), devoted to the

various macroscopic stages of evolution of the tumor. For

general bibliography, see also the special issue (Chaplain,

1999).

The evolution of a neoplastic cell (see e.g. Herberman,

1982) is regulated by the genes contained in its nucleus.

Genes can be either activated or suppressed when signals

stimulate receptors on the cell surface and are then

transmitted to the cell nucleus. In extreme situations,

particular signals can induce a cell to reproduce itself in

the form of identical descendants (the so-called clonal

expansion) or to die (the so-called apoptosis, or

programmed death). When clonal expansion appears, a

competition between tumor cells and the immune system

is activated. If the immune system is active and able to

recognize the tumor cells, it may be able to develop

destruction mechanisms, possibly resulting in the

destruction of the aggressive host. Otherwise, tumor

growth may develop progressively.

Summarizing, the evolution of neoplastic cells can be

described according to the following steps:

1. loss of differentiation and replication: the cells start to

reproduce in the form of identical descendants (clonal

expansion );

2. interaction (activation or inhibition) and competition

at the cellular level with immune and environmental

cells, e.g. through the emission of cytokine signals;

3. condensation of tumor cells, macroscopic diffusion

and angiogenesis;
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4. detachment of metastases and propagation.

The first two steps imply cellular and sub-cellular

interactions, while the last two can be described at the

macroscopic level.

In this paper, we propose a model for the interaction at

the cellular level.

Mathematical models of cellular phenomena related to

the interaction between tumor cells and the immune

system have been developed by Bellomo et al. (1996),

Firmani et al. (1999) and Arlotti et al. (2000) using

methods which are typical of kinetic theory. Such models

are stated in terms of systems of integro-differential

equations (like Boltzmann kinetic equation—cf. Ferziger

and Kaper, 1972), with quadratic non-linearities, describ-

ing the evolution of the densities of cell populations with

respect to the cell activation state. These models take into

account various interactions between cell populations,

such as conservative interactions, which modify the cells’

activation state but preserve the number of cells, and

proliferative–destructive interactions which modify the

number of cells.

In the paper by Arlotti et al. (2000), a class of models of

population dynamics with kinetic interactions taking into

account transitions among different populations was

proposed. These models are generalizations of the Jäger

and Segel (1992) kinetic model.

In the model (2.11) which we propose here, we describe

a simulation of the immune response of the organism

through production of both active immune cells and

macrophages.

Following Arlotti et al. (2000), we start with a general

class of models describing the interaction and competition

of several cellular populations. Each cell is characterized

by its activation state. On the other hand, each population

is characterized by its size, i.e. number of cells. Both, the

number densities of cell populations and the cells’

activation states evolve. The evolution is determined by

the interactions between pairs of cells (analogously to the

kinetic theory, we take into account here, only binary

interactions).

For increased readability, the details of the general

mathematical framework are summarized in Appendix

A. In “A model of tumor–immune system competition”,

we introduce our model which is described by the system

of integro-differential equations (2.10). In “Numerical

simulation”, we report the results of numerical simulations

performed on model (2.11). Some rigorous mathematical

results concerning systems of the type (2.11) are exposed

in Appendix B.

A MODEL OF TUMOR–IMMUNE SYSTEM

COMPETITION

The general framework summarized in Appendix A is

used in this section to develop a mathematical model of

cellular tumor dynamics in competition with the immune

system. The model is related to the first stage of tumor cell

onset and proliferation, when some endothelial cells lose

differentiation and start to replicate and interact with the

immune system and with environmental cells. We select

the cell populations, their specific activities and identify

the interactions, which are significant to the evolution of

the system. For each pair interaction, we first state our

hypotheses in a qualitative language, then translate them

in general statements about the mathematical quantities

introduced in Appendix A, finally produce a sufficiently

generic, analytic form for these quantities, suitable for

numeric simulations.

We consider a model with a minimal number of

populations: active tumor cells and immune cells. Immune

cells are further subdivided into active immune cells and

macrophages. The population of active immune cells is

understood to be a collection of all factors produced by the

immune system that can lower the activation state of

tumor cells. The population of macrophages is understood

to be a collection of all factors coming from the immune

system that can destroy the tumor cells (we use the name

“macrophages” for simplicity). The cells of the remaining

populations which influence the tumor–immune system

competition will be called “environmental cells”. They are

formally important in view of their interactions with tumor

cells but they do not represent a dynamical degree of

freedom, since we assume that their number and activation

state is constant during the time evolution.

Summarizing, the following four populations are

identified:

1. active tumor cells;

2. active immune cells;

3. macrophages;

4. environmental cells.

