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This paper presents a mathematical model for the growth of a cancer micrometastasis in 
the form of a vascular cuff. The model postulates the possibility of a local imbalance 
between the rate of cell proliferation and the rate of cell death through apoptosis which is 
taken as dependent on the concentration of an angiogenesis-inhibitor such as angiostatin. 
This imbalance produces non-zero cell velocities within the micrometastasis. The local 
cell velocity is related to an interstitial pressure gradient through a Darcy's Law type of 
equation, and the spatio-temporal development of the micrometastasis in an environment 
with a non-uniform nutrient concentration is followed by treating its outer boundary as 
an advancing front. 
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1 INTRODUCTION 

Metastasis, the release of cancer cells from a pri- 
mary tumour and their spread to other parts of the 
body, is the major cause of mortality in cancer 
patients [20]. The transport of malignant cells to dis- 
tant parts of the body is predominantly carried out 
by the vascular and lymphatic systems, although it 
can also occur through direct physical contact, e.g. 
as a result of surgical activity. 

Metastasis can be regarded as comprising three 
stages: Invasion, embolization, and extravasion [23]. 
Invasion of the tissue surrounding a primary tumour 
is a fundamental property of cancer cells, and 
along with the overall processes of metastasis, 

distinguishes the cells of malignant from benign 
tumours. The process of invasion is the result 
of a complex sequence of events which involves 
the detachment of tumour cells from the primary 
tumour, their attachment to the basement membrane 
matrix, the degradation of that matrix, the locomo- 
tion and infiltration of tumour cells into the region 
where the matrix has broken down, the degradation 
of the extracellular matrix, and finally the degra- 
dation of the vascular basement membrane matrix 
and the invasion of the lymphatic or blood vas- 
cular channel [23]. Some mathematical modelling 
of this stage of metastasis has been carried out 
by Perumpanani et a1 [37] who, taking into account 
the interaction of malignant cells with normal cells, 
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other tumour cells, and the extracellular matrix, use 
a travelling wave approach to model invasion. 

Embolization is the entry into and transport of 
tumour cells through the vascular system. Even 
though considerable numbers of cells may be 
released into the vascular system, apparently only 
a very small fraction ( t l  in 10,000) are able 
to survive the process and establish secondary 
tumours elsewhere in the body. The reasons why 
the proportion of cancer cells surviving this process 
should be so low are not well understood, but may 
be connected with the need of normal cells of 
a particular tissue type to adhere to one another 
and to the appropriate extracellular matrix, or 
else die through apoptosis. T h s  property, which 
prevents cells of normal tissue from floating away 
and establishing themselves elsewhere in the body, 
appears to be absent from at least some cancer cells, 
so that although most embolized tumour cells may 
still die through apoptosis, a fraction can survive to 
become established elsewhere in the body [36]. 

Circulating tumour cells usually become trapped 
in the first vascular bed that they encounter down- 
stream of the primary tumour. The next step in the 
establishment of a secondary tumour, is extravasion 
which again involves a complex sequence of events. 
Briefly, however, the cancer cell attaches itself at 
some point in a vascular bed, effects the retrac- 
tion of the endothelial cells at that point, migrates 
through the breach in the vessel wall, degrades 
the surrouniling matrix and establishes a metastatic 
tumour. Since the first vascular bed encountered by 
blood leaving most organs belongs to the lungs, it is 
here that the most common site for metastasis can 
be found [23]. Metastatic tumour cells may form 
microscopic perivascular ‘cuffs’ around a capillary 
at the location where originally a clonogenic cell 
left the circulation [20,17]. In the lungs of a mouse, 
such cuffs are no larger than about 150 pm 1171, or 
about ten cells [20], in radius. 

A micrometastasis may remain in a dormant avas- 
cular state with a h g h  cell proliferation rate balan- 
cing a high cell death rate by apoptosis, a form 
of programmed cell death which is usually charac- 
terized by single-cell death in the midst of living 

cells [41,40,6]. The onset of angiogenesis can be 
triggered by the removal of the primary tumour- 
although Follunan [17] notes that for certain other 
mouse tumours micrometastases may not become 
angiogenic, i.e. the angiogenesis genes are not acti- 
vated, even 3.5 months after removal of the primary 
tumour. 

