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This paper discusses mathematical and statistical aspects in analysis methods applied to microarray gene expressions. We focus on
pattern recognition to extract informative features embedded in the data for prediction of phenotypes. It has been pointed out that
there are severely difficult problems due to the unbalance in the number of observed genes compared with the number of observed
subjects. We make a reanalysis of microarray gene expression published data to detect many other gene sets with almost the same
performance. We conclude in the current stage that it is not possible to extract only informative genes with high performance in
the all observed genes. We investigate the reason why this difficulty still exists even though there are actively proposed analysis
methods and learning algorithms in statistical machine learning approaches. We focus on the mutual coherence or the absolute
value of the Pearson correlations between two genes and describe the distributions of the correlation for the selected set of genes
and the total set. We show that the problem of finding informative genes in high dimensional data is ill-posed and that the difficulty
is closely related with the mutual coherence.

1. Introduction

The Human Genome Project [1, 2] has driven genome tech-
nology forward to exhaustive observation.The accumulation
of genome knowledge leads us to study gene and protein
expressions to elucidate the functions of genes and the inter-
action among genes. We overview the progress of microarray
technology for gene expressions and the analysis methods
based on gene expression towards good prediction for phe-
notypes. Analysis of gene expressions has been rapidly
developed and enhanced by microarray technology. In the
current stage, this progress enables us to observe all the gene
expressions of subjects in an exhaustive manner. It is opening
an area of bioinformatics to discover the relation of pheno-
types with gene expressions, where phenotypes imply degrees
and stages of pathological response, treatment effect and
prognosis of patients. We anticipated that a breakthrough in
medical and clinical science will lead to the discovery of key
understandings which elucidate the associations between
phenotypes and gene expressions. For this, the machine

learning approach is successfully exploited including sup-
port vector machine, boosting learning algorithm, and the
Bayesian network.

However there exists a difficult problem in analyses for
gene expression data in which the number of genes is much
more than that of samples. Such an extreme unbalance
between the data dimension and sample size is a typical
characteristic in genomics and omics data; this tendency will
become more apparent on account of new technology in the
near future. Appropriate methods for solving the problem are
urgently required; however, there are severe difficulties with
attaining a comprehensive understanding of the phenotypes
based on the set of exhaustive gene expressions. We face
many false positive genes sinking true positive genes in
the prediction, which creates an impediment to building
individualized medicines. There are a vast number of pro-
posals with complex procedures to challenge the difficult
problem of extracting robust and exhaustive information
from gene expressions. Sparse type of feature selection is one
example; it is considered to avoid overfitting and obtaining
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an interpretable model for gene expression data. In the
regression context, Tibshirani [3] proposed Lasso which
achieved feature selection by shrinking some coefficients to
exactly zero. In the image processing area, the sparse model
is also considered for redundant representation of data by
Donoho and Elad [4] and Candès et al. [5].

The current status for prediction performance has
attained a constant level; however, there are still unsolved
problems in the prediction in which the observed number of
genes is extremely larger than that of the subjects.This causes
difficulties in which superfluous discovered genes arise the
expressions which have weak power for prediction. As a
result, almost all microarray data analysis is not completely
confirmed as the biological replication which is discussed in
Allison et al. [6].

We address themicroarray data analysis discussed in van’t
Veer et al. [7], in which a set of 70 genes is selected for pre-
diction for prognosis in breast cancer patients as informative
biomarkers.The result helps to build the prediction kit named
“MammaPrint” which was approved by the FDA in 2007. We
make a reanalysis of the data and discuss how surprisingly
many other gene sets show almost the same prediction
performance as the gene set published. Thus, their gene set
does not uniquely show a reasonable power of prediction;
so we suggest that it is impossible to build up a universal
prediction rule by efficient selection of genes. In particular
the ranking procedure according to association measure to
the phenotype is very fragile for data partition. We discuss
the statistical reason why the data analysis of gene expression
is involved with such difficulties of multiple solutions for
the problem. We calculate the value of mutualcoherence for
genes in MammaPrint and show the essential difficulty of
determining informative genes among huge number of genes
used in the data analysis.

This paper is organized as follows. In Section 2, we
describe the pattern recognition of gene expression and over-
view the current proposed methods. In Section 3, we point
out the current difficulty in gene expression using a real
data set. Finally, we discuss the results and future works in
Section 4.

2. Pattern Recognition from Gene Expressions

In this section, we overview the pattern recognition of gene
expression. First we mention a DNA microarray technique
which is the widely used method to measure millions of gene
expressions. Then we present the current methods for gene
selection using microarray.

2.1. DNA Microarray. Microarray has become a widely used
technology in a variety of areas. Microarray measures the
amount of mRNA or gene expression. There are two major
technologies available for gene expressionmeasurement. One
is GeneChip system provided by Affymetrix Inc. GeneChip
uses prefabricated short lengths of oligonucleotide.The other
is cDNAarraywhichwas originally developed by Schena et al.
[9]. We briefly mention both technologies.

