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During the initial avascular phase of solid tumour growth. it is the balance between 
cell proliferation and cell loss that determines whether the tumour colony expands or 
regresses. Experimentalists have identified two distinct mechanisms that contribute to cell 
loss. These are apoptosis and necrosis. Cell loss due to apoptosis may be referred to as 
programmed-cell-death, occurring. for example, when a cell exceeds its natural lifespan. 
In contrast, cell loss due to necrosis is induced by changes in the cell's microenvironment. 
occurring, for example, in nutrient-depleted regions of the tumour. 

In this paper we present a mathematical model that describes the growth of an avascular 
tumour which comprises a central core of necrotic cells, surrounded by an outer annulus 
of proliferating cells. The model distinguishes between apoptosis and necrosis. Using a 
combination of numerical and analytical techniques we present results which suggest how 
the relative importance of apoptosis and necrosis changes as the tumour develops. The 
implications of these results are discussed briefly. 

Ke.ywords: Cell loss, Avascular turnour, apoptosis. micronenvironment 

1 INTRODUCTION 

In vivo cancer growth is a complex phenomenon, 
involving many inter-related processes and conse- 
quently the mathematical modelling of such pro- 
cesses is very difficult. Broadly speaking, solid 
tumour growth can be divided into two distinct 
stages: the avascular and the vascular phases. Bridg- 
ing these phases is a process called angiogenesis 
by which the tumour elicits a new blood supply 
from neighbouring blood vessels (Folkman, 1976; 

Muthukkaruppan, 1982). The relatively harmless 
avascular growth phase, which we discuss below. 
corresponds to diffusion-limited growth, with cells 
receiving vital nutrients and disposing of waste 
products via diffusion processes across the outer 
boundary of the tumour. By contrast, once vascu- 
larked, the tumour's nutrient supply is effectively 
limitless and rapid, potentially lethal growth ensues. 

Whilst several models have been developed to 
describe angiogenesis and vascular tumour growth 
(Balding and McElwain, 1985; Chaplain and Stuart, 
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1993; Chaplain, 1995: Byrne and Chaplain, 199%: 
Orme and Chaplain, 1996), over the past twenty 
years most of the mathematical models appearing 
in the literature have focussed on solid tumour 
growth (Adam. 1986; Byrne and Chaplain, 1995a, 
1996a. b: Durand. 1990: Greenspan, 1972: Landry 
et ul.. 1982: McElwain and Morris. 1978; Mueller- 
Klieser, 1987: Ward and King, 1997). This focus 
of interest has been guided largely by the relative 
abundance of in vitro studies involving multicellular 
spheroids (MCS) (Sutherland and Durand, 1984; 
Freyer et ul., 1984: Groebe and Mueller-Klieser, 
1991, 1996: Kerr, 1971: Kerr et al., 1972: Kerr 
et al., 1994). MCS are widely used in the laboratory 
because the well-defined and reproducible manner 
in which they grow mimics the earliest phase of irz 
v i ~ w  avascular tumour growth. Thus. in addition to 
providing insight into the structure and division of 
tumour cells, MCS can be used to provide some 
indication of a tumour's handling of a proposed 
chemical or drug irz ~ f v o  (Hiltman and Lory. 1983). 

Typically, mathematical models of MCS treat 
the tumour as a spherical mass of cells which 
grows in response to an external nutrient supply. 
It is assumed that the internal architecture con- 
sists of a central necrotic core surrounded by a 
layer of proliferating cells - a third, intermediate 
region containing non-proliferating, quiescent cells 
is also sometimes included. Many of the existing 
deterministic models comprise an ordinary differ- 
ential equation (ODE) and at least one reaction- 
diffusion equation (RDE) (Adam. 1986; Greenspan, 
1972). The ODE derives from mass conservation 
applied to the tumour and describes the evolution 
of the tumour boundary whereas the RDEs describe 
the distribution within the tumour of nutrients such 
as oxygen and glucose and growth inhibitory fac- 
tors such as chalones. Any interior boundaries, 
such as the interface between the necrotic core and 
the quiescent region, are defined implicitly, occur- 
ring, for example. when the nutrient concentration 
attains a prescribed value. Analysis of such mod- 
els enables the relative importance of the different 
mechanisms involved in the growth process to be 
examined. 

