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In the present paper, we develop an extensive theoretical analysis of the deterministic model for 
the control of ovulation in mammals proposed by Mariana et al., (1994), which is an extension of 
Lacker's model. Mariana et al. incorporated an age decaying factor in follicle maturity, and kept 
follicle growth law as Lacker first proposed. However, they produced only some numerical 
examples simulating the new advantages of their model. As a result of the present analysis, we 
propose an alternative understanding of folliclegenesis, pre-ovulatory follicle selection in 
mammals, and polycystic ovary syndrome (PCOS) in women. In particular, a minimum 
oestradiol threshold level required for initial follicular growth is obtained. Relative values of 
follicle size and age necessary for its development are also determined. We prove that the model 
controls pre-ovulatory follicle selection rate at a local level. The model is shown to be globally 
unstable and fails to regulate the selection process. Finally, a discussion on how these results bring 
new insight to possible causes for PCOS is given. 

Keywords: Follicle selection; Ovulation; Polycystic ovary syndrome; Age decay; Stability 
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INTRODUCTION mammal's reproductive age. The remaining oocytes 
will end up regressing and disappearing from the 

The production and fertilization of mammalian eggs is ovary. 
regulated by different elements of the reproductive During the ovarian cycle, a group of follicles, each 
system. The complete stock of oocytes in the ovary is one of which contains an egg, undergoes terminal 
formed during early fetal development. Only very few development. This last phase of ovarian dynamics 
of these eggs will be selected for ovulation during the corresponds to the estrous cycle and is also referred to 
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as the menstrual cycle in the particular case of humans 
and old world non-human primates. It is now well 
known that the control process involved during the 
estrous/menstrual cycle responsible for the selection 
of ovulatory follicles involves the endocrine system 
including the hypothalamus, the pituitary glands and 
the ovary itself (Hodgen, 1982; Hillier, 1994; Spears 
et al., 1996). By the first half of the menstrual cycle, 
the ovulatory follicles are selected. However, it 
remains unclear exactly when and under which 
circumstances, this selection process occurs. Further- 
more, it is also uncertain how the number of ovulating 
follicles is precisely regulated each cycle. 

This selection mechanism can fail and no follicle be 
able to release an egg. In the case of humans, instead 
of having one follicle ovulating every month, a 
considerable number of follicles are selected but do 
not complete pre-ovulatory maturation. Subsequently, 
they never ovulate but rather stay in the ovary for 
3ome time in various states of regression leading to a 
polycystic ovary (PCO). P C 0  together with its 
adjacent consequences such as anovulation or 
evidence of androgen excess, accounts for the 
polycystic ovary syndrome (PCOS). Although suit- 
able treatment is now available for this common 
syndrome amongst women of reproductive age, a 
better understanding on how the selection process 
fails leading to P C 0  is still required. 

In the early eighties, Lacker was the first to publish 
a mathematical model reflecting the dynamics of 
many growing follicles during the follicular phase of 
the menstrual cycle (Lacker, 1981). Many assump- 
tions are made about the complex pituitary-ovary 
system and follicular development in order to obtain a 
suitable and manageable system of ordinary differen- 
tial equations. This model is able to reflect the basic 
features of the follicular phase of the cycle. Such 
features involve the emergence of pre-ovulatory and 
ovulatory follicles, control of the selection number, 
and decay of the remaining non-selected follicles. 

Lacker's model also simulates anovulation, which 
could be interpreted as PCO, either by manipulation 
of the relevant parameters or by changes on the initial 
conditions of the system. His model is able to select 
many pre-ovulatory follicles that never ovulate, but 

rather remain stuck with a fixed size. However, this 
model presents some unrealistic features, being one of 
these, the fact that strictly the largest follicles are 
always selected for pre-ovulatory maturity. This is a 
consequence of all follicles growing exactly in the 
same way. 

In the present paper, we study an interesting 
modification of Lacker's model, developed by 
Mariana et al. (1994). This modified model avoids 
the strong hierarchy amongst the growing follicles, 
and the initial largest ones are not always the selected 
follicles. 

It has been biologically proposed that the selected 
follicles are amongst the largest ones, yet they are not 
necessarily the largest (Gougeon and Lefevre, 1983; 
Ledger and Baird, 1995). Hence, to consider that the 
strictly largest follicles are always selected is somehow 
unrealistic. The maturity of the follicle is determined 
by both size and oestradiol production and thus, 
selection seems to depend on the right combination of 
these two characteristics. Moreover, the way follicles 
react to hormone stimulation has not yet been well 
determined. Therefore, although it is possible to 
assume that the largest one produces the largest amount 
of oestradiol, it may not be necessarily selected. 

Mariana et al.'s model is a way to improve Lacker's 
model to be dynamically more interesting since the 
selected follicles are not determined in such an 
obvious manner; i.e. we do not know which are the 
follicles to reach pre-ovulatory stage. Mariana and 
collaborators use the same interaction between 
follicles suggested by Lacker, but they additionally 
propose that these follicles intrinsically deteriorate. 
This is achieved by incorporating another variable 
that reflects disintegration for each follicle indepen- 
dent of hormone stimulation. This atrophy is referred 
to as follicle ageing. 

The morphological and biochemical pathways 
through which follicles regress is known as atresia. 
Atresia is considered an important mechanism 
involved in follicle development (Faddy and Jones, 
1988). Ever since the complete stock is formed before 
birth, there is a continuous follicular depletion. The 
initial number of follicles decreases with the age of 
the mammal. Hence, follicles' fate is to die rather than 
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ovulate. The biological nature of the ageing process 
proposed by Mariana et al., however, is not clearly 
specified and is somehow arbitrary. Nevertheless, it is 
a plausible assumption and leads to a realistic model 
for the selection of the ovulatory follicle. 

Contrary to the extensive analysis of Lacker's 
model available in the literature (Lacker, 1981; Akin 
and Lacker, 1984; Lacker et al., 1987; Lacker and 
Akin, 1988; Lacker and Percus, 1991; Chivez-Ross 
et al., 1997), there is no theoretical analysis for this 
model. Mariana et al. only presented some numerical 
examples in order to show that their model is able to 
reflect the basic features of control of ovulation and its 
new advantages. Therefore, a thorough theoretical and 
numerical analysis is developed in this paper, leading 
to a better understanding of the ageing effects on the 
cycle dynamics. 

The present manuscript is organized as follows. We 
begin by giving a short physiological description of 
the ovulation cycle in mammals. Then, in "Lacker's 
model and the age decaying factor section", we briefly 
describe both Lacker's and Marians's et al. models. In 
"The simplified system section", we develop a 
thorough analysis of a simplified case of the latter 
one, where we assume all follicles grow with the same 
initial size and age. In "Dynamics of follicles with 
different initial sizes and same age section", we 
continue by studying the situation when follicles grow 
with different initial size, but same initial age. We 
then develop a stability analysis for the most general 
case where all follicles grow with different size and 
age. In "Further results section", we produce some 
numerical examples that offer some insight about the 
global instability of the model in terms of possible 
causes for PCOS. Finally, we discuss all the new 
characteristics of the model with the age decaying 
factor, and what they offer as putative explanations 
for either infertility or PCOS. 

