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The propagation of electrical activity in cardiac tissue can be modelled by reaction 
diffusion equations, where a tensor of diffusion coefficients represents anisotropy due 
to fibre orientation, and excitation is represented by high-order, stiff differential systems. 
The effects of external electrical stimulation, as in artificial pacemakers, or in defibrillators, 
requires bidomain models, in which intra- and extracellular currents are treated separately. 
Simplified approaches are taken to this problem to illustrate two methods of defibrillation: 
by a single large pulse, that eliminates all propagating activity, and by a series of smaller 
amplitude perturbations, that drive out re-entrant sources of excitation. 
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INTRODUCTION 

The rhythmic beating of the heart is triggered by 
waves of electrical activity, the propagating car- 
diac action potential, that are initiated in a spe- 
cialised, autorhythmic pacemaker region, and spread 
through the atria and ventricles through the cardiac 
tissue, and from the atria to the ventricles by spe- 
cialised conducting pathways. The rate of beating 
is controlled by the pacemaker rate, and the pat- 
tern of activity arises from propagation through the 
anisotropic, anatomically organised cardiac muscle. 

Disturbances in propagation, or abnormal, ectopic 
pacemaker sites, can give rise to arrhythmias that 
can range from being unnoticed to lethal. A dan- 
gerous class of arrhythmia are the re-entrant arry- 
hthmias, in which the same wave of excitation 
repeatedly re-invades the same piece of tissue; these 
re-entrant arrhythmias are high frequency, as the 
period of the re-entrant wave is less than the normal 

period of the heartbeat, and underly atrial flutter and 
monomorphic ventricular tachycardia. If re-entrant 
waves break down, due to their intrinsic instability, 
or the effects of anisotropy and the geometry of the 
heart, spatio-temporal irregularity in the pattern of 
activation produces fibrillation, in which different 
parts of the same chamber of the heart are acti- 
vated at different times. Global coordination of the 
contraction of the heart is lost and instead of pump- 
ing rhythmically the heart writhes and quivers. The 
circulation is no longer maintained and death can 
result if the heart is not defibrillated (Zipes and 
Jalife, 1995). 

Here I consider mathematical aspects of defib- 
rillation by applied electrical shocks or perturba- 
tions, where by defibrillation I mean eliminating 
single and multiple re-entrant wave sources in the 
heart. The aim is to illustrate the mathematical basis, 
in terms of reaction-diffusion models for excitable 
media; important practical technical details, such as 
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FIGURE 1. I Frames from a movie illustrating the irregular pattern of propagation in the canine ventricles during fibrillation. 

FIGURE 1.2 Simulated action potentials for rabbit sinoatrial node: pacemaker activity as a limit cycle trajectory (left) and an evoked 
action potential in guinea pig ventricular muscle: solution of a stiff ODE. Oxsoft model equations. 

electrode geometry and position, and control algo- 
rithms, are omitted. 

ODE MODELS OF EXCITATION 

Membrane excitation equations are of the form: 

ca,~ = f ( ~ ,  v, w), 

where u  = u(t) is the transmembrane voltage, C is 
specific membrane capacitance, f is transmembrane 
current density, vector v = v(t)  describes the fast 
gating variables, and vector w = w ( t )  comprises 
slow gating variables and intra- and extracellular 
ionic concentrations, and g and h describe their 
kinetics. The variables u and v have comparable 
characteristic times. 

f can be represented by a simple caricature, such 
as the FitzHugh-Nagumo (FHN) equations, that 

retain the cubic characteristics of excitability, or by 
empirical biophysical excitation equations derived 
from voltage clamp experiments. The phenomenol- 
ogy of excitation in two- and three-dimensional, 
isotropic and anisotropic excitable media, and in 
anatomically accurate ventricular wall models, can 
be explored using FHN models. However, for simu- 
lating patterns of propagation in real cardiac tissue, 
and cardiac arrhythmias and their control, biophys- 
ically accurate equations are necessary. Biophysical 
excitation equations have been obtained for various 
cardiac tissues; these are high-order, stiff, systems 
of nonlinear differential equations, and are continu- 
ally being modified and revised as new experimental 
observations are incorporated: see chapter 1 of Pan- 
filov and Holden (1996). In this review we use only 
excitation models from the Oxsoft family, for rabbit 
sino-atrial node and atrial and guinea-pig ventricular 
cells (Noble, 1994). 