Clearly the growth rate of the tumour is deter- 
mined by the balance between cell proliferation and 
cell loss. The nutrient provides the energy needed to 
maintain the tumour cells and also for cell division. 
Experimental results suggest that two mechanisms 
contribute to cell loss: apoptosis and necrosis (Kerr, 
1971: Kerr et al., 1972; Kerr et al., 1994). Cell loss 
due to apoptosis is rzatziral. or programmed, cell 
death whereas cell loss due to necrosis is unrzatu- 
ral and induced by changes in the cell's microen- 
vironment. Whilst there is some ambiguity in the 
literature regarding the precise difference between 
apoptosis and necrosis. here we define it as follows. 
Necrosis is induced by the external microenviron- 
ment whereas apoptosis is an intrinsic property of 
a cell. Thus, the low nutrient levels found towards 
the centre of a tumour may trigger cell death due 
to necrosis whilst if a cell lives beyond its natu- 
ral lifespan then cell death due to apoptosis may 
occur. More recently. in situ labelling techniques led 
Kressel and Groscurth (1994) to make the follow- 
ing distinction between apoptosis and necrosis. Cells 
undergoing apoptosis are characterised by DNA 
fragmentation that follows a well-defined sequence 
which is initiated when the cell starts to die. By 
contrast, cells undergoing necrosis show no signs of 
DNA fragmentation until 24 hours after the onset of 
necrosis. 

Recent experimental results highlight the signif- 
icance of apoptosis in tumour development (Kas- 
tan et ul.. 1995; Merritt et al., 1995; Potten, 1992; 
Watson et al., 1996). For example, Thames et al. 
(1996) have shown that downregulation of apopto- 
sis is responsible for the rapid growth of murine- 
ovarian carcinoma and Shao et al. (1996) have cor- 
related low apoptotic indices with poor clinical 
prognosis in human breast cancer. Genetic muta- 
tions in the tumour cells may be responsible for 
the observed changes in apoptosis. Indeed, it is 
now known that mutations in the tumour sup- 
pressor gene p53 can lead to a reduction in cell 
death due to apoptosis. Other genetic alterations 
that lead to overexpression of the proto-oncogene 
bcl-2 have also been implicated in the develop- 
ment of a range of cancers, including non-Hodgkins 
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lymphoma (Kiberu er al., 1996), prostate cancer 
(Tu et al., 1996) and colorectal neoplasia (Hawkins 
et al., 1997). The functions of bcl-2 are manifold. 
For example, bcl-2 is known to inhibit both apop- 
tosis and necrosis (Kane et al., 1997). The interplay 
between apoptosis and necrosis has been studied by 
Eerola et nl. (1997) who showed that apoptosis is 
inversely related to the extent of necrosis in small 
cell lung carcinoma. In the light of such experi- 
mental results, it is timely to consider the effect 
that both necrosis and apoptosis have on tumour 
growth. 

Necrotic cell loss has been incorporated into most 
models of MCS growth (Adam, 1986; Greenspan, 
1972) whereas apoptotic cell loss has been largely 
neglected. It is possible to show that, when apopto- 
sis is neglected, these models cannot support steady, 
time-independent tumour configurations which com- 
prise only proliferating cells - a situation which 
can arise in practice (Tubiana, 1971). In this, paper 
we incorporate apoptosis into our mathematical 
model and show how its inclusion is crucial to realis- 
ing steady, nonnecrotic tumours. To our knowledge, 
to date. apart from (Byrne and Chaplain, 1995a. 
1996a), only (McElwain and Morris, 1978) have 
incorporated apoptosis into a spatio-temporal math- 
ematical model of solid tumour growth. Under cer- 
tain conditions, the model of McElwain and Morris 
(1978) admits steady solutions which do not possess 
a necrotic core: the steady state tumour comprises 
a central core, in which the rates of nutrient con- 
sumption and cell proliferation fall, surrounded by 
an outer, proliferating rim. 

In this paper we use a combination of numeri- 
cal and analytical techniques to study the manner 
in which the relative importance of apoptosis and 
necrosis as distinct cell loss mechanisms changes 
as the tumour develops. At the same time we try to 
indicate the key similarities and differences between 
the approach adopted here and that used by other 
authors. In this sense, the paper may be viewed 
as a summary of existing work, with the empha- 
sis placed on interpretation of the main results in 
a way which is accessible to mathematicians and 
biologists alike. 

