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With the advent of novel biomedical 3D image acquisition techniques, the efficient and reliable analysis of volumetric images has
become more and more important. The amount of data is enormous and demands an automated processing. The applications are
manifold, ranging from image enhancement, image reconstruction, and image description to object/feature detection andhigh-level
contextual feature extraction. In most scenarios, it is expected that geometric transformations alter the output in a mathematically
well-defined manner. In this paper we emphasis on 3D translations and rotations. Many algorithms rely on intensity or low-order
tensorial-like descriptions to fulfill this demand. This paper proposes a general mathematical framework based on mathematical
concepts and theories transferred frommathematical physics and harmonic analysis into the domain of image analysis and pattern
recognition. Based on two basic operations, spherical tensor differentiation and spherical tensor multiplication, we show how to
design a variety of 3D image processing methods in an efficient way.The framework has already been applied to several biomedical
applications ranging from feature and object detection tasks to image enhancement and image restoration techniques. In this paper,
the proposed methods are applied on a variety of different 3D data modalities stemming from medical and biological sciences.

1. Introduction

The analysis of three-dimensional images has gained more
and more importance in recent years. Particular in the
medical and biological sciences, new acquisition techniques
lead to an enormous amount of 3D data calling for automated
analysis. In this paper, we show how the harmonic analysis
of the 3D rotation group offers a convenient and computa-
tionally efficient framework for rotation covariant image pro-
cessing and analysis. Most of the state-of-the-art techniques
rely on “low”-order features such as intensities, gradients of
intensities, or second order tensors like the Hessian matrix
or the structure tensor [1]. For example, consider a lesion
detection/segmentation problem in a 𝑇

1
-weighted magnetic

resonance image. A typical procedure for solving such a task
would rely on a local image feature extraction step such as the
computation of a Laplacian- or aGaussian-pyramid.Once the
feature images are computed, a healthy group of volunteers
is used to determine the distribution of such features for
subjects in a healthy condition.

From such a distribution, we can estimate the probabil-
ities for the absence or presence of lesions in a voxel-by-
voxel manner. Instead of solely using 0-order features, such
as the Laplacian-pyramid, higher order tensor fields can be
used to derive further scalar valued quantities. Such features
can be the smoothed intensity gradient magnitudes (1-order
features), or the eigenstructures of a Hessian matrix field or
a structure tensor field (2-order features). However, due to
their mathematical and computational complexity, features
of order three or even higher order are rarely used. This
paper proposes a unified framework that can cope with high-
order features in a systematic way. The proposed framework
is based on the harmonic, irreducible representations of the
3D rotation group. This guarantees the most sparse tensor
representation. Consequently, in comparison with ordinary
Cartesian tensor analysis, the algorithms and the handling are
operationally clearer and more efficient.

Given a Cartesian tensor 𝑡
𝑖
1
,...,𝑖
𝑛

of rank 𝑛, such a tensor
can be the result from a simple projection onto moment
functions or from a differentiation process (for instance,
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a gradient is a tensor of order 1, and a Hessian matrix is a
tensor of oder 2). A tensor can be considered as a feature
describing an object in a rotation covariant way; that is, if the
original object is rotated by a rotation matrix R, the tensor
rotates in the following manner:

(𝑔𝑡)
𝑖
1
,...,𝑖
𝑛

= ∑

𝑗
1
,...,𝑗
𝑛

𝑅
𝑖
1
,𝑗
1

⋅ ⋅ ⋅ 𝑅
𝑖
𝑛
,𝑗
𝑛

𝑡
𝑗
1
,...,𝑗
𝑛

, (1)

where 𝑔 denotes an element of the 3D rotation group. A
tensor rotation is a common operation in many applications,
for instance, steering a local image descriptor (a tensor) with
respect to some data dependent reference frame. From a
computationally point of view a Cartesian tensor rotation
is quite inconvenient. Typically, there are symmetries with
respect to index permutations (for instance, the Hessian
matrix is a symmetric tensor). These symmetries have to
be taken into account to provide an efficient computa-
tion. Another problem is that the tensor rotation matrix
𝑅
𝑖
1
,𝑗
1

⋅ ⋅ ⋅ 𝑅
𝑖
𝑛
,𝑗
𝑛

is “full”; that is, all elements 𝑡
𝑗
1
,...,𝑗
𝑛

mix under
rotations. Spherical tensor analysis, where tensors appear
in their irreducible representations, solves these problems,
and, even more, it offers further advantages regarding ten-
sor operations. Suppose that we aim at extracting rotation
invariant features. Given a Cartesian tensor 𝑡, for Cartesian
tensors, the basic operation is tensor contraction.The tensor is
contracted down to a rank 0 tensor by repeatedly combining
two indexes (with the Kronecker delta 𝛿

𝑖𝑗
), or three indexes

(with the 𝜖-tensor 𝜖
𝑖𝑗𝑘
). This can be done in several ways, for

example, linearly ∑
𝑖𝑖
𝑡
⋅,𝑖,⋅,𝑖,⋅

, quadratically ∑
𝑖𝑗
𝑡
⋅,𝑖,⋅

𝑡
⋅,𝑖,⋅
, or even

cubicly ∑
𝑖𝑗𝑘

𝜖
𝑖𝑗𝑘
𝑡
⋅,𝑖,⋅

𝑡
⋅,𝑗,⋅

𝑡
⋅,𝑘,⋅

. It is possible to combine different
tensors as well. A problem that occurs is ambiguities; in the
presence of symmetries, some waysmight end up in the same
result, somemay not. In contrast, the spherical tensor analysis
offers a systematic way of performing such operations. The
Kronecker and 𝜖 products are replaced by one single spherical
product which allows for multiplying spherical tensors of
arbitrary rank. The even parity products are related to the
Kronecker product, the odd parity products to 𝜖 products.

In this paper, we want to review the basics of spherical
tensor analysis and how it can be applied to image processing
problems. In Section 2, we introduce the basic concepts such
as the notion of a spherical tensors. We define the spherical
product and introduce its properties. We also show how
spherical tensors are related to ordinary Cartesian tensors. In
Section 3, the so-called spherical tensor derivative operators
(shortly spherical derivatives) are introduced. The spherical
derivative operators are able to connect spherical tensor
fields of different rank. We discuss several properties and
derive their representation in polar coordinates. We focus
on two types of basis systems evolving from the spherical
differentiation process: the Gauss-Laguerre functions and
the spherical Gabor-functions. Both are known to be very
important in pattern analysis.The differential relationships of
these functions offer an efficient way to compute projections
onto these type of functions. In Section 4, expansions in
terms of tensorial harmonics are discussed, which are just
the straight-forward generalization of ordinary scalar-valued

spherical harmonic expansions. Finally, in Section 5, several
biomedical applications are reviewed and discussed.

2. Spherical Tensor Analysis

Let D𝑗

𝑔
be the unitary irreducible representation of a 𝑔 ∈

𝑆𝑂(3) of order 𝑗 with 𝑗 ∈ N. They are also known as the
Wigner D-matrices (e.g., see [3]). The representation D𝑗

𝑔
acts

on a vector space 𝑉
𝑗
which is represented by C2𝑗+1. We write

the elements of 𝑉
𝑗
in bold face, for example, u ∈ 𝑉

𝑗
, and

write the 2𝑗 + 1 components in unbolt face 𝑢
𝑚

∈ C where
𝑚 = −𝑗, . . . , 𝑗. For the transposition of a vector/matrix, we
write u𝑇; the joint complex conjugation and transposition is
denoted by u⊤ = u𝑇. In this terms, the unitarity of D𝑗

𝑔
is

expressed by the formula (D𝑗

𝑔
)
⊤D𝑗

𝑔
= I.

Note that we treat the space 𝑉
𝑗
as a real vector space

of dimensions 2𝑗 + 1, although the components of u may
be complex. This means that the space 𝑉

𝑗
is only closed

under weighted superpositions with real numbers. As a
consequence of this, we always have that the components
are interrelated by 𝑢

𝑚
= (−1)

𝑚
𝑢
−𝑚

. From a computational
point of view, this is an important issue. Although the vectors
are elements of C2𝑗+1, we just have to store just 2𝑗 + 1 real
numbers.

