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Molecular heterogeneity of cancer, partially caused by various chromosomal aberrations or gene mutations, can yield substantial
heterogeneity in gene expression profile in cancer samples. To detect cancer-related genes which are active only in a subset of cancer
samples or cancer outliers, several methods have been proposed in the context of multiple testing. Such cancer outlier analyses will
generally suffer from a serious lack of power, compared with the standard multiple testing setting where common activation of
genes across all cancer samples is supposed. In this paper, we consider information sharing across genes and cancer samples, via
a parametric normal mixture modeling of gene expression levels of cancer samples across genes after a standardization using the
reference, normal sample data. A gene-based statistic for gene selection is developed on the basis of a posterior probability of
cancer outlier for each cancer sample. Some efficiency improvement by using our method was demonstrated, even under settings
with misspecified, heavy-tailed 𝑡-distributions. An application to a real dataset from hematologic malignancies is provided.

1. Introduction

Heterogeneity of the expression of oncogeneswithin the same
histological cancers is considered to have significant impli-
cations for understanding disease biology, identifying risk
groups, and optimizing patient treatment [1, 2]. Recently,
Tomlins et al. [3] argued that traditional analytical methods,
for example, a two-sample 𝑡-statistic, which search for com-
mon activation of genes across a class of cancer samples, will
fail to detect cancer genes which show differential expression
in a subset of cancer samples or cancer outliers. They devel-
oped the “cancer outlier profile analysis” (COPA) method
to detect cancer genes with such heterogeneous expression
profiles within cancer samples and revealed subtypes of

prostate cancer patients defined by recurrent chromosomal
aberration.

Inspired by the COPA statistic, some authors have pro-
posed other methods for detecting cancer-related genes with
cancer outlier profiles in the framework of multiple testing
[4–6]. However, such cancer outlier analyses will generally
suffer from a serious lack of power because the analysis
attempts to detect relatively small fractions of cancer outliers;
the signal contained in the data is relatively limited, compared
with that in the standard multiple testing setting where com-
mon activation of cancer-related genes for all cancer samples
is supposed. As information sharing across units in the data
generally improves efficiency of the analysis, we propose
a simple efficient method via information sharing across
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both genes and cancer samples. Specifically, we propose a
parametric normal mixture modeling of gene expression
levels of cancer samples across genes after a standardization
using the reference, normal sample data. Then, a gene-based
statistic for gene selection is proposed on the basis of a poster-
ior probability of cancer outlier for each cancer sample. This
posterior probability itself is to provide a useful index to aid
identifying cancer outliers for a selected gene.

This paper is organized as follows. After providing a brief
summary of the existing multiple testing methods for the
cancer outlier analysis in Section 2, we provide the proposed
method in Section 3. We assess performance of our methods
via simulations in Section 4. An application to a real dataset
from hematologic malignancies is given in Section 5. Finally,
concluding remarks appear in Section 6.

2. Existing Multiple Testing Methods for
Cancer Outlier Analysis

We suppose amicroarray study to detect cancer-related genes
from a large pool of 𝐺 genes based on their gene expression
levels measured for 𝑛 samples, comprised of 𝑛

0
samples from

a normal class and 𝑛
1
samples from a cancer class. The gene

expression data considered here comprise normalized log
ratios from two-color cDNA arrays or normalized log signals
from oligonucleotide arrays (e.g., Affymetrix GeneChip). For
gene 𝑔 (𝑔 = 1, . . . , 𝐺), let 𝑥

𝑔𝑖
be the expression value for

sample 𝑖 (𝑖 = 1, . . . , 𝑛
0
) in the normal class and let 𝑦

𝑔𝑗
be

that for sample 𝑗 (𝑗 = 1, . . . , 𝑛
1
) in the cancer class. The

most multiple testing methods developed for analyzing can-
cer outliers intend to a one-sided testing. Without loss of
generality, we are interested in detection of activated genes
that are overexpressed or upregulated in a subset of cancer
samples, that is, cancer outliers. For detecting cancer-related
genes with over- or underexpressions, one may perform two
one-sided tests separately, one for detecting cancer-related
genes with overexpressions and the other for detecting those
with underexpressions.