2 A PRELIMINARY MODEL OF 
AVASCULAR TUMOUR GROWTH 

The mathematical model presented below describes 
the evolution of a multicellular spheroid growing 
in response to an externally-supplied nutrient such 
as oxygen or glucose. We assume that the tumour 
is radially-symmetric and contains proliferating and 
necrotic cells. the proportion of each cell type 
changing as the tumour grows. We denote by R(r) 
the outer radius of the tumour and by r,,,(t) its 
necrotic radius, so that if the tumour comprises pro- 
liferating cells alone then r,,, = 0. 

The model consists of an RDE which describes 
the distribution of the nutrient (o) and an integro- 
differential equation which governs the evolution of 
R( t ) .  The necrotic radius r,,,, is defined implicitly, 
occurring where a attains a specified value (a,,,,) 
and such that cell proliferation is possible only in 
nutrient-rich regions where a > a,,, and necrosis 
occurs in nutrient-depleted regions where a < a,,,. 
Fuller derivations of the mathematical model can 
be found in (Byrne and Chaplain, 1995a, 1996a, 
b). Here, for brevity, the governing equations are 
presented in dimensionless form in spherical polar 
coordinates with radial symmetry. 

subject to 

aa 
a,  - continuous across r = r,,,. (2 .5)  

ar 

In (2.1) we have adopted the usual quasi-steady 
approach, with aalat = 0. This approximation 
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occurs because a typical nutrient diffusion timescale 
is much shorter than a typical tumour doubling 
timescale (Adam, 1986: Adam and Maggelakis, 
1990; Chaplain and Britton. 1993; Chaplain et ul.. 
1994; Greenspan, 1972). Since the necrotic core 
contains only dead cells we assume that any nutrient 
consumption terms vanish there. Thus, denoting by 
H i . )  the Heaviside step-function (H (x) = 1 if x > 
0. H(x) = 0 if s 5 0). the term l -H(r  - r,,,,) 
describes nutrient consumption by the proliferat- 
ing cells, which we assume occurs at the constant 
rate r. 

In (2.2) we introduce S(o) and N(a)  to denote cell 
proliferation and cell loss duc to necrosis respec- 
tively. We assume that cell proliferation is confined 
to the annulus r,,,, < r < R and that it represents a 
balance between cell birth. or mitosis, and apoptosis. 
Necrotic cell loss is restricted to nutrient-depleted 
regions of the tumour where a < cr,,,. Following 
(Byme and Chaplain, 1995a, 1996a), and to sim- 
plify the analysis. throughout this paper attention is 
focussed on a proliferation rate which is linear with 
respect to 0. Thus we propose 

Equations (2.3)-(2.7) close equations (2.1) and 
(2.8). Equation (2.3) reflects the assumed symmetry 
of the tumour. In (2.4) a, is the constant 
nutrient concentration exterior to the tumour and, 
by continuity, on its outer tumour boundary. (2.5) 
ensures continuity of a and aa/ar across the necrotic 
boundary whilst (2.6) defines r,,, implicitly. Finally, 
(2.7) defines the initial, scaled tumour radius. 

3 MODEL SIMPLIFICATION AND 
ANALYSIS 

Integrating (2.1) subject to (2.3)-(2.6) yields an 
expression for the nutrient concentration within the 
tumour and also an identity defining r,,,(t) in terms 
of R(r): 

ffnec 

for r E 10, rnec). 

where s and 6 are positive constants. We interpret 
so  as the cell proliferation rate and s i i  as the apop- 
totic cell loss rate. Assuming further that necrosis 
manifests itself as a constant volume loss term at all 
points inside the necrotic core, we fix 

N ( a )  = 3shH(r - r,,,). 

We remark that experimentally determined func- 
tions could be used to describe S(a ) .  N(O) and 
the nutrient consumption term (Freyer eta/ . ,  1984; 
Groebe and Mueller-Klieser, 1996; Hiltman and 
Lory, 1983: Landry et ul., 1982). Since such mod- 
els are usually only amenable to numerical solution, 
here we restrict attention to simpler expressions in 
order to focus on the methodology of our approach. 