A SHORT BIOLOGICAL DESCRIPTION OF 
THE MENSTRUAL CYCLE IN PRIMATES 

The follicular phase of the menstrual cycle begins 
once steroid serum levels are adequate so that the 

pituitary gland is able to produce Follicular 
Stimulation Hormone (FSH) and Luteinizing Hor- 
mone (LH). This is in response to the Gonadotropic 
Releasing Hormone (GnRH), previously released by 
the hypothalamus. At that particular stage, the group 
of follicles that reached the Graafian state start 
secreting oestradiol into the blood stream and 
continue growing. Such follicular steroidogenesis 
and growth is signalled by both FSH and LH. When 
certain serum levels of oestradiol are reached, the 
pituitary gland stops its FSH production. The follicles 
that did not reach pre-ovulatory maturity start 
regressing due to the lack of FSH, which is necessary 
for their further development. Selected follicles 
continue growing and monopolize the oestradiol 
production inside the ovary. In this way, the negative 
feedback upon the pituitary is maintained and smaller 
follicles are prevented from reaching pre-ovulatory 
size and secreting oestradiol. 

A few days later, the mid-cycle LH surge takes 
place stimulating spontaneous ovulation of the pre- 
ovulatory follicles, a few hours later. Once each 
follicle has ovulated, it is transformed into the corpus 
luteum. These corporea lutea carry on with the 
oestradiol and progesterone production to keep the 
negative feedback effect upon FSH pituitary 
secretion. If pregnancy is not initiated, the corporea 
lutea regress and stop their steroid production and the 
negative feedback ceases. Hence, FSH and LH levels 
are restored and the menstrual cycle starts again. 

In summary, this is the basic feedback mechanism 
and follicular development taking place during the 
menstrual cycle. However, it is worth mentioning that 
many more paracrine and autocrine interactions occur, 
which make the cycle the result of a complicated 
signalling network. We have therefore just described 
the basic features considered in the mathematical 
models. 

LACKER'S MODEL AND THE AGE 
DECAYING FACTOR 

From the above description of the menstrual cycle, 
Lacker considered the gonadotropins (FSH and LH) 



release rate as a function of oestradiol blood 
concentration. The follicle growth rate is in turn 
determined by the serum concentration of LH and 
FSH. In addition, he made the following assumptions. 
Follicle size, maturity and oestradiol secretion are all 
proportional. All follicles respond identically to 
gonadotropins and obey the same growth law. LH 
and FSH are considered as the same hormone. The 
pulsatile effects of GnRH upon pituitary release of 
gonadotropins are ignored. Hormone clearance and 
transport to the corresponding target organ are much 
faster than menstrual cycle. Hence, hormone levels 
and pituitary response are assumed to be in 
equilibrium. 

After these basic assumptions, Lacker proposed the 
following equation for the growth rate of each 
interacting follicle, 

where, xi represents each follicle size or oestradiol 
production. The total oestradiol concentration is given 

by, 

In Mariana et al.'s, yi is introduced as the age of the 
ith follicle. After the change of variables xi = ziyi, 
where zi accounts for the maturity variable used by 
Lacker, the following system is obtained 

and 

where p is the ageing parameter and the function g(xi, 
X) is given by Eq. (3). Since the ageing dynamics is 
strictly decreasing, p > 0 and yi should be understood 
not as a chronological age of the follicle, but rather as 
a deteriorating capacity. The modified dynamics for 
the follicle growth proposed by Mariana et al., is then 

For this model, pre-destination for the selection of 
the largest follicles is no longer valid (Mariana et al., 
1994). It is observed that selected follicles are 
amongst the largest, but they are not necessarily the 
largest ones (see Fig. 4). Let us proceed with the 
theoretical analysis of system Eq. (4). 

for N growing follicles. The growth function g is the 
same for each follicle and is given by, 

THE SIMPLIFIED SYSTEM 

The feedback loop between the pituitary gland and 
the ovary is then implicitly established through X. 
This implies that effects of LH and FSH, which 
Lacker considered as a single hormone, remain 
implicit in the system. The constant parameter K 
accounts for the initial follicle exponential growth. D 
is a threshold parameter to indicate ovulation from 
anovulation, while Mland M2 are involved in 
hormone sensitivity. For a detailed analysis and 
study of Lacker's system behavior, please refer to 
ChLvez-Ross et al. (1997). In Fig. 1, we depict an 
example for Lacker's model where, depending on the 
initial size distribution, follicles ovulate or get stuck. 

The first step we choose for analyzing the basic 
features of this model is to simplify the system by 
considering a number of follicles with same initial 
maturity. Let us suppose that from N follicles starting 
the cycle, M have the same initial maturity XIM and 
the remaining N - M follicles have zero initial 
maturity. Suppose, moreover that all follicles have the 
same initial age y. System (Eq. (4)) now reads 
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FIGURE 1 A numerical simulation of eight follicles interacting according to Lacker's original model given by (Eqs (1 -3)). A 4th order 
Runge-Kutta numerical method with a step size of 0.001 was programmed in c language to simulate the cycle. The parameter values used are 
K = 5.0, D = 0.5, M I  = 2.9. M 2  = 3.9. (a) Three follicles X G , X ~  and x8 have similar and relatively large initial sizes with the remaining five 
follicles x , ,  . .  .x5 having small initial sizes. Follicles x6.x7 and x8 ovulate in a finite time and the remainder die by atresia. (b) Follicles x 7  and x g  

have relatively large initial sizes and the remainder X I , .  . .JG have smaller initial sizes. The two largest follicles tend to a constant maturity 
value as t-+m and the rest atrophy by atresia. 

where; easy to verify that (X, y )  = (0 ,O)  is a local stable 
equilibrium point for any p > 0. For the particular 

y = - ( 1  - M I / M ) ( l  - M 2 / M )  (6 )  case of p = 0  system (Eq. (5 ) )  reduces to 

involves the parameters M I  and M2 of function g, as 
well as the number of identically maturing follicles, dx 

- = y(KX + D ~ x " ) ,  
M.  The sign of y prescribes different types of dt 

behaviour just as in Lacker's model. y thus 
determines follicle sensitivity to hormone stimulation, where y remains constant for all t. If y  = 1, Eq. ( 7 )  is 
and its sign indicates ovulation or anovulation. It is the simplified version of Lacker's model whose 



FIGURE 2 Separatrix of $he dynamics given by function (Eq. (9)). Here, yo = 1.0, y = 0.01 > 0. f i 7 0.2, so that X ;  = 0.477106. Given 
t = 0.001. for (a) X0,  = Xo + e ,  the solution grows to infinity at a finite time, while for (b) Xo,  = X,, - E ,  the solution corresponds to an 
atretic follicle. The separatrix grows to infinity as !+a. 

behavior is carefully analyzed in (Chivez-Ross et al., 
1997). 