In a previous paper [7] the authors presented a 
mathematical model of a micrometastasis which 
described the growth of a cylindrically symmetric 
micrometastasis around a central capillary out of 
which nutrient was diffusing. The model assumed 
that growth initially took place because of a local 
imbalance between cell proliferation and apoptotic 
cell death, with proliferation exceeding death close 
to the capillary. However, due to a decrease in 
the nutrient concentration with radial distance away 
from the capillary and a consequent decrease in 
the proliferation rate, at larger distances from the 
capillary the relative importances of proliferation 
and death were reversed, and consequently the 
micrometastasis tended towards a ‘dormant’ state 
with a finite outer radius. 

This original model assumed the geometry for the 
micrometastasis to be that of a circular cylinder, so 
that only growth in the radial direction was pro- 
duced. This paper presents a refinement to the model 
so that, although the micrometastasis is still growing 
around a cylindrical capillary, only axial symmetry 
is assumed, i.e. growth can now take place parallel 
to the capillary wall as well as in the radial direction. 
Furthermore, the new model also takes into account 
the effects produced by an axial variation of nutri- 
ent concentration - and consequently proliferation 
rate - as well as a radial variation. 

In the earlier work [7] a time-varying apoptic 
death rate was considered in order to model the 
effect of the angiogenesis inhibitor angiostatin upon 
the micrometastasis. This work was prompted by 
a series of papers in which the effect of angio- 
statin upon human and murine primary tumours 
implanted in a mouse model was investigated, as 
was its effect upon the secondary metastases which 
the implanted primary produced [30,20,31]. It was 
reported that treatment with angiostatin was capable 



DEVELOPMENT OF MICROMETASTASIS 57 

of regressing the primary tumour and limiting the 
metastases to a microscopic dormant state. Evidence 
indicated that these effects were achieved through an 
elevation in the apoptotic death rate, and that angio- 
genesis, if unhindered by a substance such as angio- 
statin, significantly lowered apoptosis in metastases 
although their high cell proliferation rate remained 
unaltered [20]. 

On the basis of this work O'Reilly et a1 [31] 
suggest a new paradigm for anticancer treatment 
based upon the administration of anti-angiogenesis 
agents such as angiostatin - although the possibi- 
lity of this type of approach to anti-cancer therapy 
had been suggested in the early 1970s by Folk- 
man [16]. Research into the effects of angiostatin 
upon primary and metastatic cancer has continued, 
e.g. [21,42,38], and indeed a new angiogenesis- 
inhibitor called endostatin has been identified and 
its effects investigated [32]. In addition, Boehm 
et a1 [8] show that treatment with endostatin caused 
a primary tumour implanted within a mouse model 
to regress. If the treatment with endostatin discon- 
tinued the tumours regrew, however upon resump- 
tion of the treatment with endostatin the tumours 
could be successfully re-regressed - a cycle which 
could be repeated. As with earlier work with angio- 
statin, the work on endostatin indicated that the idu- 
bition of angiogenesis seemed to result in a high-rate 
of apoptosis in tumours cell in treated mice com- 
pared to the rate in tumour cells in untreated'mice, 
whereas there was no difference in the proliferation 
rate of the tumour cells in the two sets of mice. 

Below we present results which indicate the effect 
of increasing the apoptotic death-rate at some stage 
during the time-development of a micrometastasis, 
in order to model the effects of an angiogenesis- 
inhibitor. 

2 THE MATHEMATICAL MODEL 

Most mathematical modelling of the metastatic pro- 
cess has concentrated upon the initial stages in which 
cancer cells are lost from the primary tumour, invade 
the surrounding tissue, and then enter the circulatory 

or lymphatic systems. For instance, Chaplain and 
Sleeman [13,14] consider the growth of a solid pri- 
mary tumour using non-linear elasticity theory in par- 
ticular membrane and thick-shell theory. Using this 
approach they are able to give conditions in terms of 
the strain energy function for the processes of inva- 
sion and metastasis to occur. Adam [3] has described 
how catastrophe theory may provide a qualitative 
description of the growth of metastases. 

The process by which a primary tumour becomes 
vascularized is important from the point of view of 
metastasis since the presence of nearby capillaries 
greatly enhances the capacity of tumour cells to 
spread to other parts of the body. Orme and Chap- 
lain [33] have considered the growth of new capi- 
llaries towards a primary tumour and the advance of 
invading tumour cells towards regions of high blood 
vessel density. In a later paper [34], also concerned 
with the modelling of tumour angiogenesis, they 
model the effects of an antiangiogenesis drug on the 
tumour vasculature. As mentioned above, the pro- 
cess of invasion of the surrounding tissue by tumour 
cells has been considered Perumpanani et a1 [35] 
who describe a continuum model for the behaviour 
of the invasive cells that takes into account their 
interactions with normal cells, noninvasive tumour 
cells, and ECM proteins and proteases. 