Substituting with S(a) and N(o), equation (2.2) 
can be rewritten thus: 

Substitution with a in (2.8) then yields the following 
equation for R(t): 

Thus the model reduces to (3.2), a nonlinear ODE 
describing the evolution of R(t), and (3.1), an alge- 
braic identity that relates r,,,(t) to R(t). 

It is possible to $how that if the tumour comprises 
proliferating cells only (r,,, = 0) then the above 
expressions for a and R simplify to give: 
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From (3.3) we see that the minimum nutrient con- 
centration occurs at r = 0, and that this mini- 
mum value decreases as R increases. Provided that 
a(0,  I) > a,,, the tumour remains a uniform mass 
of proliferating cells. Fixing a(0, t )  = a,,, and rear- 
ranging (3.3) we are able to make the following 
prediction: 

Necrosis is initiated when the tumour radius passes 
through a critical value R* wlziclz is dejrzed in terms 
of the underlying system parameters as follows: 
R* = [6(0, - a , , , ) / ~ ] ' / ~ .  

By varying the external nutrient concentration a, 
and measuring the tumour radius at which necrosis 
is first detected in an MCS, it should be possible to 
use this result to validate this model prediction by 
comparing the experimental and predicted values of 
R*. The result could also be used for parameter esti- 
mation. For example, if a, and a,,, are known and 
R* is measured at the onset of necrosis then we can 
estimate the rate at which the tumour cells consume 
the nutrient using I- = 6(a, - o,,,,)/~*'. Equally, 
if a, and F are known and R* is measured exper- 
imentally, we can predict the nutrient concentration 
at the onset of necrosis. 

From (3.3) and (3.4) we note that when R = R* 

dR s - - - - (30, - 5 3  + 2an,,) r A ,  say. (3.5) 
dt 15R* 

Thus. if A > 0 then the tumour continues to 
grow and the necrotic core persists. Otherwise, if 
A .= 0 then the tumour shrinks and the necrotic 
core disappears. 

More generally, numerical simulations of the 
model equations suggest that the tumour will ulti- 
mately (as I + oo) adopt one of three config- 
urations. In the first case the limiting configura- 
tion possesses an interior necrotic core. In the sec- 
ond case there is no necrotic core (r,,, = 0). 
In the third case, the tumour disappears. Typical 
examples of each type of behaviour are presented 
in Figures 1 to 3. These simulations show how the 
limiting behaviour depends upon the relative impor- 
tance of cell loss due to apoptosis, cell proliferation 
and cell loss due to necrosis, as embodied in the 
parameters 3, a, and a,,, respectively. Indeed as 
3 decreases decay of the tumour to zero (Figure 3) 
is superceded first by evolution of the tumour to a 
steady, nonnecrotic configuration for moderate val- 
ues of 5 (Figure 2) and then to a steady necrotic con- 
figuration for even smaller values of 3 (Figure 3). 
As mentioned in the introduction, such a decrease 
in 8 may be a consequence of a mutation which 
diminishes the ability of the gene p53 to trigger 
apoptosis (Messitt et al., 1995; Potten, 1992; Watson 
et al., 1996). 

0 0.5 1 1 5  2 2 5 
Time 

FIGURE 1 Evolution of R and r,,, showing how, for a particular set of parameter valueb, all initial data converge to the limiting 
values R - 2.42 and r,,, - 0.63. Parameter values: a, = 0.8.an,, = 0.4, i = 0.5. h = 0. I ,  l- = 25. s = 100. 
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I 

0 
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

Time 

FIGURE 2 Evolution of R and r,,, when the rate of cell loss due to apoptosis ia  increased from 3 = 0.5 (Figure I )  
to 5 = 0.7. All initial data converge to a nonnecrotic tumour for which R - 1.51 and r,,, = 0.0. Parameter values: 
u,=0.8.0 ,,,, = 0 . 4 , i r = O . 7 , h = 0 . l . r = 2 5 , s = 1 0 0 .  

FIGURE 3 Evolution of R and r,,, when the rate of cell loss due to apoptosis is increased to 6 = 0.9. All initial data converge to 
the trivial solution for which R = O = r ,,,. Parameter values: u, = 0.8.0 ,,,, = 0.4. 6 = 0.9, h = 0.1, r = 25, s = 100. 

