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In clinical trials and other follow-up studies, it is natural that a response variable is
repeatedly measured during follow-up and the occurrence of some key event is also
monitored. There has been a considerable study on the joint modelling these measures
together with information on covariates. But most of the studies are related to
continuous outcomes. In many situations instead of observing continuous outcomes,
repeated ordinal outcomes are recorded over time. The joint modelling of such serial
outcomes and the time to event data then becomes a bit complicated. In this article we
have attempted to analyse such models through a latent variable model. In view of the
longitudinal variation on the ordinal outcome measure, it is desirable to account for the
dependence between ordered categorical responses and survival time for different
causes due to unobserved factors. A flexible Monte Carlo EM (MCEM) method based
on exact likelihood is proposed that can simultaneously handle the longitudinal ordinal
data and also the censored time to event data. A computationally more efficient MCEM
method based on approximation of the likelihood is also proposed. The method is
applied to a number of ordinal scores and survival data from trials of a treatment for
children suffering from Duchenne Muscular Dystrophy. Finally, a simulation study is
conducted to examine the finite sample properties of the proposed estimators in the
joint model under two different methods.

Keywords: selection model; Monte Carlo EM; frailty survival model; sandwich
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1. Introduction

In recent years, researchers have shown great interest to record the values of key

longitudinal covariates until the occurrence of survival time (or event time) of a subject.

Certainly, the data available vary across patients according to their failure time.

The truncation of a patient’s response can raise similar problems to those that have been

considered in the event of patient dropout [12,14,18]. However the primary interest in such

models is in drawing inferences for the marginal distributions of the longitudinal response

in the absence of dropout. Moreover, often the longitudinal model and survival model are

assumed to share some unobserved variables. In this case, separate models can result in

biased estimates. This necessitates the development of a joint model. Research on this
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topic has received substantial attention during the last few years, primarily because of its

tremendous application in biopharmaceutical and related areas.

Considerable literature [5,8,9,19] is available on models called selection model, where

the joint density of repeated measures vector and failure time is obtained as the product of

the conditional density of the failure time due to any event given the longitudinal outcomes

and the marginal density of these outcomes. More specifically, the selection model

answers the question regarding how one’s response to the severity of the disease affects

death (failure). In contrast to the previous work that mostly deals with continuous

longitudinal data, the present study on joint modelling is based on ordinal categorical

outcomes. This requires a very different approach in model building. Furthermore, unlike

previous joint models, here we assume the repeated measures and failure times remain still

dependent, even though the subject-specific random effect is conditionally given. This is

because if the primary focus is to estimate and compare events between survival and any

serial trends, one might postulate those repeated measurements that serve as covariates in

the survival model. Consequently, an analyst may be able to predict the time for failure for

any specific set of values of longitudinal outcome.

Our research is motivated by a data set concerning longitudinal outcomes of subjects

involved in a study on muscular dystrophy among the children caused by deletion,

duplication or point mutation of the Dystrophin gene located on X-chromosome. These

values consist of observations on six different muscles that are responsible for walking.

Two time-to-event indicators are also observed over different time points. These are time

taken by a patient to walk 4 steps and to get up from lying state. Censoring occurs if a

person fails to complete the four steps in 1 min or fails to stand up within 40 s. As both the

causes are highly dependent, there is no harm in assuming that both the failures occur

simultaneously. These scores, observed up to failure from any of the causes for each

subject, are ordinal in nature. Our interest is on characterizing the relationship between

failure time (due to any one of the causes) and the longitudinal outcomes. In this study

only the first one (complete the four steps in 1 min) is used, which appears to be more

severe according to the doctors.

Although longitudinal models in the presence of nonlinear relationships between

outcomes and covariates are quite popular in practice, their use has been limited due to

complexity of the likelihood function. Furthermore, ordinality in the data increases the

complexity of the likelihood. Here we develop a methodology whereby a joint likelihood,

based on ordered longitudinal scores and time to failure data, is maximized. The ‘exact’

and ‘approximate’ methods based on Monte Carlo EM (MCEM) are addressed. By ‘exact’

we mean the inference is based on the exact likelihood. Inference achieved by

approximating the likelihood is considered to be an ‘approximate’ method. As the

longitudinal outcomes and failure time data are simultaneously taken care of, this provides

more efficient use of data. Since the parameters of both models are estimated at the same

time, our approach uses not only the observed ordered longitudinal outcome but also

failure information to get precise estimates of the strength of relationship between the

longitudinal data and the risk of failure. We assume that the subject-specific (cluster-

specific) effect is constant over time and is thus identical at all event times when the

subject is at risk.