Here we denote conventionally with the word cell, the

members of each population, for the purpose of simplicity.

We associate to tumor cells also an activation state u [
½0; 1�; which is a measure of their aggressivity and

proliferating ability (cf. Appendix A).

With the aim of maximally simplifying the model, we

assume that the only population whose internal activation

state is a relevant variable is that of active tumor cells. As

to the remaining populations, we neglect the presence of

internal degrees of freedom and assume that the

distribution functions f2, f3 and f4 are independent of the

activation states. We now proceed to the specification of

the interaction structure characterizing our model (we use

the notations of Appendix A).

We will assume that only the following interactions are

significant:

Interactions between 1 and 2 (1–2). Interactions

between active tumor and active immune cells are

characterized by the following effects:
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(i) Lowering the activation state of tumor cells by

active immune cells: the function Að1Þ1;2 : ½0; 1�3 ! Rþ is

such that

(1) Að1Þ1;2 ¼ Að1Þ1;2ðv;w; uÞ is independent of w,

(2)
Ð 1

0
Að1Þ1;2ðv; uÞ du ¼ 1 ;v [ ½0; 1�;

(3) A ð1Þ1;2ðv; uÞ ¼ 0; ;u; v [ ½0; 1� : v # u; and the func-

tion a1;2 : ½0; 1�2 ! Rþ is such that

(4) a1;2 ¼ a1;2ðu; vÞ is independent of v,

(5) a1;2 [ L1ð0; 1Þ;
(6) the function ðu; vÞ! Að1Þ1;2ðv; uÞa1;2ðvÞ is in L1

([0,1]2).

Example. A representative of the class of functions

specified by conditions (1)–(6), sufficiently generic for our

purposes, is

Að1Þ1;2ðv; uÞ ¼
2ðv 2 uÞ=v 2 for v . u;

0 for v # u;

(
ð2:1Þ

with

a1;2ðvÞ ¼ b1;2v2; ;v [ ½0; 1�; ð2:2Þ

where bl,2 is a non-negative constant.

(ii) Inhibition of active immune cells by tumor cells (we

assume that the fraction of inhibited immune cells is

proportional to the activation state v ):

a2;1ðv; uÞ ¼ b2;1v; for u; v [ ½0; 1�; ð2:3Þ

where b2,1 is a non-negative constant.

Interaction between 1 and 4 (1–4). Interactions

between active tumor and environmental cells are

characterized by the following effects:

(i) Tumor conservative interactions. They make the

tumor cells steadily progress in the activation state: the

function A
1;c
1;4 : ½0; 1�3 ! Rþ is such that

(1) A
1;c
1;4 ¼ A

1;c
1;4ðv;w; uÞ is independent of w,

(2)
Ð 1

0
A

1;c
1;4ðv; uÞ du ¼ 1 ;v [ ½0; 1�;

(3) A
1;c
1;4ðv; uÞ ¼ 0; ;u; v [ ½0; 1� : u # v; and the func-

tion a1;4 : ½0; 1�2 ! Rþ is such that

(4) a1;4 ¼ a1;4ðu; vÞ is independent of v,

(5) a1;4 [ L1 (0,1),

(6) the function ðu; vÞ! A
1;c
1;4ðv; uÞa1;4ðvÞ is in L1

([0,1]2).

Example. A representative of the class of functions

specified by conditions (1)–(6), sufficiently generic for our

purposes, is

A
1;c
1;4ðv; uÞ ¼

2ðu 2 vÞ=ð1 2 vÞ2 for u . v;

0 for u # v

(
ð2:4Þ

and

a1;4ðvÞ ¼ b1;4ð1 2 vÞ2; ;v [ ½0; 1�; ð2:5Þ

where b1,4 is a non-negative constant.

(ii) The distribution function f4 of environmental cells is

assumed to be constant during the evolution. We

normalize the number of cells of each population to the

number of environmental cells, thus

f 4 ¼ n4 ¼ 1; ð2:6Þ

(iii) tumor proliferative interactions. They trigger the

production of new tumor cells with a rate proportional to

1 2 u (the probability of producing new tumor cells with

small activation state should be higher than that with high

activation state) and to the average activation of tumorÐ 1

0
v f 1ðt; vÞ dv: Therefore we assume: the function A

1;p
1;4 :

½0; 1�3 ! Rþ is such that

(1) A
1; p
1;4 ¼ A

1; p
1;4 ðv;w; uÞ is independent of w;

(2)
Ð 1

0
A

1; p
1;4 ðv; uÞ du $ 0 ;v [ ½0; 1�,

(3)
Ð 1

0
A

1; p
1;4 ðv; uÞa1;4ðvÞf 1ðt; vÞ dv ¼ bð1Þ1;4ð1 2 uÞÐ 1

0
vf 1ðt; vÞ dv; ;v [ ½0; 1�; where bð1Þ1;4 is a non-

negative constant.