By solving Eq. (Sb) and substituting into Eq. (5a), 
we obtain the nun-autonomous differential equation 

where yo = y(0). The only possible equilibrium point 
is X = 0, which is locally stable. After solving this 
equation, we obtain the following solution 

where, 

v = ~ / ( K y o )  and Xo = X(0) > 0. 

whenever y > 0,  there exists a separatrix of the 

dynamics with initial condition 

x;= [ KIDY 
1/2(e2:" - l)v2 - v - 1 

] 'I2. (lo) 

Therefore, if (a) X o  > x$, solution (9) grows to 
infinity in finite time, whereas if (b) 0 < Xo < 
X ;  . X(t) tends to zero as time tends to infinity (see Fig. 
2). The separatrix grows to infinity in indefinite time 
or it reaches its maximum in infinite time. It is 
important to notice that for Lacker's model, where 
p = 0 and y = 1, the separatrix does not exist, and all 
follicle dynamics tends to infinity (Chivez-Ross et al., 
1997). 

To show how the separatrix initiating from X: is 
found, let us compute the time derivative of Eq. (9). 
By writing X1(t) = F(t, X o ) ,  from F(t, X o )  = 0 we * .  
obtain Xo = f ( t ) ,  so that X: = ?LI f ( t ) .  Thus, X, is 

the initial condition for which the maximum value is 
attained in infinite time. Moreover, it is possible to 
prove that X: exists for any p > 0. Namely, given 
p > 0, there always exists a value for the initial 
condition above which all solutions escape to infinity 
in finite time. Notice that if y < 0, X: is no longer real 
and hence, there is no separatrix for the anovulation * 
case. On the other hand, when y > 0,  Xo is inversely 
proportional to y. This means that the initial condition 
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for the separatrix decreases as y increases, and vice 
versa. 

Biologically speaking, X; represents a threshold 
value for the total follicle size that did not appear in 
Lacker's model (Ch6vez-Ross et al., 1997). We notice 
that when p = 0 and y = 1, X1(t) does not explicitly 
depend on t ,  so X; does not exist for Lacker's model. 
Hence, if at the beginning of the cycle, the initial sum 
of follicle sizes do not exceed such a threshold, there 
is no hope for any follicle to ovulate, and all of them 
rather atrophy and die. This may imply that this model 
is in fact reflecting the cycle dynamics even before the 
follicular phase. 

In contrast, for the case when X(t) does not grow to 
infinity in finite time, it is possible to compute a 
critical value for p. This critical p determines whether 
the follicle grows at the beginning of the cycle, or it 
immediately decreases. From the critical points of Eq. 
(8), the maximum size of the follicle is reached at 

Given any X > 0 (in particular let X = Xo) the 
maximum of solution X(t) exists as long as t ,  1 0. 
Moreover, given y as in Eq. (6) and yo > 0, if y > 0 
and 0 < Xo < X;', there is a critical value p *  = 

(1 + D y ~ ; ) ~ y o ,  such that if 0 < p 5 p * ,  a maxi- 
mum exists. This means that although the follicle is 
destined to die since its initial size is smaller than the 

* .  
minimum size required to ovulate: If p 5 p , it will 
be able to grow at first, and then decrease (see Fig. 
3b). In contrast, if p > p * ,  follicle atretic parameter 
is so large for its initial size that it never grows but 
immediately regresses (see Fig. 3a). 

In the case of y < 0, the follicle, no matter its initial 
size, will end up atrophying and dying, i.e. X(t)+O as 
t+m. However, when v  < 1 and 

a maximum exists since for those conditions, 0 < * .  
p 5 p u. 1.e. t, ? 0 as Fig. 3b shows. Otherwise, the 
solution is strictly decreasing (see Fig. 3a). The 

maximum is obtained from Eq. (8), when 

Finally, for y < 0, if u >  1 and p > p * ,  the 
solution is also monotonically decreasing. The critical 
value p *  corresponds to an ageing parameter 
threshold, which determines different types of 
behavior. Except for the case when X(t) tends to 
infinity in finite time, i.e. ovulation. Once an initial 
oestradiol concentration is given, follicles grow at the 
beginning of the cycle, as long as 0 < p 5 p * ,  i.e. as 
long as its decaying parameter is not too strong for it 
to die. 

To finish this section, if we decrease p even further 
when y < 0, the follicle appears to get stuck inside 
the ovary (see Fig. 3c). It can also be noticed that for 
very small p, the maximum size approaches the 
equilibrium value for Lacker's simplified model, i.e. 

This limit agrees with Lacker's simplified growth 
Eq. (7) for y = 1 and p = 0. 

The features observed in Fig. 3b, where y < 0, and 
Fig. 3c represent anovulation where the stuck follicle 
eventually disappears from the ovary. This is more 
realistic than the type of anovulation reflected in 
Lacker's model since the ovary does not hold the stuck 
pre-ovulatory follicle indefinitely. Instead, it disap- 
pears after some time despite the fact that its response 
to gonadotropins is adequate for initially maintaining 
a pre-ovulatory size. 

We may deduce that ovulation occurs in the same 
fashion as ovulation in Lacker's model. However, we 
cannot conclude the same for the anovulation case, 
where the follicle reaches a non-trivial stable 
equilibrium. In contrast, for this revised model, zero 
is the only equilibrium point, meaning that due to its 
ageing factor, the stuck follicle eventually dies rather 



* .  
FIGURE 3 Solution (Eq. (9)) for K = 1.0, yo = 1.0, XO = 1.0, y = 0.01 > 0, and y = -0.4275 < 0. (a) For p = l . l ,  p > p . 1.e. the 
solution is %onotone decreasing for both y > 0 and y < 0. In either case, the follicle is not able to grow at all. (b) For p = 0.4 and y > 0. 
0 < p < p , 1.e. the solution is unimodal. Whilst for y = -0.4275 < 0. X o  < 1.185 satisfying inequality (Eq. ( l l )) ,  i.e. the solution also 
has a maximum value. (c) Anovulation for p = 0.05 and y = -0.4275 < 0. The follicle appears to tend to the equilibrium value of the 
simplified Lacker's model, X,,, = 1.53. 

than remaining indefinitely at a fixed large size. Dynamics of Follicles with Different Initial Sizes 
However, the ambiguity in the time scale of the ageing and Same Age 
dynamics complicates a proper biological interpreta- 

For this case, the follicle growth function is given by 
tion of this variable. 