When dR/d t  = 0 in (3.2) the model reduces that the trivial, tumour-free solution (R = 0 = r,,,) 
to two coupled equations which define the steady persists for all parameter values and that nontrivial 
or limiting tumour configurations in terms of the solutions exist only when 6 < a,. We remark 
system parameten. In Figure 4 we show how these further that where they exist the nontrivial solutions 
steady state solutions depend on 6, the rate of cell are unique so that only one tumour configuration 
loss due to apoptosis. From this diagram we note can be realised. 
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Rate of cell loss due to apoptosls 

FIGURE 4 Dependence of the steady state tumour radii R and r,,,, on the rate of cell loss due to apoptosis. 3. The existence of 
necrotic and nonnecrotic tumours is restricted to a finite range of 5. Parameter values: rr, = 0.8.a,,, = 0.4, i, = 0.1, r = 25.  5 = 100. 

0.5 - 

- - -  
0 

0 0.5 1 1.5 2 2.5 
Time 

FIGURE 5 Evolution of R and r,,, when S ( o )  = so(1 - o / G ) .  If R(0) < 2.2 then the tumour decays to zero: otherw~se it evolves 
to a nontrivial, necrotic configuration. Parameter values: a, = 0 . 8 . ~ ~ ~ ~  = 0 .4 ,3  = 0.64. h = 0.1. = 25. .T = 100. 

The effect that the choice of S(a) has on the in (2.2). With 3 constant, we now interpret so2/& 
tumour's growth characteristics becomes apparent as the cell loss term due to apoptosis. In this 
when the linear proliferation rate is replaced by a case, numerical simulations suggest that two pos- 
logistic term sible outcomes occur: either the tumour decays to 

zero or it attains a steady, necrotic configuration, 
the type of behaviour realised depending on the bal- 

S(c )  = so- (1 - i) ance between 3 relative to rr, and a,,,, (Byrne and 
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Chaplain. 1996a). For small values of 3 (i.e. strong 
apoptotic decay) all tumours eventually disappear 
whereas for larger values of 6 (i.e. weak apoptotic 
decay) all tumours evolve to a necrotic structure. 
The simulations suggest that for intermediate val- 
ues of & the steady state is no longer unique and 
that the limiting behaviour depends on R(0). In such 
cases, if R(0) is sufficiently small then the tumour 
still decays to zero whilst larger tumours evolve to 
necrotic configurations (see Figure 5 ) .  The qualita- 
tive differences in the steady-state structure of the 
tumour which arise for the two choices of S (a )  
remind us how important accurate knowledge of the 
proliferation rate is for predicting a tumour's growth 
characteristics. 

4 ASYMPTOTIC ANALYSIS 

As mentioned above, in real applications the func- 
tional forms used to describe expressions such as 
N(o) and S(o) will be more complicated than those 
considered in this paper. As such, the model will 
not, in general, admit explicit analytical solutions. 
In such cases, most authors present numerical solu- 
tions of the model equations. Whilst these are of 
value, such simulations often obscure the man- 
ner in which the different physical processes inter- 
act. Insight into the behaviour of the system can 
be gained by focusing on special cases for which 
the model equations simplify (Byrne and Chaplain, 
1996a). In this section we illustrate how this can 
be achieved using asymptotic analysis to focus on 
three special cases which are of practical interest in 
avascular tumour growth: when the tumour is very 
small (0 < R << 1); immediately after the onset of 
necrosis (0 < r,,, << 1); and, when the width of 
the proliferating rim is small (0 < R - r,l,, << 1). 
The third case is of particular interest since it is 
frequently observed when MCS are cultured in the 
laboratory. The same methods can be used to study 
the effect that different proliferation rates have on 
the tumour's development. It is also anticipated that 
the resulting approximate expressions for R and r,,, 
could be used to estimate key parameters from in 

vitro data on MCS. In addition, the approximate, 
analytical results provide us with some indication 
of the relative importance of apoptosis and necro- 
sis as cell loss mechanisms at different stages of a 
tumour's development. 