The aspect of the problem we consider here is that 
of a perivascular cuff growing around a capillary 
vessel of radius r,, where we assume axial sym- 
metry in the model so that, if z is the coordinate 
direction along the capillary and r is the radial coor- 
dinate measured from the centre of the capillary, the 
radial position R of the outer boundary of the tumour 
is a function of z and t .  

In common with other mathematical models for 
the growth of solid tumours, e.g. [ 1 1,15,18,19,24,1, 
14,391, we adopt a continuum approach in that the 
properties of the tumour cells are modelled in an 
aggregative sense, not at the level of individual 
cells. The discrete nature of the problem does not 
alter the underlying physical processes, and thus 
a continuum model captures perfectly adequately 
the overall growth of the cuff without any loss of 
physical insight. In fact, although experiment, as 
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mentioned above, indicates that micrometastases are 
about 10 cells in radius, they can be many hundreds 
of cells long. 

We assume that the cancer cells obtain nutrient, 
in this case oxygen, by diffusion from the capillary 
whch they surround, and as a result they divide 
and proliferate. Like other mathematical models for 
tumour growth a mechanism for the loss of cell vol- 
ume is assumed, which in this case is apoptosis, a 
form of programmed cell death [40]. Apoptosis as 
a mechanism for the loss of cell volume has been 
considered in the context of spherical tumours by 
McElwain and Moms [25] and Byrne and Chap- 
lain [9,10], who found that it was possible to obtain 
a dormant state even in the absence of a non- 
necrotic core. 

At any point in the microscopic tumour, there 
will be a local volume proliferation rate k(r, z )  (cell 
volume createdunit volumehit  time), and a local 
apoptotic volume death rate a(r ,  z )  (cell volume 
destroyedunit volumehit  time). Any local imba- 
lance in proliferation and apoptosis will produce a 
non-zero cell velocity g at that point, where 

where it has been assumed that after apoptotic 
death a cell ceases to occupy any volume. Thus, an 
inevitable consequence of the original model, indeed 
of almost any model for tumour growth, is a move- 
ment of cells through the tumour. 

In this model we assume that cell proliferation 
and cell death produce internal pressure differences 
responsible for the cell motion, and that in their 
motion the cells behave like an incompressible fluid 
for which the viscous forces experienced by the 
cells are much smaller than the inertial forces. In 
these circumstances we would expect that the flux 
of cellular material would be proportional to the 
pressure gradient, thus following Greenspan [ 191, 
McElwain et a1 [26], and McElwain and Pettet [27], 
we assume that the cell velocity g is related to the 
local internal pressure p by a Darcy’s Law type of 
equation [5]:  

- u = - p v p  (2) 

where the pressure p and velocity u are interpreted 
as average values. 

As in the previous model [7], the evolution of the 
micrometastasis is tracked by following the motion 
of its boundary R(z , t ) .  This is done by noting 
that there will be no relative motion between an 
‘element’ of tumour lying on the boundary and the 
boundary itself. Thus, following an element in the 
free surface, the rate of change of R is equal to the 
radial component of that element’s velocity for all 
time, and the usual free-surface condition follows in 
the form: 

(3 ) 
aR aR 
- + uz- - u, = 0 
at az 

where u, and u, are the radial and axial components 
of g at points on the surface of the micrometastasis 
(see for example Lighthill [22]). The cell velocity 
- u is obtained from equation (2) while the pressure 
distribution within the tumour is obtained by solving 

(4) p V 2 p  = - (k  - C Y )  

Thus, in a sense, the growth of the micrometa- 
stasis is dnven by the right-hand side of equation (4) 
which gives the local imbalance between cell proli- 
feration and cell death, and this imbalance is related 
to the local nutrient concentration, in this case 
oxygen. 