The bifurcation behaviour of these high- 
order ODES can be explored numerically using 
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current density Ii,, (measured in pA cmp2) 
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FIGURE 1.3 Equilibrium (solid line: stable; dashed line: unsta- 
ble) and maxima and minima of stable (m) and unstable ( 0 )  
periodic solutions for Oxsoft rabbit atrial cell model as [Na,] is 
varied as a bifurcation parameter. 

continuation algorithms, and the common behaviour 
as a parameter is changed is an equilibrium 
solution losing, and then regaining, its stability at 
Hopf bifurcations. Thus the cardiac cell models 
are either excitable, with a stable equilibrium 
solution, or endogeneously active pacemakers, with 
a stable limit cycle. Period doubling bifurcations 
(into bigeminy) have been seen, but patterned 
and irregular (chaotic) solutions are only found in 
restricted and unphysiological regions of parameter 
space. 

A simple model of abnormal pacemaker activ- 
ity induced by ischaemia is to increase [~a:]; this 
simulates the effects of a block of the Na+-K+ 
exchange pump. At elevated [~a:] periodic oscil- 
lations emerge: Winslow et al. (1993) have shown 
that a small cluster of such rhythmically active atrial 
cells can act as an ectopic pacemaker site, producing 
an arrhythmia. 

PDE MODELS OF PROPAGATION 

For a one dimensional excitable medium with a 
nonlinear current-voltage relation for the ionic 

where G is a conductance, with units of S. If we 
divide by C ,  we obtain 

where D is a diffusion coefficient with units of 
cm2 ms-'. Experimental preparations in cardiac 
electrophysiology are short compared to the spatial 
extent of a propagating action potential and so a 
finite cable, with Neumann boundary conditions, is 
usually appropriate. 

To consider the effects of external stimulation the 
pattern of current flow in both the intra- and extra- 
cellular domains needs to be considered. Let Vex and 
V,,, be potentials and D,, and Dl,, be conductivities 
in extracellular and intracellular spaces. Assuming 
Ohmic conductivities, the currents in extracellular 
and intracellular spaces are given by: 

From the conservation law for current flow: 

The membrane current i ,  is a sum of ionic and 
capacitive current, therefore the equations become: 

where V ,  = Vin, - V,, is a transmembrane potential. 
Alternatively, a linear combination gives: 

av,, 
2 ax (D,, 

+ nint "-) = o. 
ax 

These equations form the basis of bidomain models 
for cardiac tissue. In the one-dimensional case, we 
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FIGURE 1.4 The response of a homogeneous atrial ring model to a test stimulus applied to the refractory tail of a propagating 
conditioning wave At after the conditioning wave front reaches the stimulation site. (Left) At = 80 ms, no action potential initiated; 
(Centre) At = 83 ms, unidirectional block; (Right) At = 90 ms, a pair of action potential initiated. Membrane potential is displayed 
against distance. 

can always reduce the number of equations from 
two to one as: 

For two or three dimensional media instead of a 
simple conductance we have a conductivity tensor, 
i.e. a matrix which gives the proportionality between 
voltage gradient and current density. 

(here and throughout the rest of this section we 
assume the summation convention i.e. sum over 
doubly repeated indices) where V is potential, J i  
is a vector of current density, and D is a symmetric 
tensor accounting for conductivity of the medium, 

which in two dimensions has the following form: 

Following the same procedure as for one dimen- 
sional case we obtain: 

where D$ and D;; are conductivity tensors for 
intracellular and extracellular spaces. 

A resting one-dimensional medium responds to 
a brief localised excitation by either a subthreshold 
disturbance, or by a pair of travelling wave solu- 
tions (action potentials). Stimulation in the wake 

FIGURE 1.5 (Left) Spiral wave solution displayed as voltage contours every 10 mV in a square rabbit atrial tissue model, the spiral 
rotates around a circular core; (Right) trajectory of tip of spiral wave for first 10 s of rotation of spiral, aging (due to activity-dependent 
slow changes in intracellular and extracellular ionic concentrations) changes the pattern of motion from rigid rotation around a small 
circular core to a biperiodic motion. 
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of an action potential, during a vulnerable window, 
can excite a unidirectional action potential; in a 
one-dimensional model with a ring topology this 
provides a simple model for re-entrant excitation, 
when the same action potential repeatedly re-invades 
the same piece of tissue. Such re-entry underlies a 
class of cardiac arrhythmias, and so pharmacological 
modification of the vulnerablity of cardiac tissue to 
re-entry can be explored with biophysical excitation 
models on a ring. 