Small Tumour Analysis 

When r,,, = 0 (3.4) describes the growth rate of the 
tumour. In the limit as R -t 0 this equation reduces 
to give: 

Equation (4.1) shows clearly how the tumour's 
growth rate depends upon the balance between the 
rate of cell loss due to apoptosis (6)  and the rate of 
cell proliferation which is controlled by the external 
nutrient concentration (ox). If 6 > am the tumour 
shrinks and we say that the trivial, tumour-free solu- 
tion (R = 0)  is stable. As a, passes through 6 the 
stability of the trivial solution changes so that when 
a, > 6 the trivial solution i~ unstable and tumour 
growth ensues (Byrne and Chaplain, 1995a). As the 
tumour grows higher order terms become significant 
and (4.1) ceases to provide an accurate approxima- 
tion to the tumour's growth rate. In this case we 
must revert to (3.4). 

The Onset of Necrosis 

In order to characterise the size of the necrotic core 
directly after the onset of necrosis we introduce the 
small parameter c (0 < t << 1) and assume that 
R and he, can be expressed in terms of E in the 
following way: 

R -- Ro + ER, + E'R~ and r,,, - E?,,,. (4.2) 

Substituting with (4.2) in (3.1) and equating to zero 
terms of O(E") the following expressions can be 
derived: 
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In (4.3) R* is the tumour radius at the onset of 
necrosis, as defined by (3.5). 

From (4.3) we deduce that the outer radius of the 
tumour is almost constant when the necrotic core is 
small and that variations in R ( t )  are much smaller 
than variations in Y , ~ , ( O ( E ~  versus O ( E ) ) .  Using 
(4.3) and substituting with R and r,,, in (3.2) yields 
an ODE for R2 which is singular in the limit as 
E -+ 0 .  To regularise this equation we introduce 
a short timescale t = t /c2 .  In terms of t (3.2) 
supplies, at leading order, 

so that the growth rate of the tumour depends upon 
the balance between cell proliferation, cell loss due 
to apoptosis and the nutrient concentration at which 
necrosis is triggered. In particular, the absence in 
(4.4) of A. leads us to predict that when the necrotic 
core is small the tumour's growth rate is, to 0 ( e 2 ) ,  
independent of the rate of cell loss due to necrosis. 
This result is consistent with results obtained by 
Eerola et al. (1997) who showed that apoptosis 
is inversely related to necrosis in small cell lung 
carcinoma. 

Integrating (4.4) we obtain the following expres- 
sions for R2 and F,,,: 

R z ( r )  = R2(r  = 0 )  + A t  and F,,, 

We deduce that if A > 0 then both the tumour 
and its necrotic core grow whereas if A < 0 then 
the tumour ~hrinks and the necrotic core disappears 
at time t = -R2( t  = O)/A .  These results link 
together with those presented in section 3 where 
R* was introduced to denote the tumour radius at 
the onset of necrosis. Given that, for nontrivial 
solutions, Ro = R* > 0,  we use the definition of A 
(see (3.5) or (4.4)) to make the following prediction 
which relates the existence of a necrotic core to a 
specific balance between the system parameters. 

0 If 30, > 56 - 2ane, then the tumour will be 
necrotic when it reaches equilibrium. 

Given estimates of a,, a,,, and 6 it should be 
possible to test this claim experimentally. Otherwise, 
in the absence of complete parameter estimates, the 
result could be used to construct physical bounds 
for one of the model parameters. For example, if 
o, and an,, are known and if the tumour possesses 
a necrotic core at equilibrium we infer that 

In this way, we place an upper limit on the rate of 
cell loss due to apoptosis. The appearance of 6 and 
one, in the our model prediction leads us to deduce 
that both necrosis and apoptosis compete on equal 
footings at this stage of the tumour's development. 

That we had to introduce a short timescale in (4.4j 
to regularise the model equations leads us to make 
the addition prediction: 

0 During the early stages of necrosis the necrotic 
volwne expmds rapidly  hereas as the total tutnow 
volutne vemuirzs upprmimateIy constant. 

This prediction is in good qualitative agreement 
with independent experimental results obtained by 
Groebe and Mueller-Klieser (1996). Working with 
M C S ,  they observed that the necrotic volume did 
not grow gradually with spheroid diameter, rather it 
showed a rapid increase once a few cells had died. 

The Thin Proliferating Rim 

Introducing the small parameter N (0 < 8 << 1 )  we 
assume that. when the proliferating rim is thin, the 
radius of the necrotic core is related to the outer 
tumour radius as follows: 

rne, = R(I - + ~ ( 8 ~ ) .  