ANALYSIS FOR MANY INTERACTING 
FOLLICLES 

In this section, we study and discuss the dynamics of 
many interacting follicles. Initially, we consider them 
to be different in size and same age. Later, we extend 
our analysis to the case where they differ both in age 
and size. 

for all follicles. Like the original Lacker's growth rate 
function, it can be separated using three different 
functions, 
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where the separated functions are the same as in Akin 
and Lacker (1984), i.e. 

By rescaling time 

the resulting interaction, age and intensity dynamics are 

d ~ i  
- = y~i[ t@i)  - &)I d7 (154 

where, pi = x,/X is the ith follicle relative size. 
By further time rescaling, d d / d r  = y, we get the 

following interaction dynamics 

where &j) = ~ ~ ~ p , & p ~ ) .  Consequently, for Eq. 
(16), we have the same equilibrium condition as for 
the corresponding interaction dynamics for Lacker's 
model, which leads to the same M-fold equilibrium 
point 

N - M  \ 

It is possible to express Eq. (16) as a gradient 
system on the unit sphere, and then prove that its 
symmetric equilibrium point (Eq. (17)) is stable as in 
Lacker and Akin (1988). Thus, if f@) = A, we have 
that 

Theorem 5.1. An M-fold non-degenerate equili- 
brium ye of the gradient system 

for y E S  is stable i f  and only i f  the common value 
A > 0, and either (:(a;) < 0 for all  non-zero 
coordinates a / ,  . . . , a ~  o r  t:(a;) 2 0 for exactly one 
non-zero coordinate and 

Therefore, there is a stable equilibrium point 
attracting the M largest follicles, while the remaining 
N - M smaller ones regress and die by atresia. The 
M-fold equilibrium point (Eq. (17)) outside the unit 
sphere is determined by the corresponding intensity 
dynamics given by Eqs. (15b) and (l5c). 

When substituting back the values of the rescaled 
function S(X) as well as expressing Eqs. (15b) and 
(15c)) in terms oft ,  these two equations are equivalent 
to the ones describing the simplified system (Eq. (5)), 
for which a thorough stability analysis has been 
already developed in "The simplified system section". 

Finally, to prove that ovulation occurs in finite time, 
we study the asymptotic dynamics in the rescaled time 

(Eq. (14)). Rescaling Eqs. (15b) and (1%) using 
dd1d.r = y, we obtain 

For sufficiently large X and p = pM, we have that 
dy/dd = 0. Implying that y = y,, for y, constant and 

for A = t ( l /M) > D. Since S(X) > 0 andy > 0, r(t) 
and d(r)  are both invertible, and since A > D, we 



time 

FIGURE 4 Simulation for the general situation where follicles interact with different initial sizes and ages for either three or two follicles 
selected. The parameters are K = 5.0. D = 0.5. p = 0.2, M I  = 2.9, M L  = 3.9, and the initial age distribution is uniformly decreasing from 

.... v l , ,  = 8.0 tn y,, = 1.0. (a) The initial sizes are xi,, = 0.1, xs,, = 0 . 5 , ~ ~ ~ ~  = 1 . 0 . . ~ ~ ~  = l .l .x8,, = 1.2. Ovulating follicles x6 and x, grow 
faster than the initial lar~est  one xx. (b) Initial sizes have the same value as in Fig. lb. Follicles x5 and .s6 grow till a pre-ovulatory size, whereas 
the two largest follicles, x, and x8, atrophy and die 

have 
d d  1 -<- 
dX ( A - D )  1/x 

Hence. 

Thus, if S ( X )  grows faster than X' for some E > 0, 
the above integral is finite and t(d) tends to a finite 

value T as d--+m. Hence, d goes to infinity in finite 
time, corresponding to ovulation in finite time. 

When considering all follicles growing with the 
same initial age, but different size, the symmetry of 
Lacker's original model is still maintained. Thus, it is 
possible to reproduce similar numerical examples for 
this case as in Fig. 1. The only difference is that for the 
anovulatory situation, selected follicles do not reach a 
steady state but slowly deteriorate due to their ageing 
capacity. 
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FIGURE 5 Simulation for follicles relative sizes interacting with different initial sizes and ages corresponding to Fig. 4. (a) The three largest 
follicles tend to the same equilibrium point 113, and (b) the follicles relative maturities, p,  and p,, tend to a fixed value 112. 

When follicles interact with different size but 
same age, the model still regulates the number of 
pre-ovulatory follicles. Anovulation occurs in a 
more realistic way where follicles sizes do not 
remain constant indefinitely. Moreover, it is still 
possible to predict which follicles are selected from 
the initial size distribution. This predisposition is 
due to the strong follicle size hierarchy still 
present. 

DYNAMICS OF FOLLICLES WITH 
DIFFERENT SIZE AND AGE 

Let us now consider N follicles interacting with 
different initial maturities (sizes) and ages. This 
means we are to analyze the original system (Eq. (4)). 
In this case, it is not possible to separate the dynamics 
in order to obtain a gradient system on the unit sphere. 
Hence, let us start by investigating some numerical 



examples for the parameter values used in previous 
simulations. 

By an appropriate choice of initial ages and the 
same parameter values used in Fig. 1, it is possible to 
select follicles that are amongst the largest, yet they 
are not necessarily the largest (see Fig. 4). Although 
we can still predict the number of selected follicles, 
we are able to break the hierarchy for the selection 
mechanism. 

Some evidence that system (Eq. (18)), for the space 
of follicles relative sizes, tend to the fixed point fi  is 
given in Fig. 5. Selected follicles approach to the same 
fixed equilibrium value in each case. Although it is not 
possible to determine which are the ones reaching pre- 
ovulatory maturity, the system appears to be stable in 
terms of the pre-ovulation rate. 

It is not possible to transform the interaction 
dynamics of system (Eq. (18)) into a gradient system 
in order to investigate the stability around p ~ .  We then 
develop a linear stability analysis around a specific 
orbit. This kind of analysis is usually developed 
around a fixed equilibrium point. However, the 
principal goal of this section is to apply these ideas 
for the case of a non-autonomous system. Where, 
instead of a fixed equilibrium point, there is a 
particular orbit of interest. 

The corresponding interaction dynamics and 
intensity dynamics for system (Eq. (4)) is 

Notice that Eq. (18a) depends explicitly on X, 
which does not occur in neither the interaction 
equation obtained from Lacker's model nor in Eq. 
(15a). For system (Eq. (15)), X does not appear 

explicitly in Eq. (15a), but rather indirectly through y. 
However, by rescaling such equation, we have 
eliminated y, and analyzed the interaction equation 
independently of X. 