The traditional two-sample 𝑡-statistic for gene 𝑔 is defin-
ed as

𝑡
𝑔
=

𝑦
𝑔
− 𝑥
𝑔

𝑠
𝑔

, (1)

where 𝑦
𝑔
is the mean expression value in the cancer samples,

𝑥
𝑔
is the mean expression value in the normal samples,

and 𝑠
𝑔
is the usual pooled standard error estimate for gene

𝑔 (𝑔 = 1, . . . , 𝐺). The 𝑡-statistic is efficient in detecting
cancer-related genes on which most cancer samples are acti-
vated, but may not be efficient for those with cancer outlier
profiles.

Tomlins et al. [3] defines the COPA statistic as

Copa
𝑔
=

𝑞
𝑟
(𝑦
𝑔𝑗
: 1 ≤ 𝑗 ≤ 𝑛

1
) −med

𝑔

mad
𝑔

, (2)

where 𝑞
𝑟
(⋅) is the 𝑟th percentile of the expression level, med

𝑔

is the median of expression values, and mad
𝑔
is the median

absolute deviation of expression values in all of the samples:

med
𝑔
= median (𝑥

𝑔𝑖
, 𝑦
𝑔𝑗
; 𝑖 = 1, . . . , 𝑛

0
, 𝑗 = 1, . . . , 𝑛

1
) ,

mad
𝑔
= 1.4826 ×median (𝑥𝑔𝑖 − med

𝑔


,

𝑦
𝑔𝑗
−med

𝑔


;

𝑖 = 1, . . . , 𝑛
0
, 𝑗 = 1, . . . , 𝑛

1
) .

(3)

The value of 𝑟 in 𝑞
𝑟
(⋅), which represents a threshold in deter-

mining cancer outlier, is specified by the user, such as 𝑟 = 75,
90, or 95.

Instead of using a fixed 𝑟 percentile value, approximately
equivalent to using the information from only one sample,
the use of additional outlier samples can be more efficient.
Specifically, the OS statistic [4] is defined as

OS
𝑔
=

∑
𝑖∈𝑅𝑔

(𝑦
𝑔𝑗
−med

𝑔
)

mad
𝑔

. (4)

Here the set of cancer outliers, 𝑅
𝑔
, is heuristically identified

by𝑅
𝑔
= {𝑗 : 𝑦

𝑔𝑗
> 𝑞
75
(𝑥
𝑔𝑖
, 𝑦
𝑔𝑗
: 𝑖 = 1, . . . , 𝑛

0
; 𝑗 = 1, . . . , 𝑛

1
)+

IQR(𝑥
𝑔𝑖
, 𝑦
𝑔𝑗
: 𝑖 = 1, . . . , 𝑛

0
; 𝑗 = 1, . . . , 𝑛

1
)}, where IQR(𝐷) is

the interquintile range of the data 𝐷, IQR(𝐷) = 𝑞
75
(𝐷) −

𝑞
25
(𝐷).
Wu [5] proposed the ORT statistic through identifying

cancer outliers relative to the normal sample, rather than the
pooled sample. Specifically, the ORT statistic is defined as

ORT
𝑔
=

∑
𝑖∈𝑂𝑔

(𝑦
𝑔𝑗
−med

𝑔,𝑥
)

mad∗
𝑔

, (5)

where 𝑂
𝑔
= {𝑗 : 𝑦

𝑔𝑗
> 𝑞
75
(𝑥
𝑔𝑖
: 𝑖 = 1, . . . , 𝑛

0
) + IQR(𝑥

𝑔𝑗
: 𝑖 =

1, . . . , 𝑛
0
)}, med

𝑔,𝑥
= median(𝑥

𝑔𝑖
; 𝑖 = 1, . . . , 𝑛

0
), med

𝑔,𝑦
=

median(𝑦
𝑔𝑗
; 𝑗 = 1, . . . , 𝑛

1
), and

mad∗
𝑔
= 1.4826 ×median (𝑥𝑔𝑖 −med

𝑔,𝑥


,

𝑦
𝑔𝑗
−med

𝑔,𝑦


,

𝑖 = 1, . . . , 𝑛
0
, 𝑗 = 1, . . . , 𝑛

1
) .