In this case, we derive from (3.1) the following 
expre5sion which relates the width of the proliferat- 
ing rim, ORr,, 1, to the difference between the external 
and the necrotic nutrient concentrations: 

From this result we make the following prediction: 

0 Ifthe dzfference bemeen the external tzutrierzt con- 
centration (o,) and the nutrient concentratio11 at 
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tt'hich neci-osis occurs (o,,,) is v e n  snzall (o,  - 
a,,,, = 0(02) )  then at equilibrium the tumour will 
possess a viable rim of width [2(a, - CT,, , ) /~]~'~.  

This model prediction, which provides us with nec- 
essary conditions for obtaining tumours with thin 
proliferating rims, could be tested experimentally. 
For example, given estimates of o,. rr,,, and l- we 
can use this result to estimate the width of the pro- 
liferating rim. We remark that our expression for the 
width of the viable rim agrees with that assumed in 
(Greenspan, 1976). In addition, the result suggests 
that the proliferating rim tends ultimately to a value 
which is independent of both time and the rate of 
cell loss due to apoptosis. 

Turning to (3.2). we deduce that R satisfies the 
following ODE: 

The rate of cell loss due to necrosis is now crucial 
to the growth rate of the tumour. For example, if 
X - O(1) then the tumour decays exponentially, 
and necrosis is the dominant cell loss mechanism, 
with cell proliferation and cell loss due to apoptosis 
playing secondary roles. However, if h = 8X then 
the ODE for R reduces to give 

1 d R  
-- = - X R  + (a,  - Z)Rr,,, . 
s Q  dt  

so that cell proliferation, cell loss due to apoptosis 
and necrosis now compete on equal footings. In 
this case our model analysis leads us to make the 
following prediction: 

I j  the icrte o f  cell loss due to necrosrr I S  sincdl 
(0 < h = O X  << 1). a, > 3, and the drffer- 
ence betkeen the external nutnent t olrcpntratron 
and the nut? lent roncentrutzon ut L$ hzch izecron T 

occurs I T  u l w  small (o,  - a,,,, = 0(8'))  then the 
tunlour evolt'et on a long funescclle t = 0(&') to 
an eqzdzbrrum confipratmz for ~.thrch 

a,,, ) 

r and r,, 1 

The predictions in this statement relating to 
h,  a,, a,,, and l- need to be tested experimentally. 
However, the slow evolution of the tumour 
to its equilibrium configuration agrees with 
experimental results described by Groebe and 
Mueller-Klieser ( 1996). 

By linearising about the steady state and inspect- 
ing the cign of dR/dr in this neighbourhood it is 
easy to show that, where it exists, the steady state is 
stable with respect to time-dependent perturbations 
(Byme and Chaplain. 1995a, 1996a). 

5 CONCLUSIONS 

In this paper we have presented a simple math- 
ematical model that describes the growth of an 
avascular tumour which contains proliferating and 
necrotic cells. An external nutrient acts as a source 
of energy. enabling the cells to proliferate. Necrosis 
and apoptosis have been introduced as distinct cell 
loss mechanisms, each responsible for counteracting 
the proliferative expansion of the tumour. Cell loss 
due to necrosis describes the death of cells towards 
the centre of the tumour that results from nutrient 
deprivation. This mechanism is routinely included in 
models of avascular tumour growth whereas apop- 
tosis, the second cell loss mechanism, is less com- 
monly included. Apoptosis describes natural cell 
death and occurs, for example, when a cell exceeds 
its natural lifespan. 

The main aims of the paper were to demonstrate, 
using numerical and asymptotic techniques, how the 
relative importance of the two cell loss mechanisms 
changes as a tumour grows and also generate exper- 
imental hypotheses. The numerical simulations fur- 
nish us with growth curves showing the evolution of 
the tumour radius and the necrotic core. By cornpar- 
ing these curves with experimental growth curves, 
obtained from MCS cultured in v i i ~ ~ ,  it s h o ~ ~ l d  be 
possible to test the accuracy of the model. The simu- 
lations also enable us to examine how changes in the 
model parameters effect the tumour's growth char- 
acteristics. This is of particular value because it is 
not always feasible to manipulate individual system 
parameters in a laboratory. 
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Since it is often difficult to see how the different 
physical mechanisms interact when numerical si~n- 
ulations are used, we used asymptotic techniques to 
study the model equations at three different stages of 
the tumour's development. In each case the model 
equations simplified considerably and we were able 
to determine the relative importance of cell prolif- 
eration, cell loss due to necrosis and cell loss due to 
apoptosis. Most importantly we were able to use our 
results to generate a number of model predictions, 
some of which agree with existing data and others 
which have yet to be validated. For completeness, 
we repeat the main predictions below: 