We denote the standard basis of C2𝑗+1 by e𝑗
𝑚
, where the

𝑛th component of e𝑗
𝑚
is 𝛿

𝑚𝑛
. In contrast, the standard basis of

𝑉
𝑗
is written as c𝑗

𝑚
= ((1 + i)/2)e𝑗

𝑚
+ (−1)

𝑚
((1 − i)/2)e𝑗

−𝑚
. We

denote the corresponding “imaginary” space by i𝑉
𝑗
; that is,

elements of i𝑉
𝑗
can bewritten as ikwhere k ∈ 𝑉

𝑗
. So, elements

w ∈ i𝑉
𝑗
fulfill 𝑤

𝑚
= (−1)

𝑚+1
𝑤
−𝑚

. Hence, we can write the
space C2𝑗+1 as the direct sum of the two spaces C2𝑗+1

= 𝑉
𝑗
⊕

i𝑉
𝑗
. The standard coordinate vector r = (𝑥, 𝑦, 𝑧)

𝑇
∈ R3 has a

natural relation to elements u ∈ 𝑉
1
by

u =
𝑥 − 𝑦

√2
c1
1
+ 𝑧c1

0
−

𝑥 + 𝑦

√2
c1
−1

= (

1

√2
(𝑥 − i𝑦)

𝑧

−
1

√2
(𝑥 + i𝑦)

) = Sr ∈ 𝑉
1
.

(2)

Note that S is an unitary coordinate transformation.The rep-
resentation D1

𝑔
is directly related to the real-valued rotation

matrix U
𝑔
∈ 𝑆𝑂(3) ⊂ R3×3 byD1

𝑔
= SU

𝑔
S⊤.

Definition 1. A function f : R3
→ 𝑉

𝑗
is called a spherical

tensor field of rank 𝑗 if it transforms with respect to rotations
as

(𝑔f) (r) := D𝑗

𝑔
f (U⊤

𝑔
r) , (3)

for all 𝑔 ∈ 𝑆𝑂(3). The space of all spherical tensor fields of
rank 𝑗 is denoted byT

𝑗
.

2.1. Spherical Tensor Coupling. Now, we define a family of
bilinear forms that connect tensors of different ranks.
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Definition 2. For every 𝑗 ≥ 0, we define a family of bilinear
forms of type

∘
𝑗
: 𝑉

𝑗
1

× 𝑉
𝑗
2

→ C
2𝑗+1

, (4)
where 𝑗

1
, 𝑗

2
∈ N has to be chosen according to the triangle

inequality |𝑗
1
− 𝑗

2
| ≤ 𝑗 ≤ 𝑗

1
+ 𝑗

2
. It is defined by

(e𝑗
𝑚
)
⊤

(k ∘
𝑗
w) := ∑

𝑚=𝑚
1
+𝑚
2

⟨𝑗𝑚 | 𝑗
1
𝑚
1
, 𝑗

2
𝑚
2
⟩ V

𝑚
1

𝑤
𝑚
2

, (5)

where ⟨𝑗𝑚 | 𝑗
1
𝑚
1
, 𝑗

2
𝑚
2
⟩ are the Clebsch-Gordan coeffi-

cients.

The characterizing property of these products is that they
respect the rotations of the arguments.

Proposition 3. Let k ∈ 𝑉
𝑗
1

and w ∈ 𝑉
𝑗
2

; then, for any 𝑔 ∈

𝑆𝑂(3),
(D𝑗
1

𝑔
k) ∘

𝑗
(D𝑗
2

𝑔
w) = D𝑗

𝑔
(k ∘

𝑗
w) (6)

holds.

Proof. The components of the left-hand side look as

(e𝑗
𝑚
)
⊤

((D𝑗
1

𝑔
k) ∘

𝑗
(D𝑗
2

𝑔
w))

= ∑

𝑚=𝑚
1
+𝑚
2

𝑚


1
𝑚


2

⟨𝑗𝑚 | 𝑗
1
𝑚
1
, 𝑗

2
𝑚
2
⟩𝐷

𝑗
1

𝑚
1
𝑚


1

𝐷
𝑗
2

𝑚
2
𝑚


2

V
𝑚


1

𝑤
𝑚


2

.
(7)

First one has to insert the identity by using orthogonality
relation (B.1) with respect to 𝑚



1
and 𝑚



2
. Then, we can

use relation (C.2) and the definition of ∘
𝑗
to prove the

assertion.

Proposition 4. If 𝑗
1
+ 𝑗

2
+ 𝑗 is even, then ∘ is symmetric,

otherwise antisymmetric. The spaces 𝑉
𝑗
are closed for the

symmetric product, and for the antisymmetric product this is
not the case. Consider

𝑗 + 𝑗
1
+ 𝑗

2
𝑖𝑠 𝑒V𝑒𝑛 ⇒ k ∘

𝑗
w ∈ 𝑉

𝑗
,

𝑗 + 𝑗
1
+ 𝑗

2
𝑖𝑠 𝑜𝑑𝑑 ⇒ k ∘

𝑗
w ∈ i𝑉

𝑗
,

(8)

where k ∈ 𝑉
𝑗
1

and w ∈ 𝑉
𝑗
2

.

Proof. The proposition is proved by the symmetry properties
of the Clebsch-Gordan coefficients (B.6). To show the closure
property, consider

(e𝑗
𝑚
)
⊤

k ∘
𝑗
w

= ∑

𝑚=𝑚
1
+𝑚
2

⟨𝑗𝑚 | 𝑗
1
𝑚
1
, 𝑗

2
𝑚
2
⟩ V

𝑚
1

𝑤
𝑚
2

= ∑

𝑚=𝑚
1
+𝑚
2

(−1)
𝑚
⟨𝑗𝑚 | 𝑗

1
𝑚
1
, 𝑗

2
𝑚
2
⟩ V

−𝑚
1

𝑤
−𝑚
2

= ∑

𝑚=𝑚
1
+𝑚
2

(−1)
𝑚+𝑗+𝑗

1
+𝑗
2

× ⟨𝑗 (−𝑚) | 𝑗
1
𝑚
1
, 𝑗

2
𝑚
2
⟩ V

𝑚
1

𝑤
𝑚
2

= (−1)
𝑚+𝑗+𝑗

1
+𝑗
2(e𝑗

−𝑚
)
⊤

k ∘
𝑗
w.

(9)

Hence, we have for even 𝑗 + 𝑗
1
+ 𝑗

2
the “realness” condition

complying to 𝑉
𝑗
and for odd 𝑗 + 𝑗

1
+ 𝑗

2
the “imaginariness”

condition for i𝑉
𝑗
, which prove the statements.

We will later see that the symmetric product plays an
important role, in particular, because we can normalize it in
an special way such that it shows a more gentle behavior with
respect to the spherical harmonics.

Definition 5. For every 𝑗 ≥ 0 with |𝑗
1
− 𝑗

2
| ≤ 𝑗 ≤ 𝑗

1
+ 𝑗

2
and

even 𝑗+𝑗
1
+𝑗

2
, we define a family of symmetric bilinear forms

by

k ∙
𝑗
w :=

1

⟨𝑗0 | 𝑗
1
0, 𝑗

2
0⟩

k ∘
𝑗
w. (10)

For the special case 𝑗 = 0, the arguments have to be of the
same rank due to the triangle inequality. Actually in this case,
the symmetric product coincides with the standard inner
product

k ∙
0
w =

𝑚=𝑗

∑

𝑚=−𝑗

(−1)
𝑚
V
𝑚
𝑤
−𝑚

= w⊤
k, (11)

where 𝑗 is the rank of k and w.
The introduced product can also be used to combine

tensor fields of different rank by point-wise multiplication.

Proposition 6. Let k ∈ T
𝑗
1

and w ∈ T
𝑗
2

and 𝑗 chosen such
that |𝑗

1
− 𝑗

2
| ≤ 𝑗 ≤ 𝑗

1
+ 𝑗

2
; then,

f (r) = k (r) ∘
𝑗
w (r) (12)

is inT
𝑗
, that is, a tensor field of rank 𝑗.

In fact, there is another way to combine two tensor fields:
by convolution. The advantage of the convolution is that the
evolving product also is covariant with respect to translation;
that is, the product is covariant to 3D Euclidean motion.

Proposition 7. Let v ∈ T
𝑗
1

and w ∈ T
𝑗
2

and 𝑗 chosen such
that |𝑗

1
− 𝑗

2
| ≤ 𝑗 ≤ 𝑗

1
+ 𝑗

2
; then,

(k ∘̃
𝑗
w) (r) := ∫

R3
k (r − r) ∘

𝑗
w (r) 𝑑r (13)

is inT
𝑗
, that is, a tensor field of rank 𝑗.

Given a translation 𝜏, the following two relations hold:

(𝜏k) ∘
𝑗
(𝜏w) = 𝜏 (k ∘

𝑗
w) ,

k ∘̃
𝑗
(𝜏w) = (𝜏k) ∘̃

𝑗
w = 𝜏 (k ∘̃

𝑗
w) .

(14)

Further important properties of the products are their asso-
ciativity rules.