(6)

As the COPA, OS, and ORT statistics are criticized
because the outliers are arbitrarily defined, Lian [6] considers
all possible values of the outlier threshold. Specifically, for the
ordered gene expressions for the cancer samples, 𝑦

𝑔1
≥ 𝑦
𝑔2
≥

⋅ ⋅ ⋅ ≥ 𝑦
𝑔𝑛1

, the MOST statistic is defined as

MOST
𝑔
= max
1≤𝑘≤𝑛1

{

{

{

(∑
1≤𝑗≤𝑘

(𝑦
𝑔𝑗
−med

𝑔,𝑥
) /mad∗

𝑔
) − 𝜇
𝑘

𝜎
𝑘

}

}

}

,

(7)

where 𝜇
𝑘
= 𝐸⌊∑

1≤𝑗≤𝑘
𝑧
𝑗
⌋ and 𝜎2

𝑘
= Var⌊∑

1≤𝑗≤𝑘
𝑧
𝑗
⌋ for 𝑧

1
>

𝑧
2
> ⋅ ⋅ ⋅ > 𝑧

𝑛1
, the order statistics of 𝑛

1
samples from

the standard normal distribution. The standardization in the
parenthesis is to make different values of the statistic com-
parable for different values of the outlier threshold, 𝑘 (𝑘 =

1, . . . , 𝑛
1
).
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3. The Proposed Method

3.1. Mixture Modeling of Gene Expression Data. In order for
information sharing across both genes and cancer samples,
we propose a simple parametric normal mixture modeling
of gene expression data of cancer samples. As the existing
multiple testing methods, for each gene, we consider stan-
dardized gene expressions of the cancer samples based on the
reference, normal sample data,

𝑢
𝑔𝑗
=

𝑦
𝑔𝑗
− 𝑥
𝑔

𝑠
𝑔,𝑥

, (8)

where 𝑠
𝑔,𝑥

is the usual standard error estimate within the
normal samples for gene 𝑔 (𝑔 = 1, . . . , 𝐺; 𝑗 = 1, . . . , 𝑛

1
).

Again, the standardization intends to make all gene expres-
sion data from the cancer samples comparable across genes.
We then assume the finite normal mixture model with the
three components,

𝑓 (𝑢
𝑔𝑗
) = 𝜋
0
𝑓
0
(𝑢
𝑔𝑗
) + 𝜋
1
𝑓
1
(𝑢
𝑔𝑗
) + 𝜋
2
𝑓
2
(𝑢
𝑔𝑗
) . (9)

The density function 𝑓
0
corresponds to the null component

with no differential expressions for the reference, normal
sample data. The densities 𝑓

1
and 𝑓

2
correspond to the

nonnull components (i.e., cancer outliers) of underexpression
and overexpression, respectively, for the normal sample
data. We specify normal distributions, 𝑁(0, 12), 𝑁(𝛿

1
, 1
2
),

and 𝑁(𝛿
2
, 1
2
), for 𝑓

0
, 𝑓
1
, and 𝑓

2
, respectively. 𝜋

𝑘
represents

the mixing proportion (𝑘 = 0, 1, 2), and 𝜋
0
+ 𝜋
1
+ 𝜋
2
= 1.

We denote𝑍
𝑔𝑗,𝑘

as unobservable indicator random variables,
such that 𝑍

𝑔𝑗,𝑘
= 1 if the (standardized) expression level, 𝑢

𝑔𝑗
,

of cancer sample 𝑗 on gene 𝑔 belongs to the 𝑘th component,
and 𝑍

𝑔𝑗,𝑘
= 0 otherwise (𝑔 = 1, . . . , 𝐺; 𝑗 = 1, . . . , 𝑛

1
). We

estimate the parameters, 𝛿
1
, 𝛿
2
, and 𝜋’s, via applying the EM

algorithm to cope with the unobservable indicator variable
𝑍
𝑔𝑗,𝑘

in the mixture model (e.g., [7]).