GeneChip uses a pair of short length oligonucleotides
attached to a solid surface, such as glass, plastic or silicon.The

short pair of oligonucleotides is called the probe pair. Each
probe pair is composed of a perfect match (PM) probe and
a mismatch (MM) probe. PM is a section of the mRNA of
interest, and MM is created by changing the middle (13th)
base of the PM with the intention of measuring nonspecific
binding. mRNA samples are collected from subjects such
as cancer patients then labeled with fluorescence dye. If the
short oligonucleotide is matched with the mRNA sample, the
labeled mRNA sample is hybridized to a spot of microarray.
If the labeled mRNA and the probe match perfectly, they
bind strongly otherwise they bindweakly.Thosewithweak or
nonspecific binding are washed out by a washing buffer; then
only strongly bound mRNA samples are measured by a scan-
ner. Scanned measurements need further processing before
analysis such as outlier detection, background subtraction,
and normalization. These processes are called preprocessing.

In the early stage of microarray, the quality of microarray
measurements contained a lot of variance. Therefore, pre-
processing was a very active research area. Affymetrix rec-
ommended the use of both PM and MM probes to subtract
nonspecific binding and implement MASS algorithm to
their software; however, Irizarry et al. [10] and Naef et al.
[11] pointed out that the normalization model considering
MM captures nonspecific effect more than reality. Currently
robust multichip average (RMA) which is introduced by
Irizarry et al. [10] is also widely used.

cDNA array uses glass slides to attach short oligonu-
cleotides probes. cDNA array uses inkjet printing technology.
GeneChip uses one color fluorescent dye, on the other hand,
cDNA array utilizes two different color fluorescent dyes. One
of the colors is for controlling mRNA, and the other color is
for treatment of mRNA. Both samples are hybridized on the
same array. The scanner detects both fluorescent dyes sepa-
rately. Data processing is slightly different from GeneChip.
As cDNA uses two fluorescent dyes, scanned data is normally
treated as ratio data of treatment over control.

Microarray technology has improved in the last decades
including reduction of the variance; normalization proce-
dures donot have as great an effect as before. Research interest
has moved to areas such as data analysis finding subclass or
predicting the subclass.

2.2. Review for Prediction via Microarray. The initial ap-
proach employed for subclass discovery was hierarchical
clustering analysis. Golub et al. [12] showed the result of
clustering for leukemia data using microarray. In their result,
subclasses of leukemia were well clustered by gene expression
pattern. This result was hailed as a new dawn in the cancer
classification problem.

Breast cancer is one of the most used cancers for the gene
expression classification problem. Breast cancer treatment
decisions are based largely on clinicopathological criteria
such as tumor size, histological grade, and lymph node
metastatsis; however, van’t Veer et al. [7] pointed that the
majority of patients received unnecessary chemotherapy and
that there is a need to find a better criteria who benefits from
chemotherapy.

van’t Veer et al. [7] proposed 70 genes to predict patient
outcome as first multigene signatures in breast cancer. 70
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Table 1: A taxonomy of feature selection techniques summarized by Saeys et al. [8]. These major feature selections are addressed. Each type
has a subcategory. Advantages, disadvantages, and example methods are shown.

Model search Advantages Disadvantages Examples

Univariate

Filter

Fast
Scalable
Independent of the classifier

Ignores feature dependencies
Ignores interaction with the classifier

𝜒
2

Euclidean distance
t-test
Information gain

Multivariate
Models feature dependencies
Independent of the classifier
Better computational complexity than
wrapper methods

Slower than univariate techniques
Less scalable than univariate
techniques
Ignores interaction with the classifier

Correlation-based feature selection
Markov blanket filter
Fast correlation-based feature selection

Deterministic

Wrapper

Simple
Interacts with the classifier
Models feature dependencies
Less computationally intensive than
randomized methods

Risk of overfitting
More prone than randomized
algorithms to getting stuck in a local
optimum
Classifier dependent selection

Sequential forward selection
Sequential backward selection

Randomized

Less prone to local optima
Interacts with the classifier
Models feature dependencies

Computationally intensive
Classifier dependent selection
Higher risk of overfitting than
deterministic algorithms

Simulated annealing
Randomized hill climbing
Genetic algorithms
Estimation of distribution algorithms

Embedded

Interacts with the classifier
Better computational complexity than
wrapper methods
Models feature dependencies

Classifier dependent selection
Decision trees
Weighted naive Bayes
RFE-SVM

genes were decided using 78 patients’ tumor samples. In
brief, they selected 5000 significant expressed genes from
25,000 genes onmicroarray; then coefficient correlation with
outcome was calculated for each class. Genes were sorted by
correlation coefficient and further optimized from the top
ranked gene with sequentially adding from a subset of five
genes.The top 70 geneswere proposed as outcome predictors.
Paik et al. [13] proposed 21multigene signatures based on RT-
PCR results. These two multigene prognostic signatures are
available as clinical test named MammaPrint and Oncotype
DX. FDA cleared the MammaPrint test in 2007 and it is cur-
rently being tested in the Microarray In Node-negative and
1–3 positive lymph-node Disease may Avoid ChemoTherapy
(MINDACT) for further assessment which is described by
Cardoso et al. [14].