Re-entry in two-dimensional models has the char- 
acteristics of a spiral wave, that can rotate rigidly 
around a circular core, or meander biperiodically. 
Numerical studies of spiral wave solutions in atrial 
(Holden and Zhang, 1994) and ventricular (Holden 
et al., 1996) tissue models also show aging: the pat- 
tern of meander changes with time. 

We now want to eliminate re-entrant waves by 
applying external stimulation, and so need to obtain 
the response of cardiac tissue to externally applied 
stimulation. 

THEORY OF SINGLE SHOCK 
DEFIBRILLATION 

We begin with a bidomain approach (Biktashev 
et al., 1996), for a single isolated cell with an intra- 
cellular domain, 1, external domain, E, and the mem- 
brane surface, M, and introduce the electrostatic 
potential q5i and 4, in Z and E, ui and ue as limit 
values of q5i and 4, at M, and electric charge den- 
sities qi and q, at the inside and outside surface of 
the membrane 

here f ,  is the transmembrane current, xi,, are 
specific conductivities, and AM is the Laplacian 
operator on the membrane surface. After defining 
f (r, t), r E M, through local values of u, v and 
w, and local kinetic equations for v and w from 
(I), these equation form a closed system, which 

determine evolution of the distribution of electric 
properties over the cell at given E(t), and so describe 
the action of the external electric field onto the cell. 

We will now simplify this extensive nonlinear 
system of partial differential equations to a system 
of equations of the form: 

where u, v and w are now functions of time and 
position on the membrane, i is a linear (generally, 
integro-differential) operator in a space of scalar 
functions on the membrane, and j is a linear oper- 
ator mapping vectors E to scalar functions on the 
membrane. The specific forms of i and j depend 
on the geometry of M and on the coefficients ai,, 
and Ci,,. We use the following properties of these 
operators: 

i u  vanishes if u is spatially homogeneous over 
the membrane, 
the integral of i u  over the membrane surface is 
zero for any u, and 
the integral of i~ over the membrane surface is 
zero for any E. 

We now construct a simplified model, that retains 
the main features of (17). We approximate all func- 
tions u(x), v(x) and w(x) by piecewise constant func- 
tions, taking, at each time instant only two values 
at two different and fixed parts of the membrane. 
Denoting the two parts of the membrane by indices 
+ and -, (17) is then rewritten in the form 

where the signs in the last two equations are either 
all + or -. 

The constant a is the effective conductivity of the 
cell in this two-compartment approximation. I,,(t) 
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is the current produced by the external source and 
crossing the cell. 

The system (18) contains a singular small param- 
eter, the ratio of the characteristic times of the 
intracellular conductivity a, s,, and of the mem- 
brane excitability, sf that can be excluded by 'adi- 
abatic' arguments; and if the duration of pulses I,,, 
is shorter than the characteristic time q, of the slow 
variables then w+ % w- % W. This final simplifica- 
tion gives: 

This model is almost as simple as the original 
(I)  ordinary differential equation (e.g. it has three 
equations more than the 17 variable Oxsoft ordinary 
differential system we use for ventricular cxcitation), 
but describes the effect of external current. This has 
been obtained from (18) assuming the characteristic 
time of the external current pulses, 71, is 

In practice TI, rf and tg are all of the order of 1 ms. 

The general model (17) can be simplified by adi- 
abatic arguments to 

with separate ordinary differential equations for v at 
each point of the membrane. If the external field E 
is fixed in direction and varies only in magnitude, 
then the surface integral in (20) can be reduced, in 
a Lesbegue style, to an ordinary integral 

where the kernel K(s) is determined by the cell 
geometry, the conductivities, and the direction of 
the external field, and because of electroneutrality 
of the cell 

J K(s) ds = 1. 

The simple model (19) corresponds to evaluation 
of the integral in (21) at two points s = f (1/2a). 