By simplifying system (Eq. (18)) when y, = yj = y ,  
we obtain the same interaction dynamics as in system 
(Eq. (1 5)). Hence, Eq. (18a) is a direct generalisation 
of Eq. (15a). For the interaction dynamics of system 
(Eq. (15)), the equilibrium point pM given in Eq. (17) 
is stable. Solutions of system (Eq. (15)) lie along the 
lines of symmetry of the M-dimensional coordinate 
hyperplane in the N-dimensional space of follicles 
ages. Therefore, we consider ys = k$? for any y > 
0, such that QM,ps) is the orbit arzund which the 
stability analysis of system (Eq. (18)) is developed. 
Since Eq. (18a) depends explicitly on X, it is harder to 
develop a linear analysis for this system than for 
system (Eq. (4)). Hence, we locally analyze the 
stability of system (Eq. (4)) around the orbit 
corresponding to (pM, p,). 

Note that forpM given in Eq. (17), p; = 1 / M  implies 
that x,/X = 1/M. Therefore, x, = X/M for all i = 

1, . . . , M and xi = 0 for all i = M + I ,  . . . , N leads to 

for any X > 0 and any y > 0. This is the orbit around 
which a linear stability analysis is developed for 
system (Eq. (4)). 

Linear Stability Analysis of the System of Follicles 
Different in Size and Age 

By substituting the explicit formula of g(x,, X)  given 
in (Eq. (3)) into system (Eq. (4)), we obtain 

h, 
- = yixi[K - D(X - Mlxj)(X - MZxi)] - p ~ i  = G1, 
dt 

d?i 
- = -pyi = G2, 
dt (20) 

where Gk = Gk(x,, X, y;) for all k = 1,2.  
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Let .E = (.El, ...,.EN) and g = 61, . . ., j N )  SO that F = 

(k,g) is a small perturbation around p, given in Eq. 
(19). The first order Taylor expansion then is 

F(? + .E,y + g) = F(X.g) + D(,))FE + O ( I I F I I ~ )  

(21) 
N 

where. F = is the symmetric vector field of 
the system and G = (GI ,  G2). For the corresponding 
Jacobian, J = D(l--r)F, we need 

for k = 1 , 2  and i = 1, . . . , N. Therefore, J is a 2N X 

2N matrix such that 

When computing the various terms and evaluating 
them on p,, the non-zero ones for i = j are 

(a) i = 1, ..., M 

(b) i = M + 1, ..., N 

For i Z j, the non-zero terms are 
(a) i , j  = 1, ..., M 

(b) i =  1, ..., M a n d j =  M + 1, ..., N 

The resulting Jacobian evaluated on p, is the block 

where, C is the (M X M) circulant matrix 

This means that for all i = 1, . . . , M of C, the ith 
row, for i > 1, is obtained by shifting the (i - 1)th 
row one entry to the right. The first row is given by the 
1 X M vector, (al + b l ,  b l ,  . . .bl). Matrix U is an M X 

(N - M) matrix with all its entries equal to one, and 
I,,, is the identity matrix of size n X m. Since JIp, is an 
upper triangular block matrix, it is possible to 
analytically compute its eigenvalues. The set of such 
eigenvalues is referred to as the spectrum of Jlp, and is 
given by 



In particular, Spec(C) is given by, 

A l  = a ,  + Mbl  with multiplicity 1 

A2 = a1 with multiplicity M - 1 ,  

while Spec(a21) and Spec(-pl) give 

A3 = a2 with multiplicity N - M and 

A4 = -p with multiplicity N 

When substituting the values of a l ,  b, and a2 from 
Eqs. (27)) and (Eq. (23)), and using the value of y 

given in (Eq. (6)), we get 

Note that Al, A2 and A3 are time dependent. 
Considering y(t) = yoepp' and X(t) .= I/-, 
where T is the fixed ovulation time, we have 

where b  = ( y  + - 2M1M2 T ) .  Hence, as t-T 

as long as y > 0, b  < 0 (see Fig. 6a). 
When y < 0, Al(t)+ - p for all k = 1 , 2 , 3 , 4  since 

X(t)+O and y(t)+O, see Fig. 6b. 
Notice that in Fig. 6b, the three eigenvalues are not 

all always negative. For this figure, the eigenvalues 
were evaluated for the anovulatory situation where the 
parameter values are the same as in Fig. 1. However, 
by changing the initial size distribution so that one 
follicle is relatively larger than the rest, there are also 
two anovulatory follicles as we see in Fig. 7. 

By the time the two pre-ovulatory follicles have 
been already selected, A3(t) > 0 (see Figs. 6b and 7). 
To have a positive eigenvalue when solutions have 
already converged may be intuitively contradictory. 
Thus, let us compute the corresponding eigenvector 
for each eigenvalue to determine expanding or 
contracting directions. 

To find such eigenvectors along the orbit X(t), let us 
solve the system 

where, EM and are vectors obtained, respect- 
ively, from the first M and the remaining N - M 
coordinates of X. The vector jjM is obtained from the 
first M entries of g. 

For Al, we get fNpM = 0 and = 0 implying that 
Y M  = 0. The corresponding eigenvector for A ,  of 
matrix C i s  such that, XM = DM where a,,,, has all of its 
M coordinates equal to one (Bellman, 1960). This 
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FIGURE 6 (a) Eigenvalues evaluated for function X ( t )  given in (Eq. (9)). Where, yo = 1.0 and parameter values K, D, g, M1 and Mz are the 
same as for the ovulating case of Fig. 4. The initial value Xu = 4.8 is the sum of the initial follicles sizes given in Fig. 4. (a) M = 3 so that 
y > 0, which implies A,(r)-co, and Aa(t)- - co fork = 2 , 3  as r-T. In Figs. b) and c) y < 0. so that Ak--k = -0.2 as t-co for all 
k = 1.2.3. (b) Initial size distribution is such that M = 2, and all of the three eigenvalues are always negative. (c) Initial size distribution is 
such that M = 1, and A3 > 0 at the beginning of the cycle. 

means that such a vector gives the direction of the M 
identical non-zero follicles sizes. Let us define V I  = 

{PCM : P E R}  R'. For AZ, we get N - M 
eigenvectors fi = X M  such that, 

(Bellman, 1960). Observe that b I U M  for all fi, so we 
define 

For A?, we see that from (Eq. (26c)) = 0, and from 

(Eq. (26b)), ZNPM # 0. Suppose X N - M  = U N - M ,  

where U N - ~  is the vector for which all of its N - M 
entries are equal to one. Then, xM E V 1 ,  i.e. X M  = 

PaM, where 

Substituting the values of A, and A3 from (Eq. (25)), 
where A, # A j  for all X and y, and substituting the 
value of bl from (Eq. (22)), we get 

We thus see that p does not depend on t. Let us 
suppose TNPM = ij: such that ij E ~ b ,  where Vh,  is of 
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FIGURE 7 Numerical simulation of eight interacting follicles for parameters, K = 5.0, D = 0.5, /L = 0.2, M I  = 2.9, M 2  = 3.9, and initial 
conditions yi,Vi = 1. .... 8 as in Fig. 4b. The initial maturity distribution is such that follicle x8 initial size is relatively larger than the rest 
seven follicles. Follicles x~ and xh are the ones reaching the same pre-ovulatory maturity, while the reminding five follicles, x i ,  . . . .  XJ . x7 

and xx, atrophy and die. 