3.2. Statistics for Gene Selection. The posterior probability,
𝑤
𝑔𝑗,𝑘

, that 𝑍
𝑔𝑗,𝑘

= 1, that is, the expression level 𝑢
𝑔𝑗
belongs

to the 𝑘th component, provides a basis for gene selection,

𝑤
𝑔𝑗,𝑘

=

�̂�
𝑘
𝑓
𝑘
(𝑢
𝑔𝑗
)

𝑓 (𝑢
𝑔𝑗
)

. (10)

For detecting overexpressed genes, possibly with a cancer
outlier profile (as a one-sided testing), we propose to use the
following gene-based statistic for gene selection:

𝑆
𝑔
= 1 −

𝑛1

∏

𝑗=1

(1 − 𝑤
𝑔𝑗,2
) . (11)

This statistic may correspond to one minus the posterior
probability that none of samples are cancer outliers with
overexpressions. We will select genes with greatest values
of 𝑆
𝑔
. Gene-based statistics for detecting underexpressed

cancer-related genes can be similarly developed.

In our framework, we can also derive a similar gene-based
statistic for detecting under- or overexpressed genes (as a
two-sided testing). One has

𝑇
𝑔
= 1 −

𝑛1

∏

𝑗=1

{1 − (𝑤
𝑔𝑗,1

+ 𝑤
𝑔𝑗,2
)} . (12)

It is important to note that the posterior probabilities,
𝑤
𝑔𝑗,𝑘

, themselves can serve as a helpful index to aid identi-
fying cancer outlier samples for a particular (selected) gene.
In contrast, the existing cancer outlier methods do not pro-
vide such an expression-level statistic for identifying cancer
outlier samples.

Unlike the existing statistics for cancer outlier analysis,
the statistic, 𝑆

𝑔
, does not involve any particular cancer outlier

threshold, so that cancer-related genes with various propor-
tions of cancer outliers (𝜙 in Section 4), even those with com-
mon activation across all cancer samples, could be detected.
However, as 𝑆

𝑔
is a composite of the posterior probabilities

from all of the cancer samples, cancer-related genes with
smaller proportions of cancer outlier will be more difficult
to be detected because the statistic will be more dominated
by the posterior probabilities from the cancer samples other
than cancer outliers. The impact of the proportion of cancer
outlier will be investigated in Section 4.

4. Simulation Study

We conducted a simulation study to assess the performance
of our method in detecting cancer-related genes with cancer
outlier profiles. We considered a microarray study with 𝐺 =

10000 genes for 𝑛 = 40, 80, or 200 samples, where the first
half of samples were from the normal class and the latter
half from the cancer class, that is, 𝑛

0
= 𝑛
1
= 𝑛/2. Of

note, for a given 𝑛
1
, the power of the analysis will improve

as 𝑛
0
increases because more precise estimates of the mean

and variance of the normal sample data become available
in the standardization 𝑢

𝑔𝑗
before fitting the mixture model

(9) to detect cancer-related genes. We generated the gene
expression levels for each gene from the standard normal
distribution 𝑁(0, 12) or the central 𝑡-distribution with 20
degrees of freedom to assess the impact of deviation from
the normality assumption. No interaction across genes was
assumed. We supposed that 𝐺 genes were divided into the
three gene components according to the mixture model
(9), that is, the null, underexpression, and overexpression
component. The mixing proportions were set to as 𝜋

0
= 0.6,

𝜋
1
= 𝜋
2
= 0.2. For each nonnull gene with under- or over-

expressions, the proportion of cancer outliers in the cancer
samples, 𝜙, was set to be 𝜙 = 0.1, 0.3, or 0.5. We supposed a
common difference or effect size in gene expression between
the cancer outlier samples and the other samples (normal
samples and nonoutlier cancer samples) across nonnull genes
and set the value of 𝛿

1
as −2.0 and that of 𝛿

2
as 2.0. For each

configuration, we performed gene selection based on the 𝑡-
statistic, COPA, OS, ORT, MOST, and the proposed one-
sided statistics, 𝑆

𝑔
, for detecting overexpressed cancer-related

genes.
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Figure 1: ROC curves that plot TPR versus FDR for normally distributed gene expression data.