Proposition 8. The product ∘ is associative as

k
𝑗
1∘
ℓ
(w𝑗
2∘
𝑗
2
+𝑗
3

y𝑗3) = (k
𝑗
1∘
𝑗
1
+𝑗
2

w𝑗
2) ∘

ℓ
y𝑗3 (15)
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holds if 𝑗
1
+ 𝑗

2
+ 𝑗

3
= ℓ. And

k
𝑗
1∘
ℓ
(w𝑗
2∘
𝑗
2
−𝑗
3

y𝑗3) = (k
𝑗
1∘
𝑗
2
−𝑗
1

w𝑗
2) ∘

ℓ
y𝑗3 (16)

holds if ℓ = 𝑗
2
− (𝑗

1
+ 𝑗

3
) ≥ 0. And

k
𝑗
2∘
ℓ
(w𝑗
1∘
𝑗
1
+𝑗
3

y𝑗3) = (k
𝑗
1∘
𝑗
2
−𝑗
1

w𝑗
2) ∘

ℓ
y𝑗3 (17)

with ℓ = 𝑗
2
− (𝑗

1
+ 𝑗

3
) ≥ 0.

2.2. Spherical and Solid Harmonics. Due to their special
properties, the spherical harmonics (see, Appendix A for
definition) play the central role in spherical tensor analysis.
One of themost important ones is that eachY𝑗, interpreted as
a tensor field of rank 𝑗, is a fix-point with respect to rotations;
that is,

(𝑔Y𝑗
) (r) = D𝑗

𝑔
Y𝑗

(U⊤

𝑔
r) = Y𝑗

(r) . (18)

Consequently,

Y𝑗
(U

𝑔
r) = D𝑗

𝑔
Y𝑗

(r) . (19)

The Y𝑗 form an orthogonal and complete basis of the
functions defined on the 2-sphere. Hence, any real square-
integrable scalar field 𝑓 ∈ T

0
can be written as

𝑓 (r) =
∞

∑

𝑗=0

a𝑗(𝑟)⊤Y𝑗
(r) =

∞

∑

𝑗=0

𝑚=𝑗

∑

𝑚=−𝑗

𝑎
𝑗

𝑚 (𝑟) 𝑌
𝑗

𝑚
(r) . (20)

A band-limited spherical harmonic representation of two
images is illustrated in Figure 1.

The expansion coefficients of the rotated function
(𝑔𝑓)(r) = 𝑓(U⊤

𝑔
r) are simply D𝑗

𝑔
a𝑗(𝑟), which can be con-

cluded from the fix-point property. In the following, we
always use Racah’s normalization (also known as semi-
Schmidt normalization); that is,

⟨𝑌
𝑗

𝑚
, 𝑌

𝑗


𝑚

⟩ = ∫

𝑆
2

𝑌
𝑗

𝑚
(s) 𝑌

𝑗


𝑚
 (s) 𝑑s

=
4𝜋

2𝑗 + 1
𝛿
𝑗𝑗
𝛿
𝑚𝑚
 ,

(21)

where the integral ranges over a sphere using the standard
measure. With this, the coupling of two spherical harmonics
gives, again, a spherical harmonic

Y𝑗
1 (r) ∙

𝑗
Y𝑗
2 (r) = Y𝑗

(r) . (22)

From a computational perspective, this property can be used
to efficiently compute higher order harmonics for lower ones.

Besides the spherical harmonics, the so-called solid har-
monics, often appear in the context of harmonic analysis of
the 3D rotation group. They are the homogeneous solutions
of the Laplace-equation and are just related by R𝑗

:= 𝑟
𝑗Y𝑗,

and they are homogeneous polynomials of degree 𝑗; that is,
R𝑗

(𝜆r) = 𝜆
𝑗R𝑗

(r).

2.3. Relation to Cartesian Tensors. The correspondence of
spherical and Cartesian tensors of rank 0 is trivial. For rank
1, it is just the matrix S that connects the real-valued vector
r ∈ R3 with the spherical coordinate vector u = Sr ∈ 𝑉

1
. For

rank 2, the consideration gets more intricate. Consider a real-
valued Cartesian rank-2 tensor T ∈ R3×3 and the following
unique decomposition:

T = (

𝑡
00

𝑡
01

𝑡
02

𝑡
10

𝑡
11

𝑡
12

𝑡
20

𝑡
21

𝑡
22

) = 𝛼I + Tanti + Tsym, (23)

where 𝛼 ∈ R, Tanti is an antisymmetric matrix, and Tsym a
traceless symmetric matrix. In fact, this decomposition fol-
lows the samemanner as the spherical tensor decomposition.
A rank 0 spherical tensor corresponds to the identity matrix
in Cartesian notation, while the rank 1 spherical tensor to
a antisymmetric 3 × 3 matrix or, equivalently, to a vector.
And finally, the rank 2 spherical tensor corresponds to a
traceless, symmetric matrix. So, let us consider the spherical
decomposition. For convenience, let T𝑠

= STS⊤; then, the
components of the corresponding spherical tensors b𝑗 with
𝑗 = 0, 1, 2 are

𝑏
𝑗

𝑚
= ∑

𝑚
1
+𝑚
2
=𝑚

⟨1𝑚
1
, 1𝑚

2
| 𝑗𝑚⟩ (−1)

𝑚
2𝑇

𝑠

𝑚
1(−𝑚2)

, (24)

where b0 corresponds to 𝛼, b1 to Tanti and b2 to Tsym.
Explicitly, the relation to T is

b0 =
− (𝑡

00
+ 𝑡

11
+ 𝑡

22
)

√3
,

b1 = (

1

2
(𝑡
20

− 𝑡
02

+ i (𝑡
21

− 𝑡
12
))

i
√2

(𝑡
10

− 𝑡
01
)

1

2
(𝑡
20

− 𝑡
02

− i (𝑡
21

− 𝑡
12
))

) ,

b2 =

(
(
(
(
(
(
(

(

1

2
(𝑡
00

− 𝑡
11

+ i (𝑡
01

+ 𝑡
10
))

1

2
((𝑡

02
+ 𝑡

20
) + i (𝑡

12
+ 𝑡

21
))

−1

√6
(𝑡
00

+ 𝑡
11

− 2𝑡
22
)

1

2
(− (𝑡

02
+ 𝑡

20
) + i (𝑡

12
+ 𝑡

21
))

1

2
(𝑡
00

− 𝑡
11

− i (𝑡
01

+ 𝑡
10
))

)
)
)
)
)
)
)

)

.

(25)

The inverse of this “Cartesian to spherical”-transformation is

𝑇
𝑠

𝑚
1
𝑚
2

= ∑

𝑗=0,2

𝑚=𝑗

∑

𝑚=−𝑗

⟨1𝑚
1
, 1 (−𝑚

2
) | 𝑗𝑚⟩ (−1)

𝑚
2𝑏

𝑗

𝑚
. (26)

Note that for arbitrary ranked Cartesian tensor, the relations
are not that trivial.

3. Spherical Derivatives

This section proposes the concepts of differentiation in the
context of spherical tensor analysis. First, we will introduce
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Figure 1: A spherical harmonic decomposition of images can be seen as some kind of frequency decomposition. A band limited expansion
of a volumetric images is illustrated. We see that lower frequency components (right-hand side) are roughly representing the important
characteristics of the objects. However, higher frequency components are necessary to represent the details. For the expansion here, we use a
Fourier-like basis for representing the images in radial direction. Here, ℓ represents the order of the spherical harmonics and 𝑘 the number
of radial frequency components taken into account. The image shows an isosurface rendering together with the centered 𝑋, 𝑌, and 𝑍-slice.
The interested reader is referred to [2].

the spherical derivative operator which connects spherical
tensor fields of different ranks by differentiation. The basic
idea is simple; formally replace the coordinates r = (𝑥, 𝑦, 𝑧)

appearing within the solid harmonics R𝑗 by the gradient
operator (𝜕

𝑥
, 𝜕

𝑦
, 𝜕

𝑧
).

Proposition 9 (spherical derivatives). Let f ∈ T
ℓ
be a tensor

field. The spherical up-derivative ∇1 : T
ℓ

→ T
ℓ+1

and the
down-derivative ∇

1
: T

ℓ
→ T

ℓ−1
are defined as

∇
1f := R1

(∇) ∙
ℓ+1

f ,

∇
1
f := R1

(∇) ∙
ℓ−1

f ,
(27)

where ∇ is the gradient operator (𝜕
𝑥
, 𝜕

𝑦
, 𝜕

𝑧
).

In fact there aremuchmore rotation covariant differential
operators than the two defined previously. Given a tensor
field f , any field of the form g = R𝑗

(∇)∙
ℓ
f , which we

obtain via differentiation, is a spherical tensor field, too.

But the up- and down-derivatives are from a computational
point very attractive, because, as shown earlier, they allow an
iterative computation of higher order differentials, which is
computationally muchmore efficient than the direct way. For
further discussion on the spherical tensor derivative operator,
consider the spherical derivatives in the Fourier domain,
where they act by point-wise ∙-multiplications with a solid
harmonic i𝑘Y1

(k) = iR1
(k) = iSk where 𝑘 = |k| is the

frequency magnitude.