dimension N - M ,  i.e. ~ f i ~ ~ v ~  = 0,  SO that RNPM 1 hand, b2 corresponds to the direction of the M - 1 
8. Then, from system (Eq. (26)), we get [C - vectors perpendicular to e l ,  and any change in b2 does 
h3z]fM = 0, implying that RM = 0. not affect the dynamics of X. Finally, 6 3  and D31 give 

Since for the eigenvectors corresponding to Al,A2 two different directions for the remaining N - M 
and A3, we have g = 0, we then analyze their behavior follicles. Changes in b3 give the dynamics of the total 
only in the space of sizes x E FiN. Thus, for matrix size of those follicles, and any change in 8 3 1  does not 

change X. 

A = [*I The sign of A l  determines whether we are in an 
ovulatory (Al > 0) or anovulatory (Al < 0) situation 
since its corresponding eigenvector, 61, points in the 
direction of the total oestradiol solution X(t). This is 

the eigenvectors are, equivalent to the dynamics of the M follicles having 
the same size or oestradiol production XIM. On the 

8; = (i& o;+,), other hand, the sign of A2 determines whether orbits 
approach to or move away from the line along the 

6; = (vr ,  ok-M), such that v E v:, direction of ul.  And finally, the sign of A3 indicates 

(P%,? UN-M), % =  T - T  
the behavior in the remaining N - M subspace of 
follicles with small initial size. Dynamics on the 

-T - 7  
3; = (OM, v ), such that 8 E v:. (28) direction of f13 gives the behavior when all of the 

N - M smallest follicles have the same initial size, 

Note that none of them depend on time. These whereas 631 describes the dynamics in the direction 

eigenvectors give a basis for the whole space of perpendicular to D.i. 
follicles sizes. In particular, 8, gives the direction of To study the local stability of the perturbation, let us 

the M identical non-zero follicles. Changes in the apply the original linearised system to each of the 

direction of 81 correspond to changes in the follicles eigenvectors, i.e. let us compute dDk/dt = A8k for all 

total size or oestradiol concentration X. On the other k = 1,2,3,3', and see how each bk varies along X ( t ) .  
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From the eigenvectors given in Eq. (28), we obtain the 
following system, 

A I P ~ M  

= ( ) + (N - M ) )  ( ) ( 2 9 ~ )  
h 3 & - ~  

For the non-zero coordinates of 6 2 ,  6 3  and e31, 

we obtain 

[vy 1; = h3 [vyIj Vj  j'= M + 1, . . . , N ( 3 0 ~ )  

and, 

A l [ ~ g ] ~ + ( N - M ) b ~ ( t ) [ ~ l ] j  Q j = l  ,..., M 
[%I1 = 

A3[%lj Q j =  M + I ,  ..., N. 

(31) 

The solution for eigenvectors 61 and 6 2  is given by, 

for k = 1,2.  Similarly, for 631 

and for the j = M + 1, . . . , N entries of Zlj, we also 

have 

From Eqs. (30a) and (31a), if h > 0, Al(t) > 0 
implying that the first M coordinates of 74 and ii3 grow 
to infinity. In contrast, the first M coordinates of b2 

converge to zero due to A2(t)+ - 03 From Eqs. (30c) 
and (31b), the N - M coordinates of and 6 3 ,  

respectively, tend to zero as h3+ - (see Fig. 8a). 
This means, on one hand, that the corresponding 

vectors in V ,  formed by the M identical non-zero 
components of vectors v; and f 1 3 ,  point towards the 
same direction in which the orbit grows to infinity on 
finite time, i.e. towards the direction given by &,. On 
the other hand, for the first M components of vector 
f 1 2 ,  the corresponding vector which points in a 
direction perpendicular to that given by vectors in VI ,  
contracts with time. In other words, when M different, 
but similar large follicles start the cycle, they will tend 
to the line along the direction given by ziM and then 
grow to infinity in finite time. 

The N - M non-zero coordinates of f13  and b3i 
describe the dynamics of initial small follicles. Thus, 
when small follicles start the cycle, they will tend 
towards the line in the direction of 2r3 and then tend to 
zero maturity. 

When h < 0,  the M identical coordinates of the 
three different eigenvectors converge to zero since 
Ak-' - II, for all k = 1 , 2 , 3  (see in Fig. 8b). For the 
particular example given in Fig. 6c, where Ai(t) > 0 
during the cycle, Fig. 8c shows that also the first M 
coordinates of g, and f 1 3  tend to zero. This means that 
the dynamics along the line generated by aM tends to 
zero. Furthermore, the M non-zero coordinates of f 1 2  

which generate a vector perpendicular to z& also tend 
to zero. Thus, whenever the cycle starts with M 
different, but similar large follicles, they will tend to 
the same size and then decrease and die. For the 
dynamics of the N - M coordinates of f13 since 
A3(t) > 0 during the cycle, as it is seen in Fig. 6c, the 
N - M initially identical small follicles would grow 
to a large size. Nevertheless, although such coordi- 
nates grow to a very large value, they eventually tend 



to zero as expected since Aj(t)+ - p as t+m (see 
Fig. 8d). At the same time, the N - M follicles that 
initiate the cycle with different small sizes will tend to 
the line in the direction given by and then 
eventually tend to zero. 

It remains to compute the eigenvectors for A4 = 

- p  corresponding to perturbations in We then 
consider the whole 2N dimensional space and solve 
system (Eq. (26)) for A4. From Eq. (26c), we get 
p # 0,  and from (Eq. (26b)), we get R N - ~  = 0. TO 
find the corresponding X M ,  we consider two cases: 

(a) If J = UN (the vector for which its N coordinates 
are equal to one) corresponding to the same 
perturbation to all ages, then xM E V1. Let xM = 
afiM where, 

such that, A,# A l  for all X > 0 and y > 0. From the 
values of c and y given in Eqs. (22) and (6), 
respectively, we get 

From the eigenvalues given in Eq. (25), we obtain 

(b.1) If xM E V1, then let xM = for a given 
a' # 0. Thus, for i = 1, ..., M we get, 

From which, 

meaning that VM = P'zZM, implying that DM E VI. 
The eigenvector then obtained is 

(b.2) If XM E V:, the ith equation in Eq. (26a) is 

Hence, 

implying that f l , ~  E V:,  since Cz:,xi = 0, and 

thus, a = a(t). Therefore, 
The eigenvector then is 

which varies with time. 
N 

(b) If = D E Vl,i, where V;, = {a : Ck,,vk = 0 )  
such that i i ~  1 75, for all D E Vj'i. Let v r  = 