We assessed the false discovery rate (FDR) and true pos-
itive rate (TPR), defined as the proportion of false positives
in the set of significant genes and the proportion of selected
true positives in the set of all of the overexpressed genes (=
𝐺𝜋
2
), respectively. Note that the TPR corresponds to average

power in multiple testing (e.g., [8, 9]). We conducted 200
simulations to obtain average TPR for a given value of FDR
for each method, as the estimates of TPR were highly stable
for 𝐺 = 10000 values of each statistic obtained in a single
simulation run.

Figures 1 and 2 show ROC curves that plot the TPR
and FDR for various numbers of significant genes in mul-
tiple testing for normally distributed and 𝑡-distributed gene
expressions, respectively.

For normally distributed gene expressions, the gene selec-
tion based on the proposed statistic, 𝑆

𝑔
, generally provided

the greatest values of TPR (for a given value of FDR). As is
expected, the proposed gene selection based on 𝑆

𝑔
provided

greater TPR as 𝜙 increased. The gene selection based on
the 𝑡-statistic provided the smallest values of TPR, especially
when the proportion of cancer outliers is small, such as
𝜙 = 0.1, but the TPR improved for greater values of the
proportion, such as𝜙 = 0.5, as is expected.TheCOPA andOS
methods performed worst among the methods except the 𝑡-
test, especially for greater values of 𝜙, such as 𝜙 = 0.5. In
particular, the performance of the OS method was largely
deteriorated for 𝜙 = 0.5. The ORT and MOST methods
generally provided comparable TPR values, but less than
those of the proposed method based on 𝑆

𝑔
.

For 𝑡-distributed gene expressions, similar trends were
observed. Again, the proposed method based on 𝑆

𝑔
provided

greatest TPR in general, except for the scenario with 𝑛 = 40
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Figure 2: ROC curves that plot TPR versus FDR for 𝑡-distributed gene expression data.

and𝜙 = 0.1, although the degree of its superiority to the other
methods, such as the ORT and MOST methods, becomes
smaller, comparedwith the settingswith normally distributed
gene expressions.TheCOPA andOSmethods again provided
the smallest values of TPR, especially when 𝜙 is large, such as
𝜙 = 0.5.

5. Application

We illustrate how the proposed method can capture the het-
erogeneity of cancer samples through its application to a
microarray gene expression data from the myelodysplastic
syndromes (MDSs) [10].TheMDSs are complex hematologic

malignancies with heterogeneous clinicopathological fea-
tures with various chromosomal aberrations. In order to
discover the heterogeneous clinicopathological features of
MDSs, possibly including those related to prognosis, we
adopted the proposal using mixture distributions method for
139 MDSs and 69 nonleukemias (samples from bone marrow
mononuclear cells from nonleukemic conditions), which
were regarded as cancer and normal samples, respectively.
Here, following Mills et al. [10], we removed samples of
the chronic myelomonocytic leukemia disease type from
MDS samples. We first adopted the RMA normalization [11]
to the raw data (Raw data (CEL files) downloaded from
Gene Expression Omnibus database (GEO, http://www.ncbi
.nlm.nih.gov/geo/, accession number GSE15061)). We make
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Table 1:The number of overlaps in selected genes between the gene selection methods in the example of hematologic malignancies. Top 200
genes were selected by each method.

𝑡-statistic COPA OS ORT MOST Proposed
𝑡-statistic — 13 14 50 56 56
COPA 13 — 150 0 99 51
OS 14 150 — 139 108 86
ORT 50 0 139 — 151 89
MOST 56 99 108 151 — 75
Proposed 56 51 86 89 75 —

statistics using the log scales expression intensities of each
gene. As an initial screening of genes related to cancer outliers
from a pool of 𝐺 = 54, 675 candidate genes, we adopted the
existing and proposal methods. For eachmethod, we selected
200 top genes with the greatest values of the statistic.