Besides these two multigene prognostic signatures, dif-
ferent multigenes were selected as prognostic signatures. Fan
et al. [15] discussed a different set of multigene signatures
in the breast cancer prognostic classification studies. Those
signatures show little overlap; however, they still showed
similar classification power. Fan et al. [15] suggested that these
signatures are probably tracking a common set of biological
phenotypes. Considering thousands andmillions of genes on
microarray, multiple useful signature sets are not difficult to

imagine; however, finding a stable and informative gene with
high classification accuracy is of interest.

2.3. Feature Selection. Reduction of dimension size is neces-
sary as superfluous features can cause overfitting and inter-
pretation of classification model becomes difficult. Reducing
dimension size while keeping relevant features is important.
There are some feature selection methods proposed. Saeys
et al. [8] provided a taxonomy of feature selection methods
and discussed their use, advantages, and disadvantages. They
mentioned the objectives of feature selection (a) to avoid
overfitting and improve model performance, that is, predic-
tion performance in the case of supervised classification and
better cluster detection in the case of clustering, (b) to provide
faster andmore cost-effectivemodels, and (c) to gain a deeper
insight into the underlying processes that generated the data.
Table 1 provides their taxonomy of feature selectionmethods.
In the context of classification, feature selection methods
are organized into three categories: filter methods, wrapper
methods, and embeddedmethods. Feature selectionmethods
are categorized depending on how they are combined with
the construction of a classification model.

Filter methods calculate statistics such as t-statistics
then filter out those which do not meet the threshold
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value. Advantages of filter methods are easy implementation,
computational simplicity, and speed. Filter methods are
independent of classification methods; therefore, different
classifiers can be used. Two of the disadvantages of filter
methods are that they ignore the interaction with the clas-
sification model and most of the proposed methods are
univariate.

Whereas filter techniques treat the problem of finding
a good feature subset independently of the model selec-
tion step, wrapper methods embed the model hypothesis
search within the feature subset search such as sequential
backward selection [16]. Wrapper methods search all feature
subsets, the feature subset space grows exponentially with
the number of features. One advantage of wrapper methods
is the interaction between feature subset search and model
selection. Computational burden is one of the disadvantages
of this approach, especially if building the classifier has a high
computational cost.

The third class of feature selection is embedded tech-
niques. Like the wrapper methods, embedded techniques
search for an optimal subset of features with classifier
construction. For example, SVM-RFE proposed by Guyon
et al. [17]. Thus, embedded approaches are specific to a given
learning algorithm. The difference from wrapper methods
is that embedded techniques are guided by the learning
process. Whereas wrapper methods search all possible com-
binations of gene sets, embedded techniques search for the
combination based on a criteria. This enables reduction in
computational burden.

Besides thesemethods, the idea of sparsenesswas recently
introduced in some feature selectionmethods. One approach
is to use penalties in the regression context. Tibshirani [3]
proposed Lasso which uses 𝐿

1
norm penalties. The combi-

nation of 𝐿
1
penalty and 𝐿

2
penalty is called elastic net [18].

These methods are focusing on reducing features to avoiding
overfitting and better interpretability as biologists expect to
obtain biological insight from selected features.

However, these sparseness ideas do not take into account
multiple solutions in one data set. When the data dimension
is thousands ormillions, there aremultiple possible solutions.
Sorting genes based on some criteria; then selecting a subset
from the top is not always the best selection. We elaborate
multiple solutions in the following section and give some idea
of how to select the optimum solution. Here, we refer to an
optimal solution as a prediction rule with high classification
accuracy for various data sets.

3. Multiple Solutions for Prediction Rules

The existence of multiple solutions for prediction of disease
status based on breast cancer data [7] was shown by Ein-Dor
et al. [19], where they suggest three reasons for this problem.
The first is that there are many genes correlated with disease
status; the second one is that the differences of the correlation
among the genes are very small; the last one is that the value
of the correlation is very sensitive to the sample used for the
calculation of the correlation. In the paper, they demonstrate
gene ranking based on the correlation and show that there
exist many equally predictive gene sets.