Example. A representative of the class of functions

specified by conditions (1)–(3), sufficiently generic for our

purposes, is

A
1;p
1;4ðv; uÞ ¼

bð1Þ1;4ð1 2 uÞv

b1;4ð1 2 vÞ2
: ð2:7Þ

Finally, we may define

Að1Þ1;4 ¼ A
1;c
1;4 þ A

1;p
1;4: ð2:8Þ

(iv) Stimulation of immune response (production of

both active immune cells and macrophages). For i ¼ 2; 3
we assume the function AðiÞ1;4 : ½0; 1�3 ! Rþ is such that

(1) AðiÞ1;4 ¼ AðiÞ1;4ðv;w; uÞ is independent of w,

(2)
Ð 1

0
AðiÞ1;4ðv; uÞ du $ 0 ;v [ ½0; 1�;

(3)
Ð 1

0
AðiÞ1;4ðv; uÞa1;4ðvÞf 1ðt; vÞ dv ¼ bðiÞ1;4

Ð 1

0
f 1ðt; vÞ dv;

;u [ ½0; 1�; where bðiÞ1;4 is a non-negative constant.

Example. A representative of the class of functions

specified by conditions (1–3), sufficiently generic for our

purposes, is

AðiÞ1;4ðv; uÞ ¼
bðiÞ1;4

b1;4

1

ð1 2 vÞ2
: ð2:9Þ

Interaction between 1 and 3 (1–3). Interactions

between active tumor cells and macrophages are

characterized by the following effects:
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i) They destroy a fraction of the tumor cells. We

assume that a1;3 ¼ b1;3 is a non-negative constant.

ii) The tumor cells inhibit macrophages (we assume

that the rate of interaction is proportional to the

activation state v ):

a3;1ðu; vÞ ¼ b3;1v; for u; v [ ½0; 1�; ð2:10Þ

where b3,1 is a non-negative constant.

Interaction between i and 4 (i–4, i=2, 3). In some

particular cases, the processes of controlling the

production of active immune cells and macrophages can

be additionally included. We assume that a2;4 ¼ b2;4 and

a3;4 ¼ b3;4 are non-negative constants. They contribute to

linear death terms.

All the remaining (not mentioned above) Ai
j;k and

aj,k—see Appendix A—are assumed to be zero. In some

particular cases, some of the above mentioned

parameters of the model (i.e. the constants bj,k,b
ðiÞ
j;kÞ

may be equal to 0.

These interactions define a phenomenological descrip-

tion of cell interaction and competition ruled by

subcellular mechanisms (like emission–reception of

cytokine signals, etc.).

Finally, we assume that an inlet of tumor cells is

possible and described by a function S ¼ SðuÞ such that

S is a smooth decreasing function of u [ [0,1] and

Sð1Þ ¼ 0:
We point out that the parameters characterizing the

model are the following:

. bl,2—characterizing the depression of tumor activation

due to the encounter with immune cells;

. b1,4—characterizing the steady progress of tumor cells

towards increasing activation state;

. bð1Þ1;4—characterizing the proliferative activity of tumor

cells;

. b1,3—characterizing the destruction of tumor cells by

macrophages;

. bð2Þ1;4—characterizing the immune response of the

organism, triggered by the presence of tumor cells;

. b2,1—characterizing the inhibition of production of

immune cells due to the encounter with tumor cells;

. b2,4—characterizing the inhibition of production of

immune cells by environmental cells;

. bð3Þ1;4—characterizing the production of macrophages,

triggered by the presence of tumor cells;

. b3,1—characterizing the inhibition of production of

macrophages due to the encounter with active tumor

cells;

. b3,4—characterizing the inhibition of production of

macrophages by environmental cells;

. the function S1—characterizing the inlet of tumor

cells.