1. If om > 6 then the system can support a non- 
trivial steady state tumour. 

2. At the onset of necrosis the tumour radius is 
given by R* = [6(0, - o,~,)/T]"~. 

3. During the early stages of necrosis the total 
tumour volume remains approximately constant 
whilst the necrotic region expands rapidly. 

4. If 30, > 56 - 2%,, then at equilibrium the 
tumour possesses a necrotic core. 

5. (a) If 0 < a, - an,, << 1 then at equilibrium 
the tumour has a thin proliferating rim of width 

[2(02c - ~nec ) / r l "~ .  
(b) If, in addition, the rate of cell loss due to 

necrosis is small and o, > 6 then the 
tumour evolves slowly to its equilibrium con- 
figuration (which has a thin viable rim). 

6. Before the onset of necrosis, during the early 
stages of a tumour's development, apoptosis is 
the dominant cell loss mechanism. The appear- 
ance of a necrotic core signals an increase in 
the importance of cell loss due to necrosis and a 
reduction in the relative importance of cell loss 
due to apoptosis, this difference becoming more 
pronounced as the tumour increases in size. 

Predictions 1, 2, 4 and 5(a) have yet to be vali- 
dated by experimental results. However predictions 
3 and 5(b) are consistent with results reported by 
Leith and Michelson (1994) and Groebe and Muller- 
Klieser (1996). Working with MCS, Groebe and 
Muller-Klieser observed a rapid increase in the vol- 
ume of the necrotic region during early necrosis. 
They also observed a slow decrease in the thickness 

of the viable rim in large spheroids. Working with 
clone-A human colon-tumour xenografts, Leith and 
Michelson (1994) observed that a decrease in the 
proportion of the tumour containing proliferating 
cells occurred with the onset of necrosis. In addi- 
tion, Eerola et al. (1 997) observed a decrease in the 
relative importance of apoptosis in small cell lung 
carcinoma as the tumour developed and the extent 
of tumour necrosis increased. 

In addition to its potential for generating model 
predictions such as those listed above, one advan- 
tage of the asymptotic techniques used in this paper 
is that they can be applied to other, similar mod- 
els in which more realistic (nonlinear) expressions 
are used to describe terms such as cell proliferation, 
cell loss due to apoptosis and nutrient consumption. 
This is especially important given the qualitative dif- 
ferences in the steady-state structure of the tumour 
that can arise when different choices of the cell pro- 
liferation rate (S(a)) are employed (see Figures 4 
and 5). 

There are many ways in which our mathematical 
model could be extended. For example, we could 
employ more realistic functional forms to describe 
S(a) and N(o) (Hiltman and Lory, 1983). In addi- 
tion to nonlinearities, these terms might also include 
time delays. Such delays reflect the fact that a cell 
requires a finite amount time to divide. Delays might 
also be used to describe observed changes in the 
proliferation and cell loss rates over time (Byrne, 
1997a, b; Byrne and Gourley, 1997). For example, 
it is believed that if the cell proliferation rate gets 
too large (or too small) then the rate of cell loss due 
to apoptosis will, after a period of time, adapt to 
this change by increasing (or decreasing) in magni- 
tude. Another model modification involves relaxing 
the assumed radial-symmetry of the tumour, and 
introducing small asymmetric effects to describe 
tumour invasion or metastasis (Greenspan, 1976; 
Chaplain, 1993; Byrne and Chaplain, 1996b). If all 
asymmetric perturbations disappear then we predict 
that the tumour will grow as a localised, radially- 
symmetric mass, with no invasion. By contrast, 
growth of an asymmetric perturbation suggests that 
the tumour has a propensity for invasion, the growth 
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rate of the perturbation indicating the degree of 
aggression. 
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