In this section, we investigate the existence of multiple
solutions from different viewpoints. At first, to check the
variability of prediction accuracy based on different statistical
methods, we apply the van’t Veermethod [7], the Fisher linear
discriminant analysis [20], AdaBoost [21], and AUCBoost
[22]. The last two methods are called boosting in machine
learning community, where genes are nonlinearly combined
to predict the disease status. Second, we apply hierarchal clus-
tering to examine the heterogeneity of gene expression pat-
terns. Sørlie et al. [23] showed there exist subtypes of breast
cancers, for which the patterns of gene expression are clearly
different, and the disease statuses are also different in accor-
dance with them. Ein-Dor et al. [19] suggests that the hetero-
geneity of the subtypes is one reason why there are so many
solutions for the prediction or large fluctuations of genes
selected for the predictions. Hence, we calculate Biological
Homogeneity Index (BHI) to see the clustering performance
for various gene sets and examine the existence of the
subtypes. Finally, we consider the mutualcoherence for the
breast cancer data and discuss the relation to the multiple
solutions.

The breast cancer data consists of the expression data of
25000 genes and 97 cancer patients. After a filtering proce-
dure, 5420 genes are identified to be significantly regulated,
and we focused on this filtered data. The patients are divided
into a training sample (78 patients) and a test sample (19
patients) in the same way as the original paper [7]. Here, we
consider classical methods and boosting methods to predict
whether the patient has good prognosis (free of disease after
initial diagnosis at least 5 years) or has bad prognosis (distant
metastaseswithin 5 years).Theprediction rule is generated by
the training sample, and we measure the prediction accuracy
based on the test sample.

3.1. Classification. We briefly introduce the statistical meth-
ods used for the prediction of the disease status. The first
two methods are linear discriminant function, where the
genes are linearly combined to classify the patients into a
good prognosis group or a bad prognosis group. The last two
ones are boosting methods, where the genes are nonlinearly
combined to generate the discriminant functions.

3.1.1. The van’t Veer Method. Let 𝑦 be a class label indicating
disease status such as 𝑦 = −1 (good prognosis) and 𝑦 = 1

(metastases), and let x(=(𝑥
1
, . . . , 𝑥

𝑝
)
𝑇
) be a 𝑝-dimensional

covariate such as gene expression. We denote the samples of
𝑦 = −1 and 𝑦 = 1 as {x−

𝑖
: 𝑖 = 1, . . . , 𝑛

−
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𝑗
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+
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Then van’t Veer et al. [7] proposed a discriminant function
𝐹(x) based on the correlation to the average good prognosis
profile above, which is given as
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where
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𝑝
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𝑘
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If the value of 𝐹(x) is smaller than a predefined threshold
value, then the patient is judged to have good prognosis (𝑦 =
−1), otherwise to have metastases (𝑦 = 1). This method is
called one-class classification, where it focuses on only one-
class label information to predict the disease status 𝑦. This
idea is also employed in machine learning community. See
Yousef et al. [24] and Gardner et al. [25] for applications in
biology and medicine.

3.1.2. DLDA. We consider Fisher’s linear discriminant analy-
sis [20], which is widely used in many applications. Suppose
that x is distributed as𝑁(𝜇

−
,Σ
−
) for 𝑦 = −1 and as𝑁(𝜇

+
,Σ
+
)

for 𝑦 = 1. Then, if Σ
−
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+
= Σ, the estimated log-likelihood

ratio is given as
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where �̂�
+
, �̂�
−
and Σ̂ are the samplemeans for𝑦 ∈ {−1, 1} and a

total sample variance, respectively. For simplicity, we take the
diagonal part of Σ̂ (Diagonal Linear Discriminant Analysis)
and predict the disease status based on the value of the log-
likelihood ratio above. This modification is often used in a
situation where 𝑝 is much larger than 𝑛 (= 𝑛

−
+ 𝑛
+
). In that

case, the inverse of Σ̂ cannot be calculated.

3.1.3. AdaBoost. We introduce a famous boosting method in
machine learning community. The key concept of boosting
is to construct a powerful discriminant function 𝐹(x) by
combining variousweak classifiers𝑓(x) [26].We employ a set
F of decision stumps as a dictionary of weak classifiers. Here
the decision stump for the 𝑘th gene expression 𝑥

𝑘
is defined

as a simple step functions such as

𝑓
𝑘
(x) = {1 if 𝑥

𝑘
≥ 𝑏
𝑘

−1 otherwise,
(5)

where 𝑏
𝑘
is a threshold value. Accordingly, it is known that

𝑓
𝑘
(x) is the simplest classifier in the sense that 𝑓

𝑘
(x) neglects

all other information of gene expression patterns than that
of one gene 𝑥

𝑘
. However, by changing the value of 𝑏

𝑘
for all

genes (𝑘 = 1, . . . , 𝑝), we have F that contains exhaustive
information of gene expression patterns. We attempt to
build a good discriminant function 𝐹 by combining decision
stumps inF.