We are now ready to write down explicitly the evolution

system related to the above defined model,

›f 1

›t
ðt; uÞ ¼ b1;2n2ðtÞ £ 2

ð1

u

ðv 2 uÞf 1ðt; vÞ dv

2 u2f 1ðt; uÞ þ b1;42

ðu

0

ðu

2 vÞf 1ðt; vÞ dv 2 ð1 2 uÞ2f 1ðt; uÞ

þ bð1Þ1;4ð1 2 uÞ

ð1

0

vf 1ðt; vÞ dv

2 b1;3n3ðtÞf 1ðt; uÞ þ S1ðuÞ; ð2:11Þ

dn2

dt
ðtÞ ¼ bð2Þ1;4

ð1

0

f 1ðt; vÞ dv 2 b2;1n2ðtÞ

ð1

0

vf 1ðt; vÞ dv

2 b2;4n2ðtÞ;

dn3

dt
ðtÞ ¼ bð3Þ1;4

ð1

0

f 1ðt; vÞ dv 2 b3;1n3ðtÞ

ð1

0

vf 1ðt; vÞ dv

2 b3;4n3ðtÞ:

We recall that the relevant dynamical variables are the

distribution function f1(t,u ) of tumor cells with respect to

their activation, and the overall densities n2, n3 of immune

cells and macrophages. A general theory for the systems

of the type (2.11) is presented in Appendix B.

NUMERICAL SIMULATION

We simulated the Cauchy problem for the integro-

differential model (2.11) using an adaptive Runge–Kutta

method. Integrals were performed using a Gauss–

Chebyshev quadrature formula with 11 nodes.

As an initial condition, we assume the presence of a

small population of low-activity tumor cells (created in

earlier times by some event whose nature we do not further

investigate). We do not consider a continuous inlet of

tumor cells, thus choosing S1ðuÞ ¼ 0:
By simulating the time evolution of the model (2.11),

one observes that tumor cells proliferate and progress in

the activity scale. After a (possibly long) period of

dormancy, there appears a vast population of highly

activated tumor cells, which triggers the reaction of the

immune system. The response of the immune system can

show three essentially different behaviors:

i) it can be sufficiently activated to destroy the tumor

cells;

ii) the reaction can be sufficient to stop the uncontrol-

lable proliferation of the tumor cells, without being

able to completely destroy them;
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FIGURE 1 The uncontrollable growth of tumor cells cannot be stopped by the insufficient reaction of the immune system ðb1;3 ¼ 0:01Þ:

FIGURE 2 The prompt reaction of the immune system is able to control tumor proliferation ðb1;3 ¼ 5Þ:
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FIGURE 3 A scenario similar to that of Fig. 2, observed on a longer time scale ðb1;3 ¼ 0:3Þ:

FIGURE 4 After the first reaction to tumor proliferation, the production of macrophages is relaxed, allowing a renewal of tumor aggression
ðb3;4 ¼ 0:1Þ:
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FIGURE 5 The same effect as in Fig. 4, with more intensity ðb3;4 ¼ 0:2Þ:

FIGURE 6 The same evolution as in Fig. 4, on a longer time scale ðm3;4 ¼ 0:1Þ: One notices the oscillating behavior of the tumor–immune
competition.
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iii) the reaction is unable to stop tumor evolution.

We observe that one of the parameters of (2.11) fixes the

time scale and can be chosen to be equal to 1 without any

loss of generality: let it be b1,4, which describes the steady

progress of tumor cells in the activity scale.

We report here the results of the exploration of the

subspace of parameters characterized by bð3Þ1;4 ¼ bð2Þ1;4 ¼

0:01: These values give the time-scale of the response of

the immune system. In principle, the values bð3Þ1;4 and bð2Þ1;4

are different and give rise to two different time scales, but

at the moment, we see no physical reason to introduce this

complication and we have assumed for simplicity that they

are equal. The small value 0.01 accounts for the

comparatively slow response of the immune system and

could of course be varied.

We assign a fixed value also to b1,2 (action of the

immune cells) and proceed to vary b1,3 (destruction of

tumor cells by macrophages). In the first sequence of

simulations, we do not introduce death factors, so that

b2;4 ¼ 0; b3;4 ¼ 0:
The result of the simulations is visualized as a 3-D plot

of f1 against the activity u and time t using false colors

indicating the degree of activation of the immune system

(blue for no activation, red for strong activation—the

choice of the specific color scale changes from figure to

figure). The time evolution of the n2 and n3 densities

(immune cells and macrophages) is shown in the insets.

The time scale in all of the plots is conventional, and

having fixed b1;4 ¼ 1; we can think of the time unit as

proportional to the natural rate of progression of the tumor

cells in the activity scale. Ticks on the u axis identify the

nodes of the quadrature method.

By varying b1,3, one observes several regimes.