The diffusion of nutrient out from the central 
capillary we assume takes place on a much shorter 
time-scale than the typical time-scales for cell proli- 
feration and death (a natural assumption to make, 
see for example Adam [2]), so that we have a quasi- 
steady model in which the oxygen concentration c 
obeys the diffusion equation 

where s is the rate of consumption of oxygen per 
unit volume per unit time, and D is the diffusion 
coefficient of oxygen, both assumed to be constant 
whilst the cells of the micrometastasis are viable. 

We will assume that the length-scale for the 
variation of c with r is much shorter than the length- 
scale for the variation of c with z ,  and so, retaining 



DEVELOPMENT OF MICROMETASTASIS 59 

the dominant term, the equation effectively obeyed 
by the nutrient concentration is 

D a  
-- r ar (+ = s  (6)  

where, the above assumption clearly allows a 'slow' 
variation of c with z .  

For the micrometastasis being considered, there is 
no evidence that the cancer cells are becoming less 
viable due to nutrient starvation. Furthermore, we 
argue below that the radius of the micrometastasis r, 
is much small than its diffusion limited size re, so that 
the consumption of nutrient by the micrometastasis 
will be negligible and hence the variation in nutrient 
concentration will largely be a result of diffusion 
into the surrounding normal tissues. Thus we use a 
nutrient concentration at the central capillary which 
reflects the fact that nutrient is constantly being lost 
to the surrounding tissue and hence which decreases 
as one moves along the capillary. 

Given that the nutrient concentration at the capi- 
llary wall cg(z) will vary with distance z as a result 
of the overall transfer of nutrient to the body, the 
spatial variation of c(r ,z)  can be described by an 
expression of the form 

8 2  2 + - ( r  - r m )  4 0  

where the oxygen concentration at the capillary wall 
is cg(z), the radius of the capillary is r,, and the 
nutrient flux (-Dr,(ac/ar)) is m(z). 

As previously [7], we will assume that the nutri- 
ent concentration c experienced by the micrometas- 
tasis never gets so low that necrosis occurs, which 
means that its radius must remain much smaller 
than (2m(z)/s)'/*, which is the radius at which 
r(ac/ar) = 0 (assuming r, to be small), i.e. the 
radms, re, the micrometastasis would need to be if 
it were to consume all the nutrient flux from the 
central capillary. Typically we would expect re to 
be orders of magnitude larger than r,; for example, 
spherical tumours to become diffusion-limited at a 
radius of around 200 cells. 

s 2  2 + - ( r  - r m )  4 0  

and, if we assume that throughout its growth 
the radius r of the micrometastasis remains much 
smaller than re ,  i.e. r, < r << re(z), the oxygen 
concentration the micrometastasis experiences can 
be approximated by 

since the third term on the right-hand side of 
equation (8) remains smaller than the second for 
r << re. In other words the amount of nutrient con- 
sumed by the cancer cells is a small fraction of the 
total amount available, i.e. there is no significant 
variation in the oxygen concentration due to con- 
sumption by the micrometastasis. 

In common with other models, see for example 
McElwain and Ponzo [24], McElwain and Morris 
[25], Byrne and Chaplain [9,10], it is assumed here 
that the cell proliferation rate is a function of nutrient 
concentration which for simplicity we take to be of 
the form k 0: (constant + constant c),  which, given 
equation (9), implies that in thls case 

with k&), k2(z) > 0. 
In the absence of experimental evidence, we make 

the simplest possible assumption concerning the rate 
of apoptosis a which we initially take to be a 
constant throughout the micrometastasis at a given 
moment. Obviously, a variation in (Y could be put 
into the model if experimental evidence demanded 
it. Note that for the micrometastasis to start to grow, 
we require ko(z) > a. 

3 TUMOUR EVOLUTION 

To use the model to calculate the growth of the 
micrometastasis we proceed as follows. Starting 
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with an initial shape for the micrometastasis and 
a given nutrient concentration, we can obtain the 
pressure distribution within the tumour by sol- 
ving equation (4). In the results presented in this 
paper, this was done using a finite-volume approach 
on a polar mesh that continuously adapts as the 
micrometastasis grows. The source-term on the 
right-hand side of (4), which is a function of posi- 
tion, is obtained from the form of the nutrient 
concentration. Thus the form of k ( r , z )  is given 
by equation (lo), although, of course, one must 
still choose the constants which relate k to c.  The 
particular choice for k(r, z )  is discussed below in 
Section (4). 