Proposition 10 (Fourier representation). Let f̃(k) be the
Fourier transformation of some f ∈ T

ℓ
and ∇̃ representations

of the spherical derivative in the Fourier domain that are
implicitly defined by (̃∇f) = ∇̃ f̃ ; then,

∇̃
1 f̃ (k) = iR1

(k) ∙
ℓ+1

f̃ (k) , (28)

∇̃
1
f̃ (k) = iR1

(k) ∙
ℓ−1

f̃ (k) . (29)

Proof. See [4].
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Both statements are direct consequences of the Fourier
correspondences for the ordinary partial derivatives. For
scalar fields, we can generalize this statement also for higher
orders.

Proposition 11 (multiple spherical derivatives). For 𝑛 ≥ 𝑖, he
defines ∇𝑛

𝑖
: T

0
→ T

𝑛−𝑖
by

∇
𝑛

𝑖
:= ∇

𝑖
∇
𝑛
:= ∇

1
⋅ ⋅ ⋅ ∇

1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑖-times
∇
1
⋅ ⋅ ⋅∇

1
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛-times
. (30)

In the Fourier domain, these multiple derivatives act by

(∇̃
𝑛

𝑖
𝑓) (k) = (i)𝑛+𝑖 R𝑛

𝑖
(k) 𝑓 (k) . (31)

Using this one can show that ∇𝑛
𝑖

= ∇
𝑛−𝑖

Δ
𝑖, where Δ is the

Laplace operator.

Proof. See [5].

We want to emphasize that both statements only hold for
scalar-valued fields, and generalizations to tensor-valued do
not hold in general due to the nontrivial associativity rules.

Proposition 12 (product rule). Let f ∈ T
ℓ
and ℎ ∈ T

0
; then,

one has the product rules

∇
1
(ℎf) = ∇1ℎ∙

ℓ+1
f + ℎ∇

1f ,

∇
1
(ℎf) = ∇1ℎ∙

ℓ−1
f + ℎ∇

1
f .

(32)

It is well known that convolutions commutewith differen-
tiation, and actually there are generalized commutation rules
for spherical tensor fields.

Proposition 13 (commuting property for convolutions). Let
f ∈ T

𝑘
and g ∈ T

𝑗
be arbitrary spherical tensor fields; then,

(∇
ℓf) ∙̃

𝐽
g = f ∙̃

𝐽
(∇

ℓ
g) , (33)

(∇
ℓf) ∙̃

𝐿
g = f ∙̃

𝐿
(∇

ℓg) , (34)

where 𝐽 = 𝑗 − (ℓ + 𝑘) and 𝐿 = 𝑗 + ℓ + 𝑘.

Proof. Both assertions are founded by the associativity of the
spherical product. Consider the first statement in the Fourier
domain by using (28) and then apply the associativity given
in (17) as follows:

(
̃
∇
ℓ f̃) ∙

𝐽
g̃ = (R1

∙
𝑘+ℓ

(
̃
∇
ℓ−1 f̃)) ∙

𝐽
g̃

= (
̃
∇
ℓ−1 f̃) ∙

𝐽
(R1

∙
𝑗−1

g̃)

= (
̃
∇
ℓ−1 f̃) ∙

𝑗
(∇̃

1
g̃) ,

(35)

where we abbreviated R1
= R1

(ik). A repeated application of
this proves the first assertion. For the second statement, it is
similar but using the associativity as given in (15).

This proposition shows again the importance of the
up- and down-derivatives. For general derivative operators
R𝑗

(∇)∙
ℓ
f , the previous commutations rules do not hold. The

previous convolution property is of particular importance for
the efficient covariant processing of 3D images. The major
motivation is to compute convolutions with the spherical
harmonic basis in an efficient way. Suppose that the goal is
to compute

f = (R𝑗
𝑒
−𝑟
2
/2
) ∗ 𝑔, (36)

where 𝑔 is some arbitrary scalar image. In fact, as we will
show in the next section, one can show that ∇𝑗𝑒−𝑟

2
/2

=

(−1)
𝑗R𝑗

𝑒
−𝑟
2
/2. Together with the convolution theorem, we get

f = (R𝑗
𝑒
−𝑟
2
/2
) ∗ 𝑔 = (−1)

𝑗
∇
𝑗
(𝑒

−𝑟
2
/2

∗ 𝑔) (37)

which enables us to compute the convolution by an repeated
application of the spherical derivatives, which is computa-
tionally much cheaper than a direct convolution (even by the
use of the Fast Fourier Transform).

3.1. SphericalDerivatives in Polar Representation. Toget a bet-
ter understanding of what happens during the differentiation
via spherical derivatives, we consider their properties in polar
representations.

Lemma 14. Given a spherical tensor field f𝑗 ∈ T
𝑗
whose

angular and radial component are separable such that f𝑗(r) =

Y𝑗
(r)𝑓𝑗

(𝑟), where 𝑓
𝑗

: R → C denotes the function
representing the radial component of f𝑗, then the spherical up-
and down-derivatives of f𝑗 can be computed by

(∇
1f𝑗) (r) = Y𝑗+1

(r) 𝑟𝑗 𝜕

𝜕𝑟

1

𝑟𝑗
𝑓
𝑗
(𝑟) , (38)

(∇
1
f𝑗) (r) = Y𝑗−1

(r) 1

𝑟𝑗+1

𝜕

𝜕𝑟
𝑟
𝑗+1

𝑓
𝑗
(𝑟) , (39)

respectively.

Proof. See [7].

3.2. Gauss-Laguerre Functions. Previously, we already stated
that ∇𝑗𝑒−𝑟

2
/2

= (−1)
𝑗R𝑗

𝑒
−𝑟
2
/2 holds; in fact, there is a more

general statement involving the so-called Laguerre polyno-
mials.This offers the possibility to compute convolutionswith
the evolving functions in an iterative and efficient way. We
denote by 𝐿

𝛼

𝑛
the 𝛼 associated Laguerre polynomial of order

𝑛 (F.1). We further denote by

L
𝑗

𝑛
(r) := R𝑗−𝑛

(r) 𝐿(𝑗−𝑛)+(1/2)
𝑛

(
𝑟
2

2
) (40)

the spherical tensor valued polynomials L𝑗

𝑛
∈ T

𝑗−𝑛
. These

polynomials are widely known as Laguerre Gaussian-type
functions in the field of theoretical chemistry (e.g., see [8] or
[9]). In the image processing community, these functions are
known as generic neighborhood operators [10] and are used,
for example, for key-point detection [11].



Computational and Mathematical Methods in Medicine 7

Theorem 15. The Gaussian windowed polynomials L𝑗

𝑛
(r)

𝑒
−𝑟
2
/2 can be computed iteratively in terms of ∇𝑗

𝑛
starting with

an isotropic Gaussian; namely,

L
𝑗

𝑛
(r) 𝑒−𝑟

2
/2

=
(−1)

𝑗

𝑛!2𝑛
∇
𝑗

𝑛
𝑒
−𝑟
2
/2

. (41)

Proof. See [7].

3.3. Gabor Functions. Gabor functions, that is, Gaussian-
windowed plane waves, play an important role in image
processing due to the fact that the different frequency com-
ponents of signals can be studied locally. This information is,
for example, used for tracking [12] or feature extraction [6].
Thus, it is of particular interest to provide efficient methods
to apply Gabor filters. One way is to explicitly represent a
finite number of Gabor kernels, each representing a certain
orientation of the plane-wave [13]. The problem is that the
orientation space must be discretized. However, representing
Gabor functions in terms of spherical derivatives offers a
way to compute Gabor filter responses for the whole range
of possible orientations. First, note that applying spherical
derivatives on a plane wave gives a quite neat result as

∇
𝑗
𝑒
ik⊤r

= (i)𝑗R𝑗
(k) 𝑒ik

⊤r
. (42)

Following the proof from Section 3.1, a similar result holds
for the spherical Bessel function, which constitutes the radial
part in the harmonic expansion of the plane wave as

∇
𝑗
𝑗
0
(𝑘𝑟) = (𝑘)

𝑗Y𝑗
(r) 𝑗

𝑗
(𝑘𝑟)

= (𝑘)
𝑗
B

𝑗
(r, 𝑘) .

(43)

In the following, we show that there exists a very similar
way to represent the Gaussian windowed wave in terms of the
derivatives of the Gaussian windowed Bessel functions. Let

B
0

𝑠
(r, 𝑘) := 𝑗

0
(𝑘𝑟) 𝑒

−𝑟
2
/(2𝑠) (44)

be the Gaussian windowed 0-order Bessel functions. The
parameter 𝑠 ∈ R

𝑠>0
represents the size of the Gaussian

windowwith respect to the wave.With (38) and (D.3), we can
derive the higher order Gaussian windowed Bessel functions
B𝑗

𝑠
:= (−1)

𝑗
∇
𝑗B0

𝑠
.