(b;, DL-,), where DM corresponds to the first M 
entries of v, and D N - ~ ,  the remaining N-M 
coordinates. Then, from Eq. (26a) we get, 

from which there are two sub-cases: 

where RM, DM E v:. 
Let us discuss the behavior of vk for the linearised 

dynamics 6 k  = Jl,,bk: for k = 4; 4/, 4" and the matrix 
J ( p ,  given in Eq. (24). For the non-zero coordinates, 
we get the following system, 
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time 

FIGURE 8 Eigenvectors dynamics. Graphs of v1.[v3], and [v4], represent the behavior of a , ,  and the behavior of the first M non-zero 
coordinates of 179 and a d .  respectively. Furthermore, v2 and [v31k represent the dynamics of e2 and the N - M non-zero coordinates of a?. (a) 
When y i 0, eigenvectors correspond to eigenvalues shown in Fig. 6a. a,. [v3], and [vA,], for j = 1. . . .. M grow to infinity at a finite time, 
while a? and [v31r for k = M + 1, . . .. N tend to zero. (b) When y < 0. eigenvectors correspond to eigenvalues shown in Fig. 6b. (b) All of 
them tend to zero. (c) The N - M coordinates of 4 grow. (d) Dynamics of the N - M coordinates of obtained from A? computed for y < 0 
shown in Fig. 6c. Although such coordinates increase to a large value, they eventually tend to zero since A?@)- - p as t -W.  

For the non-zero coordinates of fik, where k = 

4/, 4/', we get 

A4vk, for all j = 1, . . . . kt 
[ ~ i l ,  = 

h4vk, for all j = 1, . . . . N .  

Vectors and f i 4 u  are obtained by considering 
9 E V;, . We then have 

for k = 4'. 4". Meaning that within both subspaces, 
the one of follicular sizes and the one of follicular 

ages, the dynamics along those two directions is 
contractive. 

Dynamics of coordinates [vkli for j = 1, . . . . N and 
k = 4,4',411, within the space of follicular ages is 
given by, 

It is clear that for the subspace of follicles ages, the 
dynamics of all of the eigenvectors flk tends 
exponentially to zero at rate -/A. In particular, E 
V;, implies that when the cycle starts with follicles 
with different initial ages, their age values tend to the 
diagonal given by j = E M .  At the same time, all 



follicles ages tend to zero as the solution in the 
direction of y = RM also tends to zero. 

As for the follicle sizes, this analysis tells us that 
when y > 0, the first M coordinates of 774 tend to 
infinity in finite time (see Fig. 8a). For the first M 
coordinates of vectors D4# and ?&, the dynamics tends 
to zero at the same rate -p. In contrast, when y < 
0, [v4], for j = 1, . .., M tend to zero as we see in Fig. 
8b and c. Furthermore, for y < 0, the first M entries of 
ii4! and also tend to zero maturity. This means that 
the dynamics along the line generated by RM is the 
same as the dynamics of the total amount of oestradiol 
X, and it is either ovulatory ( y  > 0) or anovulatory 

(Y < 0). 
So far, we have only developed a local linear 

stability analysis. Since our proof is about a trajectory 
and not about an equilibrium point, some special 
consideration should be taken for the second order 
term of the Taylor approximation (Eq. (21)). For the 
particular case of anovulation, convergence of such a 
term follows straight forwardly since X(t)+O as 
t+m. For the ovulatory case, this question is more 
delicate because of unboundedness of solutions. 
Proving nonlinear stability falls outside the scope of 
the present manuscript and will be left open for further 
study. 

Further Results 

New results from this model can be observed when 
initial conditions of system (Eq. (4)) are not similar. In 
the cases where there are either three follicles 
ovulating or two stuck follicles, drastic alterations in 
the selection process are obtained when significantly 
changing the initial conditions of the system. In this 
case, the largest follicles initial ages were reduced to a 
value much smaller than the ages of the remaining 
interacting follicles. 

For the particular situation where previously, the 
largest three follicles would ovulate, Fig. 9a shows 
how such follicles become anovulatory, and even- 
tually atrophy. Although these three follicles decrease 
in size, they are not atretic when we compare their 
decrease rate with smaller follicles x, -x5 From the 

se aratrix initial value given in Eq. (1 O), observe that f .  . X,, is inversely proportional to the initial age yo. Thus, 
for the case of follicles starting the cycle with 
different ages, the "oldest", ones start growing with an 
initial size smaller than the minimum threshold size 
x,* required to ovulate. 

For this case, it is irrelevant that the largest 
follicles are able to ovulate in terms of their 
hormonal sensitivity. If two of them are old enough 
at the beginning of the cycle, they would not ovulate 
and would also obstruct other follicles from 
ovulating. Hence, the ageing model gives the 
possibility of getting the same number of follicles 
ovulating or arresting only by a significantly large 
change in the initial conditions of the system. This is 
another feature that Lacker's model is unable to 
exhibit since the number of ovulating follicles is 
always strictly larger than the number of stuck 
follicles. Incorporating the ageing factor into 
Lacker's original model suggests that such a 
decaying capacity may be the reason for PCO, 
when hormonal levels are adequate for a normal 
selection process. 

We also observe that the relative maturity of the 
selected follicles p,  and p6 does not tend to the same 
fixed value as in Fig. 5. In contrast, those follicles tend 
to a different equilibrium point, whilst the largest 
follicle relative maturity, p8, tends to zero (see Fig. 
9b). This shows that we can only guarantee local 
stability for the model of follicles with different size 
and age. 

For the anovulatory case, if the initial age of the 
two largest follicles is significantly reduced, it does 
not really affect the selection process. For this 
situation, Fig. 10a shows that follicles five and six are 
again selected and remain stuck, but the two largest 
follicles decrease much more slowly than in Fig. 5b. 
However, we would not consider follicles seven and 
eight as being anovulatory since they still decrease 
much faster than follicles five and six. Furthermore, 
Fig. lob shows follicles five and six are still the 
selected ones. This agrees with the fact that for the 
anovulatory case, there is no minimum threshold 
required for follicles to be able to reach a pre- 
ovulatory size. 
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FIGURE 9 (a) Simulation of the ageing model where K = 5.0, D = 0.5, p = 0.2, Mi = 2.9, and M 2  = 3.9. Initial age values do not 
decrease uniformly as in previous examples, but y,, = 8.0, . . ., ys, = 3.0 while, y,o = 0.2 and ys, = 0.1. The three largest follicles, x6,x7, and 
x,  reach pre-ovulatory maturity, yet they start to atrophy so slowly that it appears they remain stuck in the ovary. Rather than ovulatory, these 
three follicles get stuck inside the ovary. (b) Numerical simulation of follicles relative oestradiol production corresponding to (a). Follicles 
with the largest relative maturity do not tend to the equilibrium value of 1/3, instead follicle p8 tends to zero and follicles ph and p, tend to 
different equilibrium points. 