The boundary of the region over which 
equation (4) is solved is the unknown outer surface 
of the micrometastasis and the interface between the 
micrometastasis and the capillary wall, i.e. at r = r,,,. 
The pressure distribution within the medium around 
the tumour is assumed to be uniform, whilst the 
cell velocity normal to the capillary wall is zero. 
Hence equation (4) is solved subject to the following 
boundary conditions: 

p = 0 on the outer boundary 

of the tumour, R(r,  z ,  t )  (11) 

(12) 

Having obtained the pressure distribution within the 
micrometastasis, the velocity field can be obtained 
from equation (2) by finite-differencing the pressure 
distribution. 

Finally, the velocity distribution on the sur- 
face of the micrometastasis can be used with the 
equation (3) to update the position of the tumour 
boundary, which was again solved using finite- 
differences. Note that the finite-differencing of the 
time derivatives is used to evolve the surface of the 
tumour over the time-interval At used in the tem- 
poral finite-difference, i.e. R(r ,  z ,  t )  += R(r,  z, t + 
At). Note also that movement of the outer bound- 
ary of the metastasis usually requires a constant 
remeshing of the enclosed volume in order to solve 
equation (4) with the necessary accuracy. 

aP 
- = 0 at the capillary wall, r = r,,, 
ar 

This procedure is repeated over successive time- 
steps to follow the growth of the tumour for as long 
as is required. 

4 RESULTS 

We start the metastasis evolution with an almost 
spherical tumour of radius 4r, centred on z = 0, 
the deviation from perfect sphericity being due to 
the presence of the capillary. 

We present results for the following functional 
form for the proliferation rate 

which is equivalent to assuming a nutrient concen- 
tration given by 

c(r,  z )  = co - CI tanh 2- (1 - g21n(r/r,,,)) 

(14) 
where CO, cl, z0 and g2 are constants. This form 
for the concentration variation models the effect 
of removing oxygen from the blood and hence in 
decreasing the nutrient concentration as one moves 
along the capillary in the direction of the flow. As 
noted above, the consumption of nutrient by the 
micrometastasis is insignificant, the oxygen con- 
centration is essentially determined by its diffu- 
sion into the mass of normal tissue surrounding 
the capillary. In using equation (14) we have taken 
a functional variation of c(r,  z )  that satisfies the 
diffusion equation (6) and, as seems reasonable, 
models a decrease in nutrient concentration as one 
moves along the capillary. A tanh(z) variation has 
been used as a convenient means of producing 
a smooth variation from an upstream value to a 
lower downstream value of the nutrient concentra- 
tion, with the length-scale determined by ZO. Obvi- 
ously, another functional variation with this general 
property could have been used so long as it sat- 
isfied the requirement for a slow variation in the 
z-direction. 

We are assuming that the flow of blood along the 
capillary is in the direction of increasing z. Thus 

( :o) 
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for z << 0, upstream of the capillary, the nutrient 
concentration is essentially constant; for z 2i 0 the 
nutrient concentration decreases essentially linearly 
with z ;  whilst for z >> 0, well downstream of the 
metastasis, the nutrient concentration is constant 
once again, but with a lower value. Refering to the 
constants in equation (13) we can see that they have 
the following significance: ko represents the mean 
of the upstream and downstream proliferation rates; 
2kl represents the drop in proliferation rate of the 
cells adjacent to the capillary wall due to reducing 
nutrient concentration in the blood; zo determines 
the axial length-scale over which the proliferation 
rate drops; whilst k2 gives the length-scale of the 
ra&al variation in proliferation rate. 

In the earlier version of this model [7] it was 
shown that an appropriate scaling for the time vari- 
able was obtained from the proliferation rate, so that 
here we introduce a non-dimensional time variable, 
defined thus 

z = kot (15) 

to scale the time evolution of the tumour. Hence 
in all the results presented below showing the 
growth of the tumour, the time is given in units 
of l/ko, which is a measure of the mean cell- 
doubling time (in the absence of apoptosis). Note 
that for tumour cells the net doubling-time (with 
apoptosis present) is of the order of a week [20]. 
The equation giving the ‘net’ proliferation rate can 
thus be non-dimensionlised as follows 

k(r, z )  - a = 1 - y tanh 2- ( ( 
where we have introduced the following dimension- 
less parameters 

a 
r ] = -  

k0 
k l  

y = -  
k0 

where r]  characterizes the relative importance of 
apoptosis to proliferation, while y characterizes 
the fractional drop in the proliferation rate as one 

moves along the capillary. The parameter k2 in 
equations (13) and (16) is already dimensionless and 
determines the radius rme‘lk2 at which proliferation 
falls to zero due to the radial decrease in nutrient 
concentration, i.e. it is closely related to re. 