Theorem 16. The spherical derivatives B𝑗

𝑠
of the Gaussian

windowed 0-ordered Bessel functionsB0

𝑠
are given by

B
𝑗

𝑠
(r, 𝑘) = Y𝑗

(r) [
𝑗

∑

𝑖=0

(
𝑗

𝑖
) (

𝑟

𝑠
)

𝑗−𝑖

(𝑘)
𝑖
𝑗
𝑖
(𝑘𝑟)] 𝑒

−𝑟
2
/2𝑠

. (45)

Consider that B𝑗

𝑠→∞
= B𝑗. The Gabor wave can now be

represented by a superposition of Bessel functions B𝑗

𝑠
, each

representing a certain angular frequency; namely,

𝑒
ik𝑇r

𝑒
−𝑟
2
/2𝑠

≈ ∑

𝑗

(i)𝑗𝛼
𝑗
(𝑘)B

𝑗

𝑠
(r, 𝑘) ∙

0
Y𝑗

(k)

= ∑

𝑗

(−i)𝑗𝛼
𝑗
(𝑘)∇

𝑗
B

0

𝑠
(r, 𝑘) ∙

0
Y𝑗

(k) ,
(46)

where 𝛼
𝑗
(𝑘) ∈ R are real-valued weighting factors.

Proof. See [7].

4. Tensorial Harmonic Expansions

In most image processing applications, the data to be pro-
cessed is of scalar nature; that is, for each voxel, we observe
one single intensity value. But there are actually acquisition
techniques, where the measurement itself is already a ten-
sorial quantity. For example, in diffusion weighted magnet
resonance imaging (DW-MRI), rank 2 tensors are common.
Or, in phase contrast MRI velocity, vectors are measured.
Thus, there is a great interest to represent these measurement
in an appropriate way. In [14], we proposed to expand a
spherical tensor field f ∈ T

ℓ
of rank ℓ as follows:

f (r) =
∞

∑

𝑗=0

𝑘=ℓ

∑

𝑘=−ℓ

a𝑗
𝑘
(𝑟) ∘

ℓ
Y𝑗

(r) , (47)

where a𝑗
𝑘
(𝑟) ∈ T

𝑗+𝑘
are expansion coefficients. For ℓ = 0,

the expansion coincides with the ordinary scalar spherical
harmonic expansion. We can observe properties very similar
to the ordinary SH expansion; that is,

(𝑔f) (r) = Dℓ

𝑔
f (U⊤

𝑔
r)

=

∞

∑

𝑗=0

𝑘=ℓ

∑

𝑘=−ℓ

D𝑗+𝑘

𝑔
a𝑗
𝑘
(𝑟) ∘

ℓ
Y𝑗

(r) .
(48)

A rotation of the tensor field affects the expansion coefficients
a𝑗
𝑘
to be multiplied from the left with D𝑗+𝑘

𝑔
. So, the previous

expansion shows the same, very convenient, rotation behav-
ior like an SH expansion, which can be used, for example,
to extract invariant local descriptors in a simple way. And in
fact, the previous representation is orthogonal and complete.
By setting a𝑗

𝑘
(𝑟) = ∑

𝑚=𝑗+𝑘

𝑚=−(𝑗+𝑘)
𝑎
𝑗

𝑘𝑚
(𝑟)e𝑗+𝑘

𝑚
, we can identify the

functional basis Z𝑗

𝑘𝑚
as

f (r) =
∞

∑

𝑗=0

𝑘=ℓ

∑

𝑘=−ℓ

𝑚=𝑗+𝑘

∑

𝑚=−(𝑗+𝑘)

𝑎
𝑗

𝑘𝑚
(𝑟) e𝑗+𝑘

𝑚
∘
ℓ
Y𝑗

(r)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Z𝑗
𝑘𝑚

. (49)

Proposition 17 (tensorial harmonics). The functions Z𝑗

𝑘𝑚
:

𝑆
2

→ 𝑉
ℓ
provide a complete and orthogonal basis of the

angular part ofT
ℓ
, that is;

∫
𝑆
2

(Z𝑗

𝑘𝑚
(s))

⊤

Z𝑗


𝑘

𝑚
 (s) 𝑑s =

4𝜋

𝑁
𝑗,𝑘

𝛿
𝑗,𝑗
𝛿
𝑘,𝑘
𝛿
𝑚,𝑚
 , (50)

where

𝑁
𝑗,𝑘

=
1

2ℓ + 1
(2𝑗 + 1) (2 (𝑗 + 𝑘) + 1) . (51)

The functions Z𝑗

𝑘𝑚
are called the tensorial harmonics.
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4.1. Symmetric Tensor Fields. In this section, we discuss the
properties of expansion coefficients of specific tensor fields,
expanded in terms of tensorial harmonics. We show that
symmetries in a tensor field are simplifying the tensorial
harmonic expansion coefficients. This is similar to the ordi-
nary spherical harmonic expansion. For example, the point
symmetry 𝑓(r) = 𝑓(−r) of a scalar fields leads to vanishing
spherical harmonic coefficients for odd 𝑗. In the following, we
consider similar symmetries for tensorial harmonics.

The rotation symmetry of a spherical tensor field f ∈ T
ℓ

around the 𝑧-axis is expressed algebraically by the fact that
𝑔
𝜙
f = f for all rotation 𝑔

𝜙
around the 𝑧-axis. Such fields can

easily be obtained by averaging a general tensor field f over
all these rotations as

f
𝑠
=

1

2𝜋
∫

2𝜋

0

𝑔
𝜙
f 𝑑𝜙. (52)

It is well known that the representation D𝑗

𝑔
𝜙

of such a
rotation is diagonal; namely, 𝐷𝑗

𝑔
𝜙
,𝑚𝑚

= 𝛿

𝑚𝑚
𝑒

i𝑚𝜙. Hence, the

expansion coefficients 𝑎𝑗
𝑘𝑚

of f
𝑠
vanish for all𝑚 ̸= 0. Thus, we

can write any rotation symmetric tensor field as

f
𝑠
(r) =

∞

∑

𝑗=0

𝑘=ℓ

∑

𝑘=−ℓ

𝑎
𝑗

𝑘
(𝑟) e𝑗+𝑘

0
∘
ℓ
Y𝑗

(r) . (53)

We call such a rotation symmetric field torsion-free if
𝑔
𝑦𝑧
f
𝑠
= f

𝑠
, where 𝑔

𝑦𝑧
∈ 𝑂(3) is a reflection with respect to

the 𝑦𝑧-plane (or 𝑥𝑧-plane). The action of such a reflection
on spherical tensors is given by 𝐷

𝑗

𝑔
𝑦𝑧
,𝑚𝑚


= (−1)
𝑚
𝛿
𝑚(−𝑚


)
.

Similar to the rotational symmetry, we can obtain such fields
by averaging over the symmetry operation as

fstf =
1

2
(f
𝑠
+ 𝑔

𝑦𝑧
f
𝑠
) . (54)

Note that the mirroring operation for a spherical harmonic
is just a complex conjugation; that is, Y𝑗

(U𝑇

𝑔
𝑦𝑧

r) = Y𝑗(r). The
consequence for (53) is that all terms where the 𝑘 + ℓ are odd
vanish. The reason for that is mainly Proposition 4 because
with its help we can show that

Dℓ

𝑔
𝑦𝑧

(e𝑗+𝑘
0

∘
ℓ
Y𝑗

(U𝑇

𝑔
𝑦𝑧

r)) = (−1)
(𝑘+ℓ)

(e𝑗+𝑘
0

∘
ℓ
Y𝑗

(r)) (55)

holds.
Finally, consider the reflection symmetry with respect to

the 𝑥𝑦-plane. This symmetry is particularly important for
fields of even rank. The symmetry is algebraically expressed
by 𝑔

𝑥𝑦
f
𝑠

= f
𝑠
where 𝑔

𝑥𝑦
∈ 𝑂(3) is a reflection with

respect to the 𝑥𝑦-plane, whose action on spherical tensors
is given by 𝐷

𝑗

𝑔
𝑦𝑧
,𝑚𝑚


= (−1)
𝑗
𝛿
𝑚𝑚
 . Averaging over this

symmetry operation has the consequence that expansion
termswith odd 𝑗 are vanishing. For odd rank tensor fields, the
reflection symmetry is not imperative. But there is typically
an antisymmetry of the form 𝑔

𝑥𝑦
f
𝑠
= −f

𝑠
. This antisymmetry

lets the expansion terms vanish with even index 𝑗.