DISCUSSION tentative conclusions about the control of ovulation 
cycle in mammals. 

Implementation of the ageing variable complicates the The analysis begins with the most simplified case of 
mathematical expression of Lacker's system, but it is many growing follicles with same initial size and age- 
still possible to develop a relevant theoretical analysis, equivalent to only one growing follicle. The resulting 
which is basically the new contribution of this paper. equation is analytically integrable, and three possible 
The theoretical and numerical analysis of Mariana behaviors are detected when the ageing parameter is 
et al.'s model developed here is able to give new not too large with respect to the initial size of the 



time 

FIGURE 10 Solutions of follicles relative sizes for the anovulatory state with two initially "very old" follicles. Parameter values are 
K = 5.0, D = 0.5, 1*. = 0.2, M I  = 2.9 and M2 = 3.9, and initial age distribution as in Fig. 9. (a) There is not a significant qualitative 
difference from Fig. 5b, where the same follicles x5 and x6 are selected. However, follicles x7 and x, atrophy slower than follicles x7 and x~ of 
Fig. 5b. (b) Corresponding numerical simulation of follicles relative oestradiol secretion to (a). The two selected follicles tend to the same 
relative maturity value 112. 

follicle. Whenever the ageing parameter is small 
enough so that it does not beat the selection process, 
the dynamics of a single follicle may present 
ovulatory, anovulatory and atretic behaviour for 
different values of the relevant parameters. This is 
nothing new to the results already obtained from 
Lacker's model. 

For the ovulatory condition, however, a separatrix 
in the dynamics of Mariana and colleagues' model is 
found. Meaning that for a follicle size less than the 

threshold value, X; ovulation cannot occur, and the 
follicle atrophies. This may suggest that an initial sum 
of all growing follicles sizes has to exceed a minimum 
value so that ovulation can be triggered. It would be of 
great interest to biologically corroborate the fact that 
an ovary containing small follicles at the beginning of 
the menstrual cycle could be a possible cause of 
anovulation. 

A new feature for the particular case of anovulation 
is reflected by this model. Namely, instead of having 
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an arrested follicle with a fixed size, it eventually 
regresses due to its deteriorating capacity. Never- 
theless, this regression occurs in a much more slower 
manner so that there is a visible difference between 
this follicle and an atretic one. This suggests that the 
pre-ovulatory follicle that did not manage to ovulate 
does eventually disappear, so that it may not remain 
inside the ovary for future cycles. However, since the 
model does not incorporate any time units, it is not 
possible to actually determine when the arrested 
follicle finally dies, nor the nature of this ageing 
process. Physiologically speaking, regression of stuck 
follicles could last for either months or years. 
Sometimes such cysts have to be surgically removed 
from a woman's ovary since their prolonged presence 
may produce some painful effects. 

From the analysis of the simplified system, it is 
possible to estimate a threshold value for the age 
parameter. Such threshold depends on the follicles 
initial sizes and ages. Hence, a careful analysis is 
developed to show for both the ovulatory and 
anovulatory conditions when selection of pre-ovula- 
tory follicles takes place. It is even possible to detect 
the relative values of the ageing parameter required for 
any follicular growth at the beginning of the cycle. 

When further generalising the system by supposing 
that many follicles grow with different initial sizes, 
but still retaining the same initial age, the model can 
still be treated analytically. We prove that the model is 
still globally stable, and it still controls the number of 
pre-ovulatory selected follicles. The pre-destination 
of having the strictly largest follicles reaching a pre- 
ovulatory stage is still maintained. 

For the most general case of many interacting 
follicles with different sizes and ages, it is not possible 
to obtain a close expression for the non-linear stability 
analysis. The dynamics cannot be separated and 
therefore, it is not possible to find a gradient system 
for the interaction dynamics. However, a linear 
stability analysis is developed to show that, at least 
locally, the system for different follicles in age and 
size can still control the number of selected follicles. 
In other words, we prove that as long as the growing 
follicles begin with relatively similar initial ages and 
sizes, it is still possible to predict the number of 

follicles to reach pre-ovulatory maturity. Since the 
local analysis is around a trajectory rather than a fixed 
equilibrium point, the second order local analysis still 
needs to be developed. 

Pre-destination of the system from the initial size of 
the follicles no longer holds. Some crossing between 
the follicles growth curves can result from this model. 
This is in better agreement with biological data since 
it has been shown that size is not the only factor 
determining selection. This fact indeed was already 
mentioned by Mariana and collaborators. 

Numerical examples given in the present paper 
show that the model with an age decaying factor is not 
globally stable. When the system begins with, for 
instance, two "very old" follicles compared to the 
remaining ones, the number of expected ovulatory 
follicles is not maintained. This presents a tentative 
new insight into the selection of the control dynamics. 
This example in particular breaks the hierarchal 
structure for ovulation. For this case, from a certain 
number of ovulating follicles, there could be exactly 
the same number of stuck follicles. This suggests, that 
there are other local factors that affect follicular 
sensitivity to gonadotropins, and produce a polycystic 
ovary. Hence, the global instability presented by this 
model is not only suggesting but also agrees with 
alternative causes for P C 0  rather than those to do 
directly with follicle sensitivity to gonadotropins. 

The biological interpretation of such an ageing 
factor is not specified. Although many biological 
entities decay at an exponential rate, the particular 
mechanisms through which follicles deteriorate are 
not defined through the ageing variable of this model. 
Moreover, the time scale of the ageing factor should 
be considered carefully. Therefore, this model 
supposes an atretic potential for all growing follicles. 
This type of atresia also, present in pre-ovulatory 
follicles, may interfere with the ovulation rate. Thus, 
whenever some of the largest follicles entering the 
follicular phase of the cycle are old enough, they will 
not be selected and may affect the response of the 
remaining large follicles to hormone stimulation. 
Therefore, no other pre-ovulatory follicles ovulate and 
remain within the ovary for an unspecified period of 
time. 



This is an alternative way of obtaining PC0 in the 
human ovary. This particular model points towards the 
investigation of the local characteristics of the 
growing follicles that are not directly involved with 
their gonadotropin sensitivity. These characteristics 
can affect the global feedback mechanism and 
produce an undesirable PC0 in women. 

It would be of great interest to discern the origins of 
the ageing factor in order to provide a better biological 
understanding of the regulation of the ovulation 
number. An exponential decay for the ageing variable 
is plausible, yet by trying other types of decay rate, 
one could verify the robustness of the present model. 
However, the most important hypothesis this model 
actually suggests is that follicle sensitivity to 
gonadotropins can be strongly affected by this 
deteriorating factor. As a consequence, the system 
may no longer control the ovulation rate of pre- 
ovulatory follicles. 
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