1. In Fig. 1, we see an uncontrollable growth of the tumor

cells, which cannot be stopped by the insufficient

reaction of the immune system ðb1;3 ¼ 0:01Þ:
2. In Fig. 2, the prompt reaction of the immune system is

able to cope with tumor proliferation ðb1;3 ¼ 5Þ:
3. In Fig. 3, we observe a similar scenario on a longer

time scale (30 conventional units; b1;3 ¼ 0:3Þ:
We then pass to analyze the effect of death

factors in the model (2.11). With the introduction of

death factors, immune cells and macrophages do not

accumulate without limit, but act on a well defined

(statistic) time scale and are then destroyed.

4. In Fig. 4 after the first reaction to tumor proliferation,

we observe a relaxation in the production of

macrophages, allowing an incipient renewal of the

tumor aggression ðb3;4 ¼ 0:1Þ:
5. In Fig. 5, the same effect is observed with more

intensity ðb3;4 ¼ 0:2Þ:
6. In Fig. 6, we observe the same evolution as in Fig. 4,

but on a longer time scale ðb3;4 ¼ 0:1Þ: A series of

oscillations in the tumor–immune competition is

clearly noticeable. This kind of behavior corresponds

to a separatrix in the parameter space, dividing regions

where tumor proliferation is uncontrasted and regions

where tumor cells are efficiently destroyed by the

immune system. In practice, the numerical simulation

produces a finite number of oscillations, which,

depending on the choice of the point in parameter

space, eventually lead either to the proliferating

behavior or to a situation in which the immune system

prevails. The presence of such oscillations is realistic

and experimentally confirmed.

CONCLUSIONS

We introduced a simple model of tumor–immune system

competition inspired by kinetic theory and described by

the system of integro-differential equations (2.11). We

analyzed the abstract mathematical problem posed by

(2.11), obtaining the existence result exposed in Appendix

B. We simulated the Cauchy problem for model (2.11)

using an adaptive Runge–Kutta method and a Gauss–

Chebyshev quadrature formulae.

As a result of the present investigation, we observe that

the model presents a wealth of behaviors that can

hopefully be compared with experimental data on in vitro

tumor cell evolution. In dependence of the values of the

parameters, one observes either an uncontrollable growth

of the tumor population, or an efficient reaction of the

immune system which is able to control tumor

proliferation. As a separation between these two extreme

situations, one observes prolonged antagonistic behavior

between the tumor cells and the immune system. This

scenario, which emerges from a (by necessity) partial

investigation of the space of parameters, is encouraging

and prompts for future work of comparison with

experimental data.
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APPENDIX A — GENERAL FRAMEWORK

We start from the following set of assumptions:

(AA.1) The system is constituted by d $ 1 interacting

cell populations.

(AA.2) Each cell is characterized by its activation state

u [ U (in this paper, for simplicity, we assume that U ¼
½0; 1�; but U can be a more complicated set).

(AA.3) The function f i ¼ f iðt; uÞ; f i : ½0;1½£½0; 1�!
Rþði ¼ 1; . . .; dÞ defines the density of cells of the ith

population with activation state u at time t $ 0: The

number of cells of the ith population at time t [ [0,1[ is

given by

niðtÞ ¼

ð1

0

f iðt; uÞ du

and the total number of cells at time t [ [0,1[ is given by

NðtÞ ¼
Xd

i¼1

niðtÞ:

(AA.4) Interactions between pairs of cells are

homogeneous in space and instantaneous (without time

delay). They may change the activation state of cells as

well as the population size by shifting cells into another

activation state or by destroying or creating cells. Only

binary interactions are taken into account.

(AA.5) The rate of interaction between the cells of the

jth population with activation state u [ ½0; 1� and the cells

of the kth population with activation state v [ ½0; 1�
ðj; k ¼ . . .; dÞ is given by the function

aj;k ¼ aj;kðu; vÞ; aj;k : ½0; 1�2 ! Rþ; j; k ¼ 1; . . .; d:

(AA.6) The transition into the ith population with

activation state u [ ½0; 1� due to the interaction of cells of

the jth population with activation state v [ ½0; 1� with

cells of the kth population with activation state w [ [0,1]

is described by the function

AðiÞj;k ¼ AðiÞj;kðv;w; uÞ; AðiÞj;k : ½0; 1�3 ! Rþ;

i; j; k ¼ 1; . . .; d:

The class of models considered in Arlotti et al. (2000) is

the following:

›f i

›t
ðt; uÞ ¼ Gi½f�ðt; uÞ2 Li½f�ðt; uÞ þ Siðt; uÞ;

u [ ½0; 1� i ¼ 1; . . .; d;

ðA1Þ

where f ¼ {f i}
d
i¼1; Gi is the gain term due to binary

interactions which drive cells into the ith population and

into the activation state u,

Gi½f�ðuÞ ¼
Xd

j;k¼1

ð1

0

ð1

0

AðiÞj;kðv;w; uÞaj;kðv;wÞf jðvÞf kðwÞ dv dw;

Li is the loss term due to binary interactions which drive

cells out of the ith population or out of the activation state

u,

Li½f�ðuÞ ¼ f iðuÞ
Xd

j¼1

ð1

0

ai;jðu; vÞf jðvÞ dv;
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Si is the production or migration term of cells of the ith

population with activation state u due to any artificial

inlet.