5. Applications

In the context of rotation covariant image processing, the
applications of the proposed framework are manifold. The
mathematical representation might appear unfamiliar, but
the provided tools can be used quite easily. Basically, there
are two types of operations: differentiation by spherical tensor
derivatives and multiplication by spherical tensor products.
The spherical derivatives can be used in two ways. On the one
hand, the up-derivatives can be used to “create” new tensor
fields out of existing fields by incorporating neighborhood
relations. This can be regarded as a simple and efficient way
to compute local meaningful image descriptors in a covariant
way. On the other hand, the down-derivatives can be used
to gather information from a local point neighborhood and
form a lower ranked tensor field via superposition. Due to
the tensorial nature, the information is able to interfere in a
destructive or constructive way. The spherical products are
the basic nonlinear ingredient in the framework. They can
be used to combine tensor fields in a nonlinear, covariant
manner.

Several principles in the image processing and pattern
recognition [15–17] literature are based on the following
principle: compute, in a first step, local descriptors at several
image locations, make some inference based on this knowl-
edge, and cast this information back by combining evidence
from several locations. In fact, our framework is ideally suited
to adopt this principle. First, local descriptors are densely
computed by differentiation for all image locations. Then,
the information is combined by using spherical products in
a nonlinear and nontrivial way. Finally, we use again the
spherical derivative to form neighborhood descriptors. The
descriptors are then used for object or feature detection.

In the following, we give examples of the proposed
framework in several application domains.

5.1. Implementation. For implementing the discrete spherical
derivatives, we propose to utilize central differences of 4th
order accuracy for computing the partial derivatives (see
Figure 2(b)). We observed that this scheme is a good tradeoff
between computational complexity and accuracy. We experi-
enced that the standard Laplace operator (considering a six
voxel neighborhood) is numerically very unstable (even if
double precision numbers are used!). Therefore, we propose
the usage of the scheme depicted in Figure 2(a) which
performed significantly better regarding numerical stability
in our experiments. This is illustrated in Figure 3. As an
example, we show the expansion images obtained via the
proposed schemes together with the images obtained via a
standard scheme. For comparison, we also show explicitly
computed expansion images. The example illustrates that the
ordinary Laplace operator leads to strong artifacts after a few
number of applications.

5.2. Tensor Voting. The Tensor Voting framework was orig-
inally proposed by [15] and has found several application
in low-level vision in 2D and 3D. For example, it is used
for perceptual grouping and extraction of line, curves, and
surfaces. The key idea is to make unreliable measurements
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Figure 2:The discrete differential operators we use for realizing the
discrete spherical derivative operators. On the left-hand side, the
corresponding global weights are depicted. The red dot denotes the
current image position.

more robust by incorporating neighborhood information in
a consistent and coherent manner. Following [4], the key
expression that has to be computed is

U (r) = ∫
R3

Vn(r)
(r − r)𝑚 (r) 𝑑r, (56)

whereVn
: R3

→ 𝑉
ℓ
is the voting field,𝑚 : R3

→ R a scalar
valued feature image giving evidence for the occurrence of
the feature, and n : R3

→ R3 the orientation of the feature
of interest. In the following, we restrict ourselves to axial
symmetric voting fields.Therefore, let𝑓

𝑠
be a axial symmetric

function, where the 𝑧-axis is the symmetry axis. Then, the
voting field is

Vn
(r) = (𝑔nf𝑠) (r) , (57)

where 𝑔n is a rotation such that the 𝑧-axis is mapped onto
the axis defined by the normalized vector n. In [4], we have
shown that (56) simplifies to

U (r) =
∞

∑

𝑗=0

𝑘=ℓ

∑

𝑘=−ℓ

(E𝑗+𝑘 ∘̃
ℓ
A𝑗

𝑘
) (r) , (58)

where

E𝑗 (r) := 𝑚 (r)Y𝑗
(n (r)) (59)

are combined tensor-valued evidence images and

A𝑗

𝑘
(r) := 𝑎

𝑗

𝑘
(𝑟)Y𝑗

(r) (60)

is the harmonic expansion of the voting field Vr
𝑧 steered

in 𝑧-direction. The coefficients 𝑎
𝑗

𝑘
(𝑟) can be obtained by a

projection on the tensorial harmonics

𝑎
𝑗

𝑘
(𝑟) = 𝑁

𝑗,𝑘
∫
𝑆
2

𝑟

(Z𝑗

𝑘0
(r))

⊤

Vr
𝑧 (r) 𝑑r. (61)

Due to the symmetry of Vr
𝑧 , only Z𝑗

𝑘0
are involved. Further

information concerning a practical point of view can be
found in [14].

5.3. Nonlinear Covariant Filters. In the following, we briefly
show how to design trainable rotation covariant image
filters which can be used for rotation invariant object or
landmark detection.The idea is that expansion coefficients of
a spherically expanded voting function are learned in a data
driven way. The filter is mainly based on two steps. Rotation
covariant image descriptors are densely computed in a voxel-
by-voxel manner. Then, a weighted superposition of these
image descriptors is used to form expansion coefficients of
a spherical voting function. The expansion coefficients are
formed such that each voting function votes for the presence
or absence of landmarks or objects. The weights are found
by a least square fit to a given training data set. For a fast
implementation, we propose to use voting functions based
on an expansion of spherical functions having a differential
relationship in terms of spherical derivatives. In [18, 19], we
used a spherical superposition of Gaussian windowed solid
harmonics for representing the voting function. However, we
are not restricted to them. For instance, we also can use the
spherical plane-wave expansion leading to a voting function
that is not only highly adaptable in angular direction, but
also highly adaptable in radial direction, too; see the paper
by [20]. The Fourier like voting function can be written
as

𝑉c (r) = ∫

∞

0

∞

∑

𝑗=0

V𝑗
(c, 𝑘) ∙

0
B

𝑗
(r − c, 𝑘) 𝑑𝑘, (62)

where V𝑗
(𝑘) ∈ C2𝑗+1 are the expansion coefficients of the

filter andB𝑗 are spherical Fourier basis functions known as
Bessel functions (see (43)). The filter response is a saliency
map representing the evidence for the presence or absence of
objects. The saliency map is computed by collecting all con-
tributions (votes) utilizing simple scalar valued convolutions.
The explicit expression of the filter is

H {𝑓} (r) := ∫
R3

𝑉c (r) 𝑑c

= (

∞

∑

𝑗=0

∫

∞

0

(B
𝑗
(𝑘) ∙̃

0
V𝑗

(𝑘)) 𝑑𝑘) (r)

(using (33))

= (∫

∞

0

B
0
(𝑘) ∗

∞

∑

𝑗

∇
𝑗
V𝑗

(𝑘) 𝑑𝑘) (r) .

(63)

For implementation we use a band-limited expansion (up
to order 𝑁 ∈ N) and only take a small set of frequencies
(𝑘

0
, ⋅ ⋅ ⋅ 𝑘

𝑖
⋅ ⋅ ⋅ , 𝑘

𝑖
∈ R) into account. We further make use of

Gabor waves (seeTheorem 16) to gain a filter that adapts and
votes locally. In this case, the filter simplifies to

H {𝑓} ≈ ∑

𝑖

B
0

𝑠
(𝑘

𝑖
) ∗

𝑁

∑

𝑗

∇
𝑗
V𝑗

(𝑘
𝑖
) . (64)

Trainable filters based on the Gabor waves have shown
superior performance over the standard harmonic filters [20].
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𝑗 − 𝑛
𝑛

(a) Ground truth: an image is convolved with each basis function
L

𝑗

𝑛(r)𝑒−𝑟
2
/2𝜎
2

requiring 55 convolutions!! The resulting symmetric
(central 𝑚 = 0) spherical tensor components [(L𝑗

𝑛 ∗ 𝑔)]0 = [a𝑗𝑛]0 are
shown

𝑗 − 𝑛

𝑛

(b) Differential approach using the discrete operators shown in
Figure 2. The image is initially convolved ones with the basis function
L0

0
(r)𝑒−𝑟

2
/2𝜎
2

= 𝑒
−𝑟
2
/2𝜎
2

. All further expansion coefficients are obtained
by iteratively applying the spherical up-down derivatives using the
Laplace-operator depicted in Figure 2

𝑗 − 𝑛

𝑛

(c) Differential approach using the standard Laplace operator consider-
ing only six neighbors results in strong artifacts and leads to unusable
results (lower images)

Figure 3:The theory in practice: Laguerre expansion of a volumetric image with 𝑗+𝑛 ≤ 5 and a Gaussian width of 𝜎 = 6. For the experiments
we use an image (size 144 × 224 × 256) showing the𝑇

1
-weightedMRT image of a human skull. In (a)we depict the center slice of the 3Dvolume

showing the real-valued parts (𝑚 = 0) of the expansion coefficients computed explicitly by convolution of the image with the kernel functions
([a𝑗

𝑛
]
𝑚
(x) = (𝑔 ∗ [L

𝑗

𝑛]𝑚𝑒
−𝑟
2
/2
)(x)). (b) Shows the same expansion coefficients obtained when using the proposed differential approach, with

[a𝑗
𝑛
]
𝑚
(x) = ((−1)

𝑗
/2

𝑛
𝑛!)∇

𝑗−𝑛

Δ
𝑛
(𝑔 ∗ 𝑒

−𝑟
2
/2
)(x). (c) Shows that the choice of the discrete operator has a big influence of the result.