The assumption that the length-scale for the z 
variation in the nutrient concentration is larger than 
the length-scale for r variations, means that we 
require zo >> r,,,. In all results presented here, the 
parameter zo, has been taken to be 20r,. Further- 
more, the natural length-scale to choose is r, so 
that in the results presented below, all distances are 
given in units of r,. 

We take the parameter p, which relates the 
cell velocity to the internal pressure gradients via 
equation (2) to be unity, since this constant merely 
scales the pressure p .  

Notice that we can determine whether or not the 
micrometastasis grows at all by considering ( k  - a )  
in the region adjacent to the capillary wall. In 
particular at r = r,, ( k  - a )  varies between 1 + 
y - r]  and 1 - y - r]  in non-dimensional units, so 
that for the micrometastasis to grow at all we require 
1 + y > r ] ,  and for it to penetrate into the down- 
stream region we require 1 - y > r ] .  

Below are presented results which give an indica- 
tion of the main ‘regimes’ of micrometastatic growth. 
The results are given in three forms: as a series of 
images which show the micrometastasis at various 
stages in its development; as a graph which shows 
the maximum radial dimension (rmax), and the max- 
imum and minimum axial positions (zmax and zmin) 
of the micrometastasis, as functions of time; and, 
for those with CD rom facilities, as animated Quick- 
Time ‘movies’ of the tumour growth. The images and 
movies have been generated on a Silicon Graphics 
workstation. 

4.1 Asymmetric Axial Growth Rate 

Figures (1) and (2) show the results for the follow- 
ing set of parameters: (q = 0.5, y = 0.5, k2 = 0.23). 
Figure (1) shows the tumour at various selected 
times, while Figure (2) shows a graph of its radial 
and axial dimensions as functions of time. For this 
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t = 16 

: 

t = 34 

a 
t = 44 

: 
t = 55 

2 .  aoo 100.000 

t i r n e  

rmax _ _ - _  zmox .......... ...... - zmin 
FIGURE 2 Tumour dimensions for asymmetric growth ( q  = 0.5, y = 0.5, k2 = 0.23). 
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choice of parameters, in particular the non-zero 
value of the parameter y ,  the axial variation in the 
nutrient concentration, and hence the proliferation 
rate k, results in a strong asymmetry in the axial 
growth of the micrometastasis, with the tumour 
growing preferentially in the direction of increasing 
nutrient concentration. In particular, for this choice 
of parameters 1 - y = q ,  so that the micrometa- 
stasis cannot grow far in the downstream direction. 
Note also that the growth in the opposite direction 
and also the radial growth of the micrometastasis 
is limited by a balance between proliferation k and 
apoptosis a, i.e. k - a. 

A QuickTime movie demonstrating tumour 
growth can be viewed from the on-line paper and 
archive CD-ROM of this journal. 

4.2 Symmetric Axial Growth Rate 

In the next set of results, shown in Figures (3) 
and (4), the parameter y has been set to zero so 
that there is no longer any axial variation in the 
nutrient concentration and hence no variation in the 
proliferation rate. As might be expected the tumour 
now grows at equal rates in opposite directions 
along the capillary. The radial growth of the tumour 
is limited by the logarithmic fall with r of the 
proliferation rate, so that the radial extent of the 
micrometastasis is limited by a balance between 
proliferation and apoptosis in its outer regions. 

A QuickTime movie demonstrating tumour 
growth can be viewed from the on-line paper and 
archive CD-ROM of this journal. 

t = 26 

t = 48 

t = 82 

t = 102 

FIGURE 3 Symmetric axial growth ( q  = 0.5, y = 0.0, kz = 0.23). 
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2 700 

t i m e  

rmax _ _ _ -  zmax . . . ... . ... .. . - zmin 

FIGURE 4 Tumour dimensions for symmetric axial growth (0 = 0.5, y = 0.0, k2 = 0.23) 

4.3 Radial Growth 

In Figures (5)  and (6)  both y and k2 have been 
set to zero, so that there is no longer any axial 
or radial variation in the nutrient concentration. 
Strictly speaking this violates the assumption which 
enables us to ignore the second term of equation (3, 
however this case has been included for the sake of 
comparison. 