The above framework can be generalized in order to

include spatial diffusion processes and interactions with

time delay. Various versions of Eq. (A1) were analyzed in

Arlotti et al. (2000) and Bellomo et al. (1996) (see also

references therein).

Remark A1. Note that, if for all i; j; k ¼ 1; . . .; d; the

functions aðj;kÞ; AðiÞj;k and Si are constants, Eq. (A1) takes the

simpler form of a system of ordinary differential

equations:

dni

dt
¼
Xd

j;k¼1

AðiÞj;kaj;knjnk 2 ni

Xd

k¼1

ai;knk 2 Si;

i ¼ 1; . . .; d:

ðA2Þ

The particular choices of parameters of the system (A2)

result in various important examples of models known in

the literature, such as Bremermann’s (1983) model of

phage–host dynamics, Kermack–McKendrick (SIR)

model (see Capasso (1996)), Marchuk’s model of

infections diseases (Marchuk, 1983) with zero time

delay. If spatial diffusion terms or time delay are included

then, as examples one recovers the Field–Noyes model for

the Belousov–Zhabotinsky reactions in chemical kinetics

(Hastings and Murray, 1975; Smoller, 1983) or Marchuk’s

model with time delay (Marchuk, 1983; Foryś, 1995).

Referring to models with a zero source term Si ¼ 0 (for

i ¼ 1; . . .; dÞ; the following classification was proposed in

Arlotti et al. (2000):

. Conservative case:

Xd

i¼1

ð1

0

AðiÞj;kðv;w; uÞ du ¼ 1; ;j; k ¼ 1; . . .; d;

;v;w [ ½0; 1�:

In this case, the total number of cells N(t ) is

preserved, NðtÞ ¼ Nð0Þ; t . 0:
. Proliferative case:

Xd

i¼1

ð1

0

AðiÞj;kðv;w; uÞ du . 1; ;j; k ¼ 1; . . .; d;

;v;w [ ½0; 1�:

In this case, the total number of cells N(t )

increases: t ") NðtÞ " :
. Destructive case:Xd

i¼1

ð1

0

AðiÞj;kðv;w; uÞ du , 1; ;j; k ¼ 1; . . .; n;

;v;w [ ½0; 1�:

In this case, the total number of cells N(t )

decreases: t ") NðtÞ # :

In some cases, one can consider the class of models in

which the distribution function f iði ¼ d1; . . .; d; 1 # d1 #

dÞ of the last d 2 d1 þ 1 populations are independent of

the activation state u,

f iðt; uÞ ¼ niðtÞ; ;u [ ½0; 1�; t $ 0;

i ¼ d1. . .; d:
ðA3Þ

More precisely: we assume that

(S.1) ai;j ¼ ai;jðu; vÞ is independent of v for all i ¼

1; . . .; d1 2 1 and j ¼ d1; . . .; d;

(S.2) ai;j ¼ ai;jðu; vÞ is independent of u and v for all

i ¼ d1; . . .; d and j ¼ d1; . . .; d;

(S.3) ai;j ¼ ai;jðu; vÞ is independent of u for all i ¼

d1; . . .; d and j ¼ 1; . . .; d1 2 1;

(S.4) AðiÞj;kaj;k ¼ AðiÞj;kðv;w; uÞaj;kðv;wÞ is independent of w

for all i ¼ 1; . . .; d1 2 1; j ¼ d1; . . .; d and k ¼ 1; . . .; d1 2

1;

(S.5) AðiÞj;k ¼ AðiÞj;kðv;w; uÞ is independent of v and w for

all i ¼ 1; . . .; d and j; k ¼ d1; . . .; d;

(S.6) AðiÞj;kðv;w; uÞ is independent of w for all i ¼

1; . . .; d; j ¼ 1; . . .; d1 2 1 and k ¼ d1; . . .; d;

(S.7) AðiÞj;kðv;w; uÞ is independent of v for all i ¼

d1; . . .; d; j ¼ d1. . .; d and k ¼ 1; . . .; d1 2 1;

(S.8) Si (t, u ) is independent of u for all i ¼ d1. . .; d:

Under these assumptions the system of evolution

equation reads

›f i

›t
ðt; uÞ ¼

Xd121

j;k¼1

ð1

0

ð1

0

AðiÞj;kðv;w; uÞaj;kðv;wÞ

£ f jðt; vÞf kðt;wÞ dv dw

þ
Xd121

j¼1

Xd

k¼d1

nkðtÞ

ð1

0

a
ðiÞ
j;kðv; uÞf jðt; vÞ dv

þ
Xd

k;j¼d1

b
ðiÞ
j;kðuÞnjðtÞnkðtÞ2 f iðt; uÞ

£
Xd121

j¼1

ð1

0

ai;jðu; vÞf jðt; vÞ dvþ
Xd

j¼d1

ai;jðuÞnjðtÞ

þ Siðt; uÞ; i ¼ 1; . . .; d1

ðA4aÞ
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dni

dt
ðtÞ ¼

Xd

j;k¼d1

~b
ðiÞ

j;knjðtÞnkðtÞ

þ
Xd121

j¼1

Xd

k¼d1

nkðtÞ

ð1

0

~a
ðiÞ
j;kðvÞf jðt; vÞ dv

þ
Xd121

j;k¼1

ð1

0

ð1

0

~A
ðiÞ

j;kðv;wÞaj;kðv;wÞ

£ f jðt; vÞf kðt;wÞ dv dw

2 niðtÞ
Xd121

j¼1

ð1

0

ai;jðvÞf jðt; vÞ dvþ
Xd

j¼d1

ai;jnjðtÞ

þ SiðtÞ; i ¼ d1; . . .; d;

ðA4bÞ

where

a
ðiÞ
j;kðv; uÞ ¼

ð1

0

AðiÞj;kðv;w; uÞaj;kðv;wÞ dw

þ

ð1

0

AðiÞk;jðw; v; uÞak;jðw; vÞ dw;

b
ðiÞ
j;kðuÞ ¼

ð1

0

ð1

0

AðiÞj;kðv;w; uÞaj;kðv;wÞ dv dw;

~b
ðiÞ

j;k ¼

ð1

0

b
ðiÞ
j;kðuÞ du; ~a

ðiÞ
j;kðvÞ ¼

ð1

0

a
ðiÞ
j;kðv; uÞ du; ~A

ðiÞ

j;kðv;wÞ

¼

ð1

0

AðiÞj;kðv;w; uÞ du:

APPENDIX B — MATHEMATICAL PROBLEMS

In this appendix, we provide information on the qualitative

behavior of the solution of the initial value problem for the

abstract version of the system (2.11).

The abstract version of the model is expressed in terms

of the following integro-differential bi-linear system of

equations:

›f 1

›t
ðt; uÞ ¼ n2ðtÞB1;2½f 1�ðt; uÞ þB1;4½f 1�ðt; uÞ

þ BðuÞ

ð1

0

vf 1ðt; vÞ dv 2 b1;3n3ðtÞf 1ðt; uÞ

þ S1ðuÞ; ðB1Þ

dni

dt
ðtÞ ¼ bðiÞ1;4

ð1

0

f 1ðt; vÞ dv

2 bi;1niðtÞ

ð1

0

vf 1ðt; vÞ dv 2 bi;4niðtÞ;

i ¼ 2; 3;

where B1,i, i ¼ 2; 4; are linear operators such that

B1;i½f �ðuÞ ¼

ð1

0

A1;iðu; vÞa1;iðvÞf ðvÞ dv

2 a1;iðuÞf ðuÞ; ðB2Þ

ðu; vÞ! A1;iðu; vÞ a1,i (v) and a1,i are smooth non-

negative functions on [0,1]2 and [0,1], respectively,ð1

0

A1;iðu; vÞ du ¼ 1 ;v [ ½0; 1�; ðB3Þ

A1;2ðu; vÞ ¼ 0; ;u; v [ ½0; 1� : v # u; ðB4Þ

A1;4ðu; vÞ ¼ 0; ;u; v [ ½0; 1� : u # v; ðB5Þ

B1,2 describes the lowering tumor activation state due

to interactions with immune cells, whereas B1,4 does the

raising tumor activation state due to interactions with

environmental cells;

B is a smooth function that characterizes the

proliferative activity of tumor cells; b1,3, bðiÞ1;4; bi,1, and

bi,4 ði ¼ 2; 3Þ are non-negative constants introduced in

Appendix A; S1 is a smooth non-negative function

characterizing the inlet of tumor cells.