The strength-duration curve - the threshold 
external current I,,, as a function of stimulus 
duration for the two models (18) and (19) 
- coincides with a very good precision. Thus a 

is large enough for the adiabatic approximation to 
be valid. 

The generalization of equations (19) for spatially 
extended tissue is straightforward as the deviation of 
each individual cell from an isopotential state takes 

stimulation duration (ms) 

FIGURE 1.6 Excitation threshold, nA, as a function of stimulus duration, ms, in a single cell (open circlea) and and simplified 
models (solid triangles) with f (), g ( )  and h ( )  were described by the Oxsoft guinea pig ventricle myocyte model that has 17 kinetic 
variables. a was 10 $3. 
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place only during the short time periods of external 
stimulation, and outside these periods cable theory 
gives 

where U ,  v* and W are now functions not only of 
time t ,  but also of distance along the fibre x, and the 
diffusion coefficient for voltage, D, is proportional 
to the intercellular conductivity. D = 1.25 cm2/s 
gives a conduction velocity of 0.6 m/s for a solitary 
wave through resting tissue. The value of D is 
necessary only for the interpretation of spatial scales 
as equations (22)  are invariant under simultaneous 
change of spatial scales and coefficient D. 

We now apply this approach to evaluate the defib- 
rillation threshold for a tissue, i.e. the amplitude 
of an externally applied current pulse necessary to 
abolish all propagating waves, and compare it with 

the prediction of the asymptotic theory of defibril- 
lation for our model. This theory was described in 
Keener (1996) and Pumir and Krinsky (1996) and is 
based on separate consideration of the slow and fast 
processes during the process of propagation (Fife, 
1976; T y ~ o n  and Keener, 1988), and assumes that 
on the fast time scale the medium has two alter- 
native stable equilibria, which depend on the slow 
variables. The propagation of the wavefront, in the 
fast time scale, is a trigger wave between the equi- 
libria that is either 'antegrade', when the excited 
region grows, or 'retrograde' propagation, when the 
excited region shrinks. The wavefront of a propa- 
gating pulse is an antegrade trigger wave, and its 
back a retrograde wave. In a resting medium, the 
upper, 'excited' equilibrium is more stable, so a 
suprathreshold perturbation produces an antegrade 
trigger wave, and the excited region expands. During 
the excited state, the evolution of the slow variables 
lowers the ~tability of the excited state while the sta- 
bility of the resting state increases, until a retrograde 
trigger wave can propagate. 

The boundary between these classes is in the state 
space of the slow variables, and corresponds to the 
values of these variables when the two equilibria are 
equally stable. If u is much faster than both v and 
w, this 'equal stability' is represented by a 'Maxwell 

FIGURE 1.7 (a) Subthrcshold (600 nA, 2 ms) and (b) suprathreshold (800 nA, 2 ms) response of a re-entrant wave in 
onc-dimensional ring to a defibribrillating shock. In both cascs the wavefront is inilially advanced, in the suprathrcshold caw the 
wavefront collapses back to its position at the time the pulse was applied, and meets its waveback. 
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FIGURE 1.8 Wavefront and waveback of a spiral wave solution before application of the defibrillating pulse, 20 ms, 80 ms and 
120 ms after application of the defibrillation pulse, when all activity is extinguished. 

rule', for the right-hand side of the fast excitability 
equation: 

.I 
Uexcmd(r w )  

f (u, v, W) du = 0. 
UE~t , ,g (b  H ) 

(23) 

In biophysical excitation equations the theory is 
applicable as long as the 'slow processes' v and w 
are slow enough for the asymptotic approach to be 
valid. The margin (23) between preferably-excited 
and preferably-resting cells is a manifold of codi- 
mension 1, and so finding the exact defibrillation 
condition would imply finding the points with the 
highest threshold on this manifold. We do not need 
to search the whole space, only in its subset, cor- 
responding to states of cells present in the tissue in 
the moment of defibrillation. For a spiral wave solu- 
tion of the two-dimensional analogue of (22), there 
is a narrow gap between the waveback of the spiral 
wave and the following wavefront. The response of 
such a counter-clockwise rotating re-entrant spiral 
(Figure 8) to a brief defibrillating pulse is similar to 

that seen in the one-dimensional model: the wave- 
front is forced forward, and then relaxes back to its 
position at the time the shock was applied, while the 
waveback continues to rotate counterclockwise. All 
activity is extinguished when the waveback reaches 
the wavefront. 