Figure 4 shows some qualitative results of an experiment
where we detect the pores of airborne-pollen. The database
contains 3D recordings of airborne-pollen acquired via a
confocal laser scanningmicroscope. In Figure 4(a), we see the

training image. The three porates are marked by red circles.
In Figure 4(b), we exemplary show three datasets belonging
to the test set togetherwith themaximum intensity projection
of the filter response.
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5 𝜇m

(a) Training set: A 3D image of airborne-pollen recorded by a confocal
microscope

(b) Centered slices of some datasets of the test-dataset together with the
maximum intensity projection of the filter responses

Figure 4: Filter response.

5.4. Voxel-Wise Classification. Especially in the field of
biomedical imaging, the third dimension becomes more and
more important due to the fact that organism can be studied
in their natural constellation. Objects and organism can be
located in any number at any position and, much more
challenging, in any orientation. The third dimension does
not only lead to larger datasets, but also the interrelation of
neighboring intensity values becomes more complex. With
a fast voxel-wise transformation of volumetric images into
the harmonic domain, we are capable to compute rotation
invariant image descriptors in an analytical way. In [6, 7],
we used a fast Gabor transform to locally analyze images by
decomposing local image patches into basic frequency com-
ponents. For the experiments, we used confocal recordings
of Arabidopsis root tips. We exemplary aimed at detecting
differentiated cells located in the root cap. They morpholog-
ically differ from the other cells by their nonroundish shape.
For this experiment, two datasets were used: one dataset
for training and one dataset for evaluation. All cells (about
3600 in each root) were manually labeled by an expert. We
transformed the Gabor expansion coefficients into invariant
features utilizing the spherical tensor product; we combine
the expansion coefficients corresponding to the same angular
frequency, but not necessarily the same radial frequencies,
whereas

𝑐
𝑗
(𝑘

1
, 𝑘

2
) := (a𝑗 (𝑘

1
) ∙

0
a𝑗 (𝑘

2
)) , (65)

where 𝑐
𝑗
(𝑘

1
, 𝑘

2
) ∈ C are the rotation invariant image

descriptors. It is worth mentioning that the combination of
the same expansion coefficient coincides with the power-
spectrum; namely, 𝑐𝑗(𝑘) = (a𝑗(𝑘)∙

0
a𝑗(𝑘)) = ‖a𝑗(𝑘)‖2. In

Figure 5(a), we depict the center slice of the training data
together with the training samples. Based on the rotation
invariant image descriptors representing the training sam-
ples, an SVMclassifier is trained.We used the SVM to classify
test-set in a voxel-by-voxel manner (Figures 5(b) and 5(c)).
We classed each voxel into root-cap cell or non-root-cap
cell. For further details regarding the experiment, we refer to
[6, 7].

5.5. DTI Processing. Diffusion weighted magnetic resonance
imaging (DWI) plays a substantial role in neuroscience and
clinical applications. One field of interest is the investigation
of the neuronal fiber architecture located in the brain white
matter connecting different regions in the brain. The fibers
themselves cannot be recorded directly. However, the data is
usually recorded using the high angular resolution diffusion
imaging (HARDI) technique [21], a specific kind of diffusion
tensor imaging (DTI) technique. The resulting signal is an
angular dependent, volumetric image. From such an image
representation, the fiber architecture can be estimated (e.g.,
see [22]). Due to the angular dependency of HARDI signals,
spherical harmonics are a common tool for signal represen-
tation. Therefore, in the context of DTI, there exist several
applications worth considering spherical tensor algebra.

5.5.1. Tissue Classification. For the analysis of the fiber
structure, a preprocessing step that identifies the brain white
matter within the image is required. For group studies, the
parcellation of the human brain into anatomical regions is
of great interest. Preliminary results have been published in
conference papers [23, 24].

We utilize the fact that the given recordings are tensor
valued. We first transform the local measurements into the
spherical harmonic domain (e.g., see [25]). Based on these
rotation covariant image representations, we compute voxel-
wise rotation invariant image features.

This is done by first comprising the voxels surrounding
using the spherical down derivative operators. This can be
seen as some kind of Taylor expansion of the given data.Then,
we compute rotation invariant image features by computing
the power spectrum of the resulting expansion coefficients.
We finally use a random forest classifier [26] to learn the
appearance of different kinds of brain regions and tissue types
based on labeled training images. Such a parcellation might
be for example, gray brain matter, white brain matter, and
background signal. Qualitative results showing the resulting
decisions of the random forest on an unclassified image are
shown for the gray matter/white matter scenario in Figure 7.
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Figure 5: Voxel-wise classification of cells. For a voxel-wise classification, we first use a manually labeled image (a) for training a support
vector machine (SVM) based on local rotation invariant image descriptors. Then, the SVM classifier is used to detect and classify cells in
unclassified images (b). In (c) we depict an isosurface rendering of the classified root. Further details concerning the experiment can be
found in [6].

Ground truth regions
used in experiment 1

Prediction in data 1 Ground truth regions
used in experiment 2

Prediction in data 1

Figure 6:The ground truth regions that we used to train and evaluate our algorithm shown together with our algorithm’s regions prediction.
We can clearly see that our predictions are much more consistent with the data.

Figure 7: Isosurface showing the predictions for dataset 3 using GND and a random forest (RF) classifier. The classifier can distinguish
between background, brain white matter (green), and gray matter (red).
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Background Gray matter White matter

Figure 8: The confidence of the classifier represents the probability
that a certain voxel belongs either to the background class, gray
matter class, or the white matter class.The probability is represented
by the intensity. A final decision is made by decision by majority (as
shown in Figure 7).

Furthermore, the votes for a certain class can be used as a kind
of evidence value in further processing steps. Examples for
the three classes background, white matter, and gray matter
are depicted in Figure 8.

In Figures 9 and 10, we show the probability map of
different kinds of brain regions that have been detectedwithin
unlabeled test images via a random forest classifier. Figure 6
shows final predictions for one of the test sets.

5.5.2. Unique Point-Landmark Detection. Group studies
often require the coregistration of images or partial image
structures of different individuals. In such applications, the
detection of characteristic landmarks is often an indispens-
able prerequisite.

Similar to [27], where features are used to find corre-
spondences in scalar valued MR contrasts, we used tensor-
based features in [28] offering a unique signature of a voxel’s
surrounding in tensor-valued HARDI signals. Thanks to
these features, a large number of corresponding points can
be reliably found in images of different individuals using a
linear classifier. The features are computed in three steps. (1)
We first entirely fit the HARDI signal to spherical harmonics.
(2) The resulting fields are then efficiently expanded in terms
of tensorial harmonics (Section 4) via tensor derivatives (see
Section 3). (3)We obtain new covariant feature images which
we use to form a trainable filter (see Section 5.3). The filter is
used for the landmark detection task.

Second-order features which are sufficient formost appli-
cations are not providing enough information to solve the
detection task in a human brain; they are invariant against
reflection about an axis. Hence, they cannot distinguish the
left and the right hemisphere. It is known that the spherical
triple-correlation [29] yields complete rotation invariant fea-
tures. Hence, theymust solve this issue. Based on this idea we
designednew3rd order rotation invariant differential features
fitting into our framework that are variant with respect to
reflections about an axis. These features are additionally

included in the harmonic filter framework.The triple product
is given by

((b𝑗1
𝑎
∘
𝑗
b𝑗2
𝑎
) ∘

𝑗
4

b𝑗3
𝑎
) , 𝑗

1
+ 𝑗

2
+ 𝑗

3
+ 𝑗

4
is odd,

𝑗
4
, 𝑗 ≤ 𝐿,

(66)

where b𝑗1
𝑎

∈ C2𝑗
1
+1, b𝑗2

𝑎
∈ C2𝑗

2
+1, b𝑗3

𝑎
∈ C2𝑗

3
+1 are the local

tensorial harmonics expansion coefficients. A proof can be
found in [28].

The resulting filter has shown very promising results on a
training set of 7 and a test set of 14 images. For the experiment,
we placed about 20000 landmarks within the brain gray and
white matter in an equidistant manner. For each dataset,
the computation of the features and the detection of of all
landmarks took about 5 minutes. We show some detection
results in Figures 11, 12, 13, and 14.