The rest of the paper is organized as follows: Section 2 describes the model and the

likelihood. Section 3 describes a MCEM algorithm for exact inference. As a special case, a

linear mixed model is discussed in this section. Section 4 presents a MCEM algorithm for

approximate inference. The algorithm was carried out with the initial choice as the

posterior solution of a suitable full Bayesian model shown in the Appendix. Section 5
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presents a substantive example from a muscular study. Small sample properties of the

proposed estimates are also examined via simulation studies in Section 6. Section 7

concludes the article with some discussion.

2. The model and the likelihood

Since our primary interest is to determine the impact of longitudinal measures (scores) on

the survival outcomes, we construct the joint likelihood as the product of the time to event

likelihood conditional on the longitudinal measures multiplied by the likelihood of the

longitudinal outcomes. Note that for ordinal longitudinal outcomes, this likelihood is

based on a latent class of mixture models where the individual trajectories for each patient

are accounted for. In both models, observed covariates such as a subject’s baseline

variables and environmental information over time may be taken as predictors. Some of

them may be time independent and some may not be. Unobserved factors enter the model

as subject-specific random effects, which do not depend on the time points, so as to

account for unobserved heterogeneity.

Specifically for each subject i, longitudinal q dimensional ordinal scores, taken at time

point j, are denoted as yij, j ¼ 1; . . . ; ni, i ¼ 1; . . . ;m. Thus yij is the longitudinal response

vector for subject i at time point j.

Since the ordinal score vector yij can be considered as a result of the discretization of a

continuous latent variable vector ywij , j ¼ 1; . . . ; ni [2], the value of each component of yij
may be determined by a series of increasing thresholds. We express for k ¼ 1; 2; . . . ; q

yijk ¼ mk if gk;mk21 # ywijk , gk;mk

¼ 0; otherwise:

Furthermore, the survival time tij for this subject i can be right censored at some time cij.

Hence vij ¼ minðtij; cijÞ denotes the observed time at risk for subject i on the jth time point.

The failure indicator is defined as dij ¼ Iðtij#cijÞ. Using a Cox frailty model [4], the

right-censored survival times for the particular cause are then modelled as

l tijjy
w
ij ðtijÞ

� �
¼ l0ðtijÞexp b0

0y
w
ij ðtijÞ þ b0

1xijðtijÞ
n o

ð1Þ

where l0ð·Þ is an unknown baseline hazard function and b0, b1 are vectors of regression

parameters associated with the longitudinal variates and covariates, respectively. Note that

this hazard varies with time not only because l0 does, but also because both y and x do.

The specification of the hazard in Equation (1) leads to the following likelihood:

f tij; dijjy
w
ij

� �
¼ l0ðtijÞ

dijexp dij b0
0y

w
ij ðtijÞ þ b0

1xijðtijÞ
n oh i

SijðtijÞ ð2Þ

where

SijðtijÞ ¼ exp 2

ðtij
0

l0ðuÞexp b0
0y

w
ij ðuÞ þ b0

1xijðuÞ
n o

du

� �
:

Then conditional on the subject-specific effects ji ¼ ðji1; ji2; . . . ; jiqÞ
0, we can write the
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joint distribution of the categorical variable yij as

Pjm1 ; ... ;mq
jji ¼ Pðyij1 ¼ m1; yij2 ¼ m2; . . . ; yijq ¼ mqjjiÞ

¼ P g1;m121 # ywij1 , g1;m1
; g2;m221 # ywij2 , g2;m2

;
�

. . . ; gq;mq21 # ywijq , gq;mq
jji

�
¼
Yq
k¼1

P gk;mk21 # ywijk , gk;mk
jji

� �
¼
Yq
k¼1

pjkjj i

ð3Þ

where the latent variable is subject to a nonlinear mixed model, i.e.

ywij ¼ gðxij;a; jiÞ þ eij ð4Þ

where xij being the vector of covariates associated with yij, eij being the vector of

measurement errors, gð·Þ is a known function, ji is distributed with density function hð·Þ

and eij , Nqð0;s
2
0IÞ, s

2
0 is a known positive scaler. Then the likelihood for the observed

data can be expressed as

L ¼
Ym
i¼1

ð
ji;y

w
ij

ani
j¼1

l
ji;y

w
ij

j hðjiÞdjidy
w
ij

¼
Ym
i¼1

ð
j i;ywij

l
j i;y

w
ij

iJ hðjiÞdjidy
w
ij ;

ð5Þ

where