The estimates of the parameters in the mixture model
(9) obtained under an EM algorithm with a convergence
criterion that are relative changes of the parameters <10−4

were as follows: �̂�
1
= 0.018, �̂�

2
= 0.018, 𝛿

1
= −1.22, and 𝛿

2
=

3.54. Table 1 summarizes the overlap in a number of selected
genes between the gene selection methods. Generally, the
OS, ORT, and MOST methods had substantial overlaps in
the selected genes. The degree of overlap can be explained
by the affinity among the methods in terms of the used
standardization and outlier thresholds (see Section 2). On the
other hand, it is interesting that the proposed method based
on the gene-based statistic, 𝑆

𝑔
, had intermediate overlaps

with all of the other methods. This would indicate that the
proposed method could detect cancer-related genes with
various cancer outlier profiles. Figure 3 shows histograms of
the standardized expression levels within each class (normal
and cancer) for three genes that were selected by ourmethod,
but not by the other methods. The proportion of cancer
outliers was relatively small for the first two genes (Figures
3(a) and 3(b)), but large for the third gene (Figure 3(c)), which
again indicates that our methods can detect cancer-related
genes with various proportions of cancer outliers.

6. Discussion

In this paper, we have attempted to improve the efficiency
of the cancer outlier analysis through information sharing
across genes and cancer samples. In our simulations, the
proposed gene selection based on a parametric normal mix-
ture modeling of gene expression data demonstrated some
improvement in efficiency for detecting cancer-related genes
with moderate to large proportions of cancer outlier (𝜙 ≥

0.3), even under settings with heavy-tailed 𝑡-distributions.
The proposed statistic would therefore be effective for select-
ing cancer-related genes that are involved in relatively major
activation among cancer samples.Modification of the statistic
for selecting cancer-related genes withmoreminor activation
(i.e., small 𝜙) is a subject for future research. Another
important subject would be the addition of a gene-level
mixture structure, that is, nonnull and null genes in terms of

the associationwith cancer, to provide amore formal basis for
evaluating false positives and true positives in gene selection.

We have assumed themixture structure (9) with the three
components, 𝑓

0
, 𝑓
1
, and 𝑓

2
, that is common across genes.

In some cases, the use of only one nonnull component for
a particular direction of differential gene expression may be
rather restrictive for plausible, large heterogeneity among
cancer samples. Our method can be extended to involve
multiple nonnull components, possibly with selection of the
number of nonnull components based on model-selection
criteria, such as AIC and BIC [7]. Another restriction of our
model is that no interaction or correlation is assumed among
genes. According to an investigation in the context ofmixture
modeling of a gene-level statistic (e.g., [12]), the impact of
correlation is generally small for moderate correlation. In
our modeling of the standardized gene expression levels 𝑢

𝑔𝑗

across both genes and samples, the proportion of correlated
𝑢
𝑔𝑗
’s is expected to be relatively small because of indepen-

dence across samples, but further investigation is needed.
As to the existing methods of cancer outlier analysis,

our simulations suggested superiority of the standardiza-
tion based on the reference, normal sample data, not the
pooled data from both cancer and normal samples. The poor
performance of the OS method for greater proportions of
cancer outliers, such as 𝜙 = 0.5, can be explained by the
use of the IQR based on the pooled data. In such situations
with relatively large numbers of cancer outliers, the IQR
may cover some of cancer outliers, resulting in a very large
outlier threshold, so that a substantial fraction of cancer
outliersmight bemissed by using the statistic. In contrast, the
performance of the ORT method, which is based on the IQR
based only on the normal sample data, was not deteriorated
as 𝜙 increased in our simulations.

After screening cancer-related genes with cancer outlier
profiles, researchers will need clustering of genes to identify
coregulated genes that belong to the samemolecular pathway
related to disease biology and aggressiveness. At the same
time, clustering of cancer samples based on the identified
gene clusters can help discovering new taxonomy of cancer
based on gene expression profiles of cancer outliers, possibly
related to patients’ clinical courses such as prognosis and
response to therapeutics. A two-way model-based clustering
of genes and samples in the context of cancer outlier analysis,
as an extension of the proposed model-based method in
this paper, would be an important topic, and one of such
clustering methods will be reported elsewhere.
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Figure 3: Histograms of the standardized expression values of three genes selected by our method, but not by the other methods.
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