The typical one is AdaBoost proposed by Schapire [21],
which is designed to minimize the exponential loss for a
discriminant function 𝐹 as
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1

𝑛

𝑛

∑

𝑖=1

exp {−𝑦
𝑖
𝐹 (x
𝑖
)} , (6)

where the entire data set is given as {(x
𝑖
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𝑖
) | 𝑖 = 1, . . . , 𝑛}.The

exponential loss is sequentially minimized by the following
algorithm.
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and 𝐼 is the indicator function,
(b) calculate the coefficient as
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(c) update the weight as
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(3) output the final function as 𝐹(x) = ∑𝑇
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Hence, we can see that the exponential loss is sequentially
minimized in the algorithm. It is easily shown that

𝜖
𝑡+1
(𝑓
𝑡
) =

1

2
. (16)

That is, the weak classifier 𝑓
𝑡
chosen at the step 𝑡 is the worst

element in F in the sense of the weighted error rate in the
step 𝑡 + 1.

3.1.4. AUCBoost with Natural Cubic Splines. The area under
the ROCcurve (AUC) is widely used tomeasure classification
accuracy [27]. This criterion consists of the false positive
rate and true positive rate, so it evaluates them separately in
contrast to the commonly used error rate.The empirical AUC
based on the samples {x−

𝑖
: 𝑖 = 1, . . . , 𝑛

−
} and {x+

𝑗
: 𝑗 = 1, . . . ,

𝑛
+
} is given as
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where 𝐻(𝑧) is the Heaviside function: 𝐻(𝑧) = 1 if 𝑧 ≥ 0

and H(𝑧) = 0 otherwise. To avoid the difficulty to maximize
the nondifferential function above, an approximate AUC is
considered by Komori [28] as
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where 𝐻
𝜎
(𝑧) = Φ(𝑧/𝜎), with Φ being the standard normal

distribution function. A smaller scale parameter 𝜎 means
a better approximation of the Heaviside function 𝐻(𝑧).
Based on this approximation, a boosting method for the
maximization of AUC as well as the partial AUC is proposed
by Komori and Eguchi [22], in which they consider the
following objective function:

AUC
𝜎,𝜆
(𝐹) =

1

𝑛
−
𝑛
+

𝑛
−

∑

𝑖=1

𝑛
+

∑

𝑗=1

𝐻
𝜎
(𝐹 (x+
𝑗
) − 𝐹 (x−

𝑖
))

− 𝜆

𝑝

∑

𝑘=1

∫ {𝐹


𝑘
(𝑥
𝑘
)}
2

𝑑𝑥
𝑘
,

(19)

where 𝐹
𝑘
(𝑥
𝑘
) is the second derivative of the 𝑘th component

of 𝐹(x) and 𝜆 is a smoothing parameter that controls the
smoothness of 𝐹(x). Here, the set of weak classifiers is given
as

F = {𝑓 (x) =
𝑁
𝑘,𝑙
(𝑥
𝑘
)

𝑍
𝑘,𝑙

| 𝑘 = 1, 2, . . . , 𝑝, 𝑙 = 1, 2, . . . , 𝑚
𝑘
} ,

(20)

where 𝑁
𝑘,𝑙

is a basis function for representing natural cubic
splines and 𝑍

𝑘,𝑙
is a standardization factor. Then the relation-

ship

max
𝜎,𝜆,𝐹

AUC
𝜎,𝜆
(𝐹) = max

𝜆,𝐹

AUC
1,𝜆
(𝐹) (21)

allows us to fix 𝜎 = 1 without loss of generality and have the
following algorithm.

(1) Start with 𝐹
0
(x) = 0.

(2) For 𝑡 = 1, . . . , 𝑇

(a) update 𝛽
𝑡−1
(𝑓) to 𝛽

𝑡
(𝑓) with a one-step

Newton-Raphson iteration,
(b) find the best weak classifier 𝑓

𝑡

𝑓
𝑡
= argmax
𝑓

AUC
1,𝜆
(𝐹
𝑡−1

+ 𝛽
𝑡
(𝑓) 𝑓) , (22)

(c) update the score function as

𝐹
𝑡
(x) = 𝐹

𝑡−1
(x) + 𝛽

𝑡
(𝑓
𝑡
) 𝑓
𝑡
(x) . (23)

(3) Output 𝐹(x) = ∑𝑇
𝑡=1
𝛽
𝑡
(𝑓
𝑡
)𝑓
𝑡
(x).

The value of the smoothing parameter 𝜆 and the iteration
number 𝑇 is determined at the same time by the cross
validation.