DEFIBRILLATION BY RESONANT DRIFT 

A spiral wave can be forced to move by a spa- 
tially uniform, time periodic perturbation of appro- 
priate frequency (Agladze et al., 1987; Davydov, 
et al., 1988). We have presented a phenomenolog- 
ical theory for such resonant drift (Biktashev and 
Holden, 1993). Resonant drift in the location of a 
spiral occurs when the frequency of perturbation is 
the same as the frequency of rotation of the spi- 
ral; in effect, each perturbation is applied at the 
same phase of rotation and so has the same effect 
on the spiral; since the spiral is stable this effect 
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can only be a displacement in tip position andlor a 
change in phase of the spiral. This general property 
of excitable media has been exploited as a means 
of moving spiral waves to the boundaries of the 
medium. A boundary can repel a resonantly drift- 
ing spiral, and this reflection of the spiral can be 
overcome by appropriate timing of the repetitive 
perturbation, and so the spiral can be driven onto the 
inexcitable boundaries and be extinguished (Bikta- 
shev and Holden 1995b). In principle, resonant drift 
under feedback control could provide a means of 
eliminating re-entrant activity in cardiac tissue by 
using small amplitude, repetitive electrical stimu- 
lation (Biktashev and Holden 1994). This will be 
practical only if any re-entry is eliminated within a 
reasonable time, say less than 30 s. 

We have used resonant drift to move and control 
re-entrant waves in simplified FitzHugh-Nagumo 
models of excitable media, and we have shown 
that using feedback control of the stimulation can 
provide elimination of the re-entrant activity, even 
when the period of re-entry is unknown or is vary- 
ing in time, or in presence of inhomogeneities, or 
when there are multiple re-entrant sources present 
(Biktashev and Holden 1993, 4, 5a). Defibrillation 
by resonant drift under feedback control for the ven- 
tricle CML model is illustrated in Figure 9. 

These computations have been extended to atrial 
and ventricular models (Biktashev and Holden 
1995b, 6). The effect of strictly periodic repetitive 
stimulation is to produce a drift of the position 
of the spiral, and general theory (Davydov et al., 
1988; Biktashev and Holden, 1995) predicts that this 

drift would be along a circle, with a drift velocity 
that depends upon stimulation amplitude and an 
angular velocity equal to the difference between the 
stimulation frequency and the resonant frequency 
of the spiral, where the latter also depends on 
stimulation amplitude and is close to the frequency 
of free spiral rotation when the amplitude of 
stimulation is small. Such an induced circular drift 
is illustrated in Figure 10, so the behaviour of the 
atrial tissue model is still consistent with the general 
theory, even though the theory was developed for 
a medium without refractoriness (Davydov et al., 
1988), and for a medium with a refractory period 
but using linear perturbation theory (Biktashev and 
Holden, 1995a) which is not formally applicable to 
the atrial tissue model because of the steepness of 
the propagation front. 

Strictly periodic stimulation is not very effective 
in extinguishing the spiral, as it is difficult to choose 
appropriate conditions that would cause the spiral 
wave to reach the inexcitable boundaries. Drift in a 
straight line towards the boundary is produced only 
in the case of an exact resonance, and even in this 
case the drift may not cause annihilation of the spi- 
ral, as the resonantly drifting spiral can be reflected 
by the boundary (Biktashev and Holden 1993). 

However, feedback controlled stimulation is more 
effective at driving the spiral to the boundaries (Bik- 
tashev and Holden 1994). The feedback dynamically 
adjusts the frequency of stimulation to the instan- 
taneous frequency of rotation, thus damping the 
de-tuning of resonance caused by changes in the 
frequency of rotation as the resonantly drifting spiral 

FIGURE 1.9 Frames from a movie illustrating elimination of re-entrant activity in canine ventricle CML model by spatially uniform, 
low amplitude stimulation triggered by the amval of a wavefront at a point on the right epicardial surface. The first few stimuli leave 
re-entrant sources deep in the heart, so activity re-emerge on the surface. However, finally (within a few seconds of canine lime) all 
re-entrant activity is eliminated. 
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FIGURE 1.10 Effect of strictly periodic repetitive stimulation with period 77.2 ms and amplitude 4 mV/ms on the trajectory of the 
tip of the spiral (continuous curve) for the rabbit atrial tissue model, and the phase (a) of the spiral, given by the position of the tip 
at instants of each stimulus. The averaged trajectory of the tip is nearly circular. The angular velocity of the averaged drift is the 
difference between the vortex frequency and the stimulation frequency. 

approaches a boundary, that leads to reflection of 
resonantly drifting spirals. 