As expected the growth of the tumour is more- 
or-less spherical, although not exactly so. The slight 
deviation from spherical symmetry is due to a 
growth rate along the capillary that is slightly lower 
than elsewhere. T h s  is explicable on the basis 
that cancer cells adjacent to the capillary wall will 
experience lower axial pressure gradients since there 
are cells proliferating on only one side of them. 

A QuickTime movie demonstrating tumour 
growth can be viewed from the on-line paper and 
archive CD-ROM of this journal. 

4.4 Asymmetric Axial Growth with Decreased 
Apoptosis 

Finally, in Figures (7) and (8) the original set of 
parameters have been used but with q = 0.1, so 
that the apoptotic death rate has been reduced. In 
this case the axial growth of the micrometastasis is 
again strongly asymmetric and the radal growth of 
the micrometastasis eventually becomes limited by 
apoptosis. Now, however, since the apoptotic death 
rate is lower, the micrometastasis can expand further 
in the radial direction before the proliferation rate 
drops to such a level where it becomes comparable 
with apoptosis and radial growth stops. 

A QuickTime movie demonstrating micrometa- 
stasis growth can be viewed from the on-line paper 
and archive CD-ROM of this journal. 

For the sake of comparison the relative growth 
rates of the results above are shown in Figures (9) 
and (10) which are a graph of the logarithm of the 
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t = 16 

t z = 32 

FIGURE 5 Radial growth (7 = 0.5, y = 0.0, k2 = 0.0). 
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FIGURE 6 Tumour dimensions for radial growth (7 = 0.5, y = 0.0, k2 = 0.0). 
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t = 18 

t = 36 

FIGURE 7 Axial growth with decreased apoptosis (q = 0.1, y = 0.5, k2 = 0.23). 
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Tumour dimensions for asymmetric axial growth (q = 0.1, y = 0.5, k2 = 0.23). FIGURE 8 
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FIGURE 9 Loganthmic variation of tumour dimensions. 
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FIGURE 10 Logarithrmc of tumour volume. 
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fastest growing linear dimension (usually zmin) 
against time, and a graph of the logarithm of the 
tumour’s volume, respectively. In all four cases on 
can see that the growth is initially exponential, but 
then starts to fall below this as time progresses. One 
can also see that for the same rate of apoptosis, the 
greatest rate of volume increase occurs when there is 
no radial or axial variations in the proliferation rate, 
so that the growth is approximately spherical. Inter- 
estingly, the volume of the micrometastasis in 4.1 
grows faster than that in 4.2, even though there is no 
axial variation in proliferation rate for 4.2. Finally, 
the large growth rate in 4.4 can be attributed to the 
lower value of the apoptotic death-rate than in the 
preceding runs. 

4.5 Turnour Regression due to Increased 
Apoptosis 

In this section we consider the effects of increasing 
the apoptotic death-rate in order to model the 
possible effects of raising Angiostatin or Endostatin 

concentration at some stage in the development of 
the micrometastasis. As mentioned in the introduc- 
tion, it has been suggested that these substances 
can produce tumour regression by elevating the 
apoptotic death-rate [20]. At present, there is no 
experimental evidence to give the quantitative rela- 
tionship between the angiostatin concentration and 
the apoptotic death-rate. Therefore in the absence 
of such data, we consider a uniform increase in 
the death rate a as the first term in the functional 
relationship. 

For the sake of example we consider two cases, 
where initially in both cases the micrometastases 
develop as described in Section (4.4), i.e. (Q = 0.1, 
y = 0.5, k2 = 0.23), up to time t = 31. At this 
point, in the first case the value of 17 is raised 
to 1.0, while in the second the value of Q is 
raised to 1.3. The results of the first case are 
shown in Figure (1 1) while the results of the second 
are shown in Figure (12); both figures show the 
micrometastases at selected times, starting at the 
point where the apoptotic death-rate is raised. 

t = 31 

t = 39 

t = 49 

L 

t = 69 

FIGURE 11 Axial growth with increased apoptosis (qol,j = 0.1, qnen, = 1.0, y = 0.5, k2 = 0.23). 
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t = 35 

t = 41 

t = 46 

FIGURE 12 Axial growth with increased apoptosis ( q , / d  = 0.1, y = 0.5, k2 = 0.23). 