3.2. Clustering. We applied a hierarchical clustering using
breast cancer data [7], where the distances between samples
and genes are determined by the correlation and complete
linkage was applied as the agglomeration method. To mea-
sure the performance of the clustering, we used biological
homogeneity index (BHI) [29], which measures the homo-
geneity between the cluster C = {𝐶

1
, . . . , 𝐶

𝐾
} and the

biological category or subtypeB = {𝐵
1
, . . . , 𝐵

𝐿
},

BHI (C,B) =
1

𝐾

𝐾

∑

𝑘=1

1

𝑛
𝑘
(𝑛
𝑘
− 1)

∑

𝑖 ̸= 𝑗,𝑖,𝑗∈𝐶
𝑘

𝐼 (𝐵
(𝑖)
= 𝐵
(𝑗)
) ,

(24)

where 𝐵(𝑖) ∈ B is the subtype for the subject 𝑖 and 𝑛
𝑘
is

the number of subjects in 𝐶
𝑘
. This index is upper bounded

by 1 meaning the perfect homogeneity between the clusters
and the biological categories. We calculated this index for
the breast cancer data to investigate the relationship between
the hierarchical clustering and biological categories such as
disease status (good prognosis or metastases) and hormone
status: estrogen receptor (ER) status and progesterone recep-
tor (PR) status. The hormone status is known to be closely
related with the prognosis of the patients [23].

3.3. Mutualcoherence. Now, we have a data matrix X with 𝑛
rows (𝑛 patients) and 𝑝 columns (𝑝 genes).We assumed an 𝑛-
dimensional vector b indicating the true disease status, where
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the positive values correspond to metastases and negative
ones to good prognosis.Themagnitude of b denotes the level
of disease status. Then, the optimal linear solution 𝛽 ∈ R𝑝

should be satisfied

X𝛽 = b. (25)

Note that if 𝑝 is much larger than 𝑛, then only a few elements
of 𝛽 should be non-zeros, and the others to be zero, which
means 𝛽 has a sparse structure. The sparsity has a close
relationship with mutualcoherence [30], which is defined for
the data matrix X as

𝜇 (X) = max
1≤𝑖,𝑗≤𝑝,𝑖 ̸= 𝑗


x𝑇
𝑖
x
𝑗


x𝑖
2


x
𝑗

2

, (26)

where x
𝑖
∈ R𝑛 denotes the 𝑖th column in X or 𝑖th gene in

the breast cancer data; | ⋅ | is the absolute value and ‖ ⋅‖
2
is the

Euclidean norm.This indexmeasures the distance of columns
(genes) in the data matrixX and is bounded as 0 ≤ 𝜇(X) ≤ 1.
The next theorem shows the relationship between sparsity of
𝛽 and the data matrix X.

Theorem 1 (Elad [30]). If X𝛽 = b has a solution 𝛽 obeying
‖𝛽‖
0

< (1 + 1/𝜇(X))/2, this solution is necessarily the
sparsest possible, where ‖𝛽‖

0
denotes the number of the nonzero

components of 𝛽.

This theorem suggests that the linear discriminant func-
tion 𝐹(x) = 𝛽𝑇x could have a sparse solution to predict the
disease status b, which corresponds to metastases or good
prognosis in the breast cancer data. If the value of 𝜇(X) is
nearly equal to 1, then ‖𝛽‖

0
could become approximately 1,

indicating that just one gene (a column inX) could be enough
to predict the disease status if there were a solution 𝛽. This
indicates that we could have a chance to find the multiple
solutions with fewer genes than 70 genes in MammaPrint.
Although the framework in (25) is based on a system of linear
equations and does not include random effects as seen in the
classification problems we deal with, Theorem 1 is indicative
in the case where the number of covariates 𝑝 is much larger
than the observation number 𝑛.

3.4. Results. We prepare various data sets using a training
sample (78 patients) based on 230 genes selected by van’t Veer
et al. [7] in order to investigate the existence of the multiple
solutions of the prediction of the disease status, which are
given by

D = {𝐷
1−70

, 𝐷
6−75

, . . . , 𝐷
161−230

} . (27)

The first data set 𝐷
1−70

consists of 78 patients and 70 genes
in MammaPrint. The ranking of the 230 genes in D is on
the basis of correlation with disease status as in [7]. We apply

the van’t Veer method, DLDA, AdaBoost, and AUCBoost as
explained in the previous subsection to the training data to
have the discriminant functions𝐹(x), where each threshold is
determined so that the training error rate isminimized.Then,
we evaluate the classification accuracy based on the training
data as well as the test data. The results of classification
performance of van’t Veer method and DLDA are illustrated
in Figure 1; those of AdaBoost and AUCBoost are in Figure 2.
The AUC and the error rate are plotted against D. In regard
to the performance based on the training data denoted by
solid line, the boosting methods are superior to the classical
methods.However, comparison based on the test data, DLDA
shows good performance for almost all the data sets in D,
having the AUC more than 0.8 and the error rates less than
0.2 in average.This evidence suggests there exist many sets of
genes having almost the same classification performance as
that of MammaPrint.