Repetitive stimulation, triggered each time the 
wavefront reaches a recording site produces a drift 
of the spiral, which in the standard atrial tissue 
model always drives the spiral onto the bound- 
ary (Figure 11). In FitzHugh-Nagumo models, the 
interaction between the resonantly drifting spiral and 
the boundary was strong enough and the drifting spi- 
ral could stop near the boundary and persist, if the 
simulation amplitude was below a certain threshold. 
In the atrial tissue model, the interaction between the 
spiral and the boundary is weak and the annihilation 
was always produced, even at lowest stimulation 
amplitudes used (0.5 mVIms). 

In the ventricular tissue model, that shows a 
complicated pattern of meander, changing from a 
linear to a multi-lobed core, resonant drift can 
still be use to drive the meandering spiral onto 
the medium boundaries (Figure 12) (Biktashev and 
Holden, 1996). The repetitive stimuli used in the 
above computations are all much less than the 
threshold for a single 'defibrillating shock' of the 
same duration, i.e. the minimal shock which is suf- 
ficient for suppressing the spiral. 

The surprising results of these computations are 
that, in spite of the strong non-linearities of the exci- 
tation equations, the main qualitative predictions of 
the phenomenological theory for feedback driven 
resonant drift developed in Biktashev and Holden 

FIGURE 1.1 1 Tip trajectories under feedback controlled, resonant driving of atrial tissue model 
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FIGURE 1.12 (Left) Contours of re-entrant wave moving around an irregular, multi-lobed core and (Right) tip trajectories under 
feedback controlled, resonant driving of ventricular tissue model. When the wavefront of the spiral wave (depolarisation through 
-10 mV) reached a recording site in the bottom left hand corner, a 2 ms, 4 V/s depolarising perturbation was added after a fixed 
delay. Each trajectory is for a different delay, from 0 to I00 ms, and corresponds to applying the perturbation at a different phase of 
the spiral. 

(1994) have proved to be valid (except for linear 
dependence upon stimulation amplitude), and that 
even with stimulus sizes 10% of the single shock 
defibrillation threshold drift velocities of 1 cm s' are 
reached. Despite all the simplifications made, at least 
the order of magnitude of this velocity should be 
realistic. Thus we anticipate that resonant drift pro- 
duced by low amplitude, spatially uniform repetitive 
stimulation under feedback control can extinguish 
re-entrant arrhythmias in mammalian atrial tissue 
within about 10 s, and so can provide a practical 
technique for extinguishing atrial flutter. 

CURRENT PROBLEMS 

In spite of its practical importance, the processes 
of defibrillation remain obscure. Most theoretical 
approaches have been based on linear models 
(Sepulveda et al., 1989; Krassowska et al., 1990, 
Knisley et al., 1994) while some numerics of 
nonlinear models (Cartee and Plonsey, 1992) and 
theoretical studies with simplified models have been 
attempted (Pumir and Krinsky, 1996). The reason 
for this lack of progress is the combination of 
nonlinearity with the necessity for a representation 
of the complicated spatial 5tructure for every cell. 
We have overcome these problems by applying a 
series of well known methodc, to fulfill nonlinear 
averaging; the result is the simplified models of (18) 
and (22). This reduction of an infinite dimensional 

system to an ordinary differential system may be of 
value in a range of applications of nonlinear science. 

These simplified models have been verified 
numerically and allow us to use biophysically 
detailed excitation equations, and so we are now 
in a position to provide a quantitative, theoretical 
explanation for the effects of changes in parameters 
in the excitation equations on the defibrillation 
threshold, and to design optimal defibrillation pulse 
parameters. Experimental techniques now exist 
(Zhou et al., 1995) for testing such quantitative 
descriptions of the mechanisms of defibrillation. 
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