Let L1(0,1) be the Lebesgue space of measurable, real-

valued functions which are integrable on [0,1]. The norm

is denoted by k·k1:
Let Hm,1 (0,1) be the Sobolev space of functions which,

together with all their derivatives of order k # m; are in L1

(0,1). The norm is denoted by k·km;1:
Let

X ¼ {f ¼ ðf 1; n2; n3Þ : f 1 [ L1ð0; 1Þ; jn2j , 1; jn3j

, 1}

be the Banach space equipped with the norm jjjfjjj ¼

kf 1k1 þ jn2j þ jn3j:
Let

Xþ ¼ {f ¼ ðf 1; n2; n3Þ [ X : f 1 $ 0; n2 $ 0; n3 $ 0}:

Finally, let

Xm ¼ {f ¼ ðf 1; n2; n3Þ :

f 1 [ Hm;1ð0; 1Þ; jn2j , 1; jn3j , 1}

be the Banach space equipped with the norm jjj f jjjm ¼

kf 1km;1 þ jn2j þ jn3j:

Theorem B1. Let S1 [ L1ð0; 1Þ; S1 $ 0 a.e., and f 0 [
X1: For every t0 . 0 there exists a unique solution

f [ C 0ð½0; t0�; XÞ> C 1ð�0; t0½; XÞ ðB6Þ
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of Eq. (B1) with the initial datum f0. The solution f

satisfies

fðtÞ [ Xþ; t [ ½0; t0�; ðB7Þ

and

½0;t0�
supjjjfjjj # ct0

ðjjjf ð0Þjjj þ kS1k1Þ; ðB8Þ

for some constant ct0
(depending on t0).

Moreover, if f0 [ Xm, for some m $ 1; then fðtÞ [ Xm;
for t [ ½0; t0�:

Proof. Note that the solution to Eq. (B1) is a priori non-

negative. Applying (B2)–(B5) and integrating both sides

of the first equation of (B1) with respect to the variable u,

we see that no contribution comes from the two first rows,

which describe conservative interactions. Therefore

d

dt
n1ðtÞ # �Bn1ðtÞ þ �S;

d

dt
niðtÞ # bðiÞ1;4n1ðtÞ;

i ¼ 2; 3;

ðB9Þ

where n1ðtÞ ¼ kf 1ðtÞk1; �B ¼ kBk1 and �S ¼ kS1k1: Thus

the non-linear system (B1) “behaves not worse” than a

linear system. A

Remark B2. The solution f of Eq. (B1) satisfies

n1ðtÞ # n1ð0Þ exp �Bt 2 b1;3

ðt

0

n3ðt1Þ dt1

� �

þ �S

ðt

0

exp
bð1Þ1;4

2
ðt 2 t1Þ2 b1;3

ðt

t1

n3ðt2Þ dt2

 !
dt1;

;t $ 0;

where the notation of the proof of Theorem B1 is used. If

bi;1 . 0 then

niðtÞ $ nið0Þ2
bðiÞ1;4

bi;1

 !
exp 2bi;4t 2 bi;1

ðt

0

n1ðt1Þ dt1

� �

þ
bðiÞ1;4

bi;1
2

bðiÞ1;4bi;4

bi;1

£

ðt

0

exp 2bi;4ðt 2 t1Þ2 bi;1

ðt

t1

n1ðt2Þdt2

� �
dt1;

;t . 0;

for i ¼ 2; 3:

By Remark B2, we obtain

Corollary B3. Let b3;1 . 0; and b3;4 ¼ 0:

i) If

n3ð0Þ $
bð3Þ1;4

b3;1
ðB12aÞ

then

n3ðtÞ $
bð3Þ1;4

b3;1
; ;t $ 0: ðB12bÞ

ii) If (B12a) and

bð1Þ1;4

2
#

b1;3bð3Þ1;4

b3;1
ðB13aÞ

are satisfied then

n1 ðtÞ # n1ð0Þ þ �S; ;t $ 0: ðB13bÞ

iii) If (B12a) and (B13a) and one of the following two

inequalities

n3ð0Þ .
bð3Þ1;4

b3;1
ðB14aÞ

or

bð1Þ1;4

2
,

b1;3bð3Þ1;4

b3;1

together with S1 ; 0 be satisfied, then

t!1
lim n1ðtÞ ¼ 0: ðB14cÞ

Theorem B1 delivers the (global in time) existence,

uniqueness and regularity of solutions to Eq. (B1).

Corollary B3 expresses the conditions for the extinction of

active tumor cells. Note that Eq. (2.11) is a particular case

of Eq. (B1) and hence the results of Appendix B can be

directly applied to Eq. (2.11).

(B10)

(B11)
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