We investigate the performance of the hierarchical clus-
terings based on the training data sets 𝐷

1−70
, 𝐷
11−80

and
𝐷
111−180

, which are shown in Figure 3. Each row represents
70 genes and each column represents 78 patients with
disease status (blue), ER status (red), and PR status (orange).
The BHI for disease status, ER status, and PR status in
MammaPrint (𝐷

1−70
) are 0.70, 0.69, and 0.57, respectively.

The gene expression in 𝐷
11−80

shows different patterns from
the others. Mainly, there are two clusters characterized by ER
status. The left-hand side is the subgroup of patients with
ER negative and poor prognosis. This would correspond to
Basal-like subtype or triple negative subtype though the Her2
status is unclear. The right-hand side could be divided into
three subgroups. The subgroup of patients with ER negative
shows good prognosis, indicating Luminal A, and either side
of it would be Luminal B or Luminal C because it shows
worse prognosis than Luminal A. The data set of 𝐷

111−180

has the highest BHI for disease status 0.76 and a similar gene
expression pattern to that in 𝐷

1−70
. The other values of BHI

are illustrated in Figure 4. It turned out that the data sets inD
have almost the same BHI for three statuses, suggesting there
exists various gene sets with similar expression patterns.

Next, we investigate the stability of the gene ranking in
MammaPrint. Among 78 patients, we randomly choose 50
patients with 5420 gene expression patterns. Then, we take
the top 70 genes ranked by the correlation coefficients of
the gene expression with disease status. This procedure is
repeated 100 times and checked how many times the genes
in MammaPrint are ranked within the top 70. The results
are shown in the upper panel of Figure 5. The lower panel
shows the result based on the AUC instead of the correlation
coefficient used in the ranking. We clearly see that some
of the genes in MammaPrint are rarely selected in the top
70, which indicates the instability of the gene ranking. The
performances of DLDA with 100 replications, which shows
most stable prediction accuracy as seen in Figure 1, based
on randomly selected 50 patients shown in Figure 6, where
the vertical axes are AUC (left panels) and error rate (right
panels) and genes are ranked by the correlation (a) and AUC
(b). The performance clearly gets worse than that in Figure 1
in terms of both AUC and error rate. The heterogeneity of
gene expression pattern may come from the several subtypes



8 Computational and Mathematical Methods in Medicine

0

0.2

0.4

0.6

0.8

1

Data sets

AU
C

0

0.2

0.4

0.6

0.8

1

Er
ro

r

Training
Test

Training
Test

1–70 41–120 81–150 121–190 161–230
Data sets

1–70 41–120 81–150 121–190 161–230

(a) van’t Veer method
Er

ro
r

0

0.2

0.4

0.6

0.8

1

AU
C

Data sets
Training
Test

1–70 41–120 81–150 121–190 161–230

0

0.2

0.4

0.6

0.8

1

Data sets
Training
Test

1–70 41–120 81–150 121–190 161–230

(b) DLDA

Figure 1: Results of classical methods. (a) and (b) show the AUC values (left panel) and the error rate (right panel) over data setsD for van’t
Veer method and DLDA.

as suggested in the cluster analysis, and it would make it
difficult to select useful genes for predictions.

Finally we calculate the mutualcoherence based on genes
in MammaPrint and total 5420 genes in Figure 7. The scatter
plot in the upper panel (a) shows a pair of geneswith the high-
est mutual coherence (0.984) in MammaPrint. NM 014889

and NM 014968 correspond to MP1 and KIAA1104, respec-
tively.MP1 is a scaffold protein inmultiple signaling pathways
including the one in breast cancer. The latter one is pitrilysin
metallopeptidase 1.The correlations defined in the right-hand
side of (26) are calculated for all pairs of genes in total 5420

genes and 70 genes in MammaPrint. The distributions of
them are shown in the lower panel (b) in Figure 7. The gene
pairs are sorted so that the values of the correlations decrease
monotonically. Note that the number of the gene pairs in
each data set is different but the range of horizontal axis is
restricted to 0 and 1 for clear view and for easy comparison.
Thedifference between the black and red curves indicates that
the gene set of MammaPrint has large homogeneity of gene
expression patterns in comparison with that of total 5420
genes. This indicates that the ranking of genes based on two-
sample statistic such as the correlation coefficients is prone
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Figure 2: Results of boosting methods. (a) and (b) show the AUC values (left panel) and the error rate (right panel) over data sets D for
AdaBoost and AUCBoost.

to select genes such that their gene expression patterns are
similar to each other. This would be one reason why we have
multiple solutions after the ranking methods based on the
correlation coefficients. It is also interesting to see that there
are a few gene pairs with very low correlation even in gene set
of MammaPrint.