For the micrometastasis shown in Figure (1 l), 
1 + y > qnrw whereas 1 - y < q,ler.. The first inequ- 
ality indicates that the micrometastasis can grow in 
the upstream direction, whilst the second indicates 
that it cannot grow in the downstream. These con- 
clusions are borne out by reference to Figure (1 l), 
where it can be seen that in response to the increase 
in the death-rate the radius of the micrometa- 
stasis shrinks and yet it continues to grow in the 
upstream direction. In other words, the level of the 
angiogenesis-inhibitor is too low to completely halt 
the growth. 

A QuickTime movie demonstrating micrometa- 
stasis growth can be viewed from the on-line paper 
and the archive CD-ROM of this journal. 

For the micrometastasis shown in Figure (12), 
1 + y < qnew, which indicates that after the increase 
in the death-rate the tumour cannot grow at all, 

in fact it must regress. This is clearly shown 
in Figure (12) where the micrometastasis rapidly 
shrinks in size in both the radial and axial directions. 
Since 1 - q < 0 everywhere within the tumour, i.e. 
the death-rate exceeds the proliferation rate, it will 
eventually disappear, although it is laborious to fol- 
low this process to the very end using the numerical 
scheme employed in this paper. 

A QuickTime movie demonstrating micrometa- 
stasis shrinkage can be viewed from the on-line 
paper and the archive CD-ROM of this journal. 

5 CONCLUSIONS 

Following on from earlier work [7] we have pre- 
sented a model for the spatio-temporal development 
of a micrometastasis growing around a central 



70 M. I. G.  BLOOR AND M. J. WILSON 

capillary. The original model assumed a cylindrical 
tumour, but in this paper this assumption has been 
relaxed to allow for more general axisymmetric 
growth. This has been achieved by assuming that 
the velocity u of tumour cells withm the tumour 
is related to the interstitial pressure p by a Darcy’s 
Law type of equation (2), and by solving a nonlinear 
free-surface equation in order to track the boundary 
of the tumour as an advancing front. By assuming a 
proliferation rate that depends on the nutrient con- 
centration and by considering different possible vari- 
ations of the nutrient concentration, various regimes 
of growth have been demonstrated. 

It has been demonstrated that the result of 
treatment with an anti-angiogenesis agent such as 
angiostatin or endostatin [30,31,32] can easily be 
taken into account in the present model, where 
tumour regression can be modelled just as easily 
as tumour progression, and as more information 
becomes available this aspect of the model can be 
refined. This was illustrated by the results presented 
in Section (4.3, where it was shown that only if the 
increase in the death-rate is large enough did the 
micrometastasis regress, whereas in other situations, 
although the radial extent of the micrometastasis will 
decrease and it may regress on its downstream side, 
it can continue to grow along the central capillary 
towards regions of high nutrient concentration. 

The model can be extended in a number of ways 
and adapted as more information becomes available 
through experiment. Perhaps the most obvious is to 
extend it to three-dimensional growth to take into 
account growth along a network of capillaries for 
example. This would mean calculating the solution 
to equation (2) on a three-dimensional mesh and 
also extending equation (3) to describe the motion 
of an advancing surface in three-dimensions, rather 
than an advancing curve in two as is presently the 
case. Other ways to extend the model would be to 
use more detailed modelling of the nutrient vari- 
ation in the capillary bed, and/or to use a more 
realistic functional relation between the nutrient con- 
centration and the proliferation rate. Furthermore, 
it was here assumed that the apoptotic death-rate 
is constant throughout the micrometastasis. The 

model could be modified to include the effects 
of a spatial dependence in the concentration of 
the angiogenesis-inhibitor combined with a realistic 
dependence of the death-rate upon the concentra- 
tion of the inhibitor. In addition, the time-decay in 
the concentration of the angiogenesis-inhibitor in the 
central capillary could be included, an effect which 
has already been modelled to some extent by Adam 
and Bellomo [4] who considered the post-surgical 
effects of removal of the primary tumour. 

Although the model is presented here in the 
context of modelling micrometastasis, it is also 
of relevance to other aspects of cancer modelling. 
For example, the model can be applied to the 
non-uniform growth of solid tumours in general, 
in particular the process of tumour vascularization 
and the resulting growth. Also the development of 
tumour cords found in a number of human and 
animal tumours, which are cylindrical cuffs that 
separate central blood vessels from areas of necro- 
sis [28,29] can be addressed in a similar way. 
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