Appendices

A. Spherical Harmonic Functions

The Schmidt seminormalized spherical harmonics 𝑌
𝑗

𝑚
:

𝑆
2
→ C are defined by

𝑌
𝑗

𝑚
(r) := √

(j − 𝑚)!

(𝑗 + 𝑚)!
𝑃
𝑚

𝑗
(cos 𝜃) 𝑒i𝑚𝜙, (A.1)

where 𝑃
𝑚

𝑗
are the with 𝑚 associated Legendre polynomials

of order 𝑗 [30]. The spherical harmonics build a complete
orthogonal basis for functions on the 2-sphere, whereas

⟨𝑌
𝑗

𝑚
, 𝑌

𝑗


𝑚

⟩ =

𝜋4

(2𝑗 + 1)
𝛿
𝑗,𝑗
𝛿
𝑚,𝑚
 . (A.2)

B. Clebsch-Gordan Coefficients
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Figure 9: Heat maps representing the probability for all regions used in an experiment (continued in Figure 10).

Special values
⟨ℓ𝑚 | (ℓ − 𝜆) (𝑚 − 𝜇) , 𝜆𝜇⟩

= (
ℓ + 𝑚

𝜆 + 𝜇
)

1/2

(
ℓ − 𝑚

𝜆 − 𝜇
)

1/2

(
2ℓ

2𝜆
)

−1/2

,

⟨ℓ𝑚 | (ℓ + 𝜆) (𝑚 − 𝜇) , 𝜆𝜇⟩

= (−1)
𝜆+𝜇

(
ℓ + 𝜆 − 𝑚 + 𝜇

𝜆 + 𝜇
)

1/2

× (
ℓ + 𝜆 + 𝑚 − 𝜇

𝜆 − 𝜇
)

1/2

(
2ℓ + 2𝜆 + 1

2𝜆
)

−1/2

.

(B.5)

Symmetry
⟨𝑗𝑚 | 𝑗

1
𝑚
1
, 𝑗

2
𝑚
2
⟩ = ⟨𝑗

1
𝑚
1
, 𝑗

2
𝑚
2
| 𝑗𝑚⟩ ,

⟨𝑗𝑚 | 𝑗
1
𝑚
1
, 𝑗

2
𝑚
2
⟩ = (−1)

𝑗+𝑗
1
+𝑗
2 ⟨𝑗𝑚 | 𝑗

2
𝑚
2
, 𝑗

1
𝑚
1
⟩ ,

⟨𝑗𝑚 | 𝑗
1
𝑚
1
, 𝑗

2
𝑚
2
⟩

= (−1)
𝑗+𝑗
1
+𝑗
2 ⟨𝑗 (−𝑚) | 𝑗

1
(−𝑚

1
) , 𝑗

2
(−𝑚

2
)⟩ ,

⟨𝑗𝑚 | 𝑗
1
𝑚
1
, 𝑗

2
𝑚
2
⟩

= √
2𝑗 + 1

2𝑗
2
+ 1

(−1)
𝑗
1
+𝑚
1 ⟨𝑗

2
𝑚
2
| 𝑗𝑚, 𝑗

1
(−𝑚

1
)⟩ .

(B.6)

C. Wigner D-Matrix

The components of Dℓ

𝑔
are written 𝐷

ℓ

𝑚𝑛
. They are called the

Wigner D-matrix. In Euler angles 𝜙, 𝜃, 𝜓 in ZYZ-convention,
we have

𝐷
ℓ

𝑚𝑛
(𝜙, 𝜃, 𝜓) = 𝑒

i𝑚𝜙
𝑑
ℓ

𝑚𝑛
(𝜃) 𝑒

i𝑛𝜓
, (C.1)
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Figure 10: Heat maps representing the probability for all regions used an experiment (starting in Figure 9).

where 𝑑
ℓ

𝑚𝑛
(𝜃) is the Wigner d-matrix which is real-valued.

Relation to the Clebsch-Gordan coefficients:
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D. Spherical Bessel Functions

The spherical Bessel functions 𝑗
𝑗

: R
≥0

→ R are
related to the Bessel functions of the kind 𝐽] (e.g., see [30])

by 𝑗
𝑗
(𝑟) := √𝜋/2𝑟𝐽

𝑗+1/2
(𝑟) and are represented by the ex-

pansion

𝑗
𝑗
(𝑟) = 𝑟

𝑗

∞

∑

𝑚=0

(−1)
𝑚

2𝑚𝑚! (2 (𝑗 + 𝑚) + 1)!!
𝑟
2𝑚

, (D.1)

where

∫

∞

0

𝑗
𝑗
(𝑘𝑟) 𝑗

𝑗
(𝑘


𝑟) 𝑟

2
𝑑𝑟 =

𝜋

2𝑘2
𝛿 (𝑘 − 𝑘


) . (D.2)

For the spherical Bessel functions, we have the following
differential relations [30]:

𝜕

𝜕𝑟
[𝑟

−]
𝑗]] = −𝑟

−]
𝑗]+1, (D.3)

𝜕

𝜕𝑟
[𝑟

]+1
𝑗]] = 𝑟

]+1
𝑗]−1. (D.4)
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Figure 11: Differently weighted linear combinations of the feature images lead to different detection results.
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Figure 12: Differently weighted linear combinations of the feature images lead to different detection results.
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Figure 13: Differently weighted linear combinations of the feature images lead to different detection results.
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Figure 14: Differently weighted linear combinations of the feature images lead to different detection results.
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The Hankel Transform [31] (also known as Fourier-Bessel
transform) of order 𝑗 in terms of the spherical Bessel
functions is given by

𝛼
𝑗
(𝑘) = ∫

∞

0

𝑓 (𝑟) 𝑗
𝑗
(𝑘𝑟) 𝑟

2
𝑑𝑟, (D.5)

and its corresponding inverse transformation is given by

𝑓 (𝑟) =
2

𝜋
∫

∞

0

𝛼
𝑗
(𝑘) 𝑗

𝑗
(𝑟𝑘) 𝑘

2
𝑑𝑘, (D.6)

which both are directly a result of (D.2).

E. Plane Wave

Using the addition theorem of the spherical harmonics, we
can express the spherical expansion of the plane wave (e.g.,
see [3, page 136]) in terms of the tensor product ∙

0
leading to

𝑒
ik𝑇r

= ∑

𝑗

(i)𝑗 (2𝑗 + 1) 𝑗
𝑗
(𝑘𝑟)Y𝑗

(r) ∙
0
Y𝑗

(k) , (E.1)

where 𝑃
𝑗
are the Legendre polynomials [30] of order 𝑗 and

Y𝑗
= (𝑌

𝑗

−𝑗
, . . . , 𝑌

𝑗

𝑗
)
𝑇 the semi-Schmidt normalized spherical

harmonics written as vector.

F. Associated Laguerre Polynomials

The associated Laguerre polynomials [30] are defined by

𝐿
𝑘

𝑛
(𝑥) =

𝑛

∑

𝑖=0

(−1)
𝑖
(
𝑛 + 𝑘

𝑛 − 𝑖
)

𝑥
𝑖

𝑖!
. (F.1)

The following 3-point-rule [30] is used in this work:

𝑛𝐿
𝑘

𝑛
(𝑥) = (𝑛 + 𝑘) 𝐿

𝑘

𝑛−1
(𝑥) − 𝑥𝐿

𝑘+1

𝑛−1
(𝑥) . (F.2)

We further need the the following differential equation [30]:
1

𝑚!

𝑑
𝑚

𝑑𝑥𝑚
𝑥
𝑘
𝐿
𝑘

𝑛
(𝑥) = (

𝑛 + 𝑘

𝑚
)𝑥

(𝑘−𝑚)
𝐿
(𝑘−𝑚)

𝑛
(𝑥) . (F.3)

The polynomials 𝐿𝑘
𝑛
and 𝐿

𝑘

𝑛
 are orthogonal over [0,∞) with

respect to the weighting function 𝑥
𝑘
𝑒
−𝑥 as

∫

∞

0

𝑥
𝑘
𝑒
−𝑥
𝐿
𝑘

𝑛
(𝑥) 𝐿

𝑘

𝑛
 (𝑥) 𝑑𝑥 =

Γ (𝑛 + 𝑘 + 1)

𝑛!
𝛿
𝑛,𝑛
 . (F.4)

For positive integers 𝑛, we have the following relation between
the Gamma function and the double factorial [32, 33]:

Γ (𝑛 +
1

2
) =

(2𝑛 − 1)!!

2𝑛
√𝜋. (F.5)

Acknowledgments

M. Reisert and H. Skibbe are indebted to the Baden-
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