4. Discussion and Concluding Remarks

In this paper we have addressed an important classification
issue using microarray data. Our results present the existence

of multiple suboptimal solutions for choosing classification
predictors. Classification results showed that the perfor-
mance of several gene sets was the same. This behavior
was confirmed by the van’t Veer method, DLDA, AdaBoost
and AUCBoost. Amazingly, nontop ranked gene sets showed
better performance than the top ranked gene sets. These
results indicate that the ranking method is very unstable for
feature selection in microarray data.

To examine the expression pattern of selected predictors,
we performed clustering, this added support to the existence
of multiple solutions. We easily recognized the good and
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(a) (b)

(c)

Figure 3: Heat maps of gene expression data with rows representing genes and columns representing patients. (a) 𝐷
1−70

(MammaPrint),
(b) 𝐷

11−80
clearly showing some subtypes and (c) 𝐷

111−180
with the highest BHI regarding metastases. The blue bars indicate patients with

metastases, red bars those with ER positive and orange bars those with PR positive.

the bad prognosis groups from the nontop ranked gene
sets clustering expression pattern. Interestingly, some clus-
tering patterns showed subtypes in the expression pattern.
As described by Sørlie et al. [31] and Parker et al. [32],
breast cancer could be categorized into at least five subtypes,

Luminal A, Luminal B, normal breast-like, HER2, and basal-
like. Selected ranked gene sets contain heterogeneous groups.
Our data set does not include the necessary pathological
data to categorize genes into known subtypes but considering
subtypes for feature selection could be future work.
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Figure 4: Biological homogeneity index (BHI) for metastases (solid line), ER positive (dashed line) and PR positive (dotted line).
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Figure 5:The rates of ranking in the top 70 genes by correlation coefficients (a) and by AUC (b) based on randomly sampled 50 patients.The
horizontal axis denotes 70 genes used by MammaPrint.
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Figure 6: The values of AUC (left panel) and error rate (right panel) calculated by DLDA using genes ranked in top 70 by the correlation
coefficients (a) and by AUC (b). These values are calculated based on randomly sampled 50 patients over 100 trials.

Microarray technology has become common technology
and a lot of biomarker candidates are proposed. However
not many researchers are aware that multiple solutions can
exist in a single data set. This instability is related to the
high-dimensional nature of microarray. Besides, the ranking
method easily returns different results for different sets of
subjects. There may be several explanations for this. The
main problem is the ultra-high dimension ofmicroarray data.
This problem is known as 𝑝 ≫ 𝑛 problem. The ultra-high
dimension gene expression data contains too many similar
expression patterns causing redundancy. This redundancy is

not omitted by ranking procedure. This is the critical pitfall
for gene selection in microarray data.

One approach to tackle this problem about the high
dimensionality of the data is to apply statistical methods in
consideration with the background knowledge of medical or
biological data. As seen in Figure 3 or demonstrated by Sørlie
et al. [31], the subtypes of breast cancer are closely related
with the resultant outcome of the patient’s prognosis. This
heterogeneity of data is thought as one factor that makes the
ranking of the genes unstable, leading to themultiple solution
for prediction rules. As seen in Figure 5 and suggested by
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Figure 7: (a) Scatter plots of two pairs of genes with highest mutualcoherence (0.984) among 70 genes of MammaPrint. (b)The distribution
of the correlation of total 5420 genes (black) and 70 genes ofMammaPrint (red).The horizontal axis denotes the index of pairs of genes, based
on which the correlations are calculated. The horizontal axis is standardized between 0 and 1 for clear view.

Ein-Dor et al. [19], the gene ranking based on two-sample
statistic such as correlation coefficients has large amount of
variability, indicating the limitation of single gene analysis.
The clustering analysis that deals with the whole information
of total genes would be useful to capture the mutual relation
among genes and to identify the subgroups of informative
genes for the prediction problem. The combination with
unsupervised learning and supervised learning is a promising
way to solve the difficulty involved in the high-dimensional
data.

We addressed the challenges and difficulties regarding the
pattern recognition of gene expression. The main problem
was caused by high-dimensional data sets. This is not only
a problem of microarray data but also RNA sequencing. The
RNA sequencing technologies (RNA-seq) have dramatically
advanced recently and are considered an alternative to
microarray for measuring gene expression as addressed in
Mortazavi et al. [33], Wang et al. [34], Pepke et al. [35], and
Wilhelm and Landry [36]. Witten [37] showed the clustering
and classification methodology applying Poisson model for
the RNA-seq data. The same difficulty occurs in the RNA-
seq data. The dimension of the RNA-seq is quite high. The
running cost of RNA sequencing has decreased; however,
the number of features is still much larger than the number
of observations. Therefore, it is not difficult to imagine that
RNA-seq data would have the same difficulty as microarray.
We have to be aware of it and tackle this difficulty using the
insights we have learned from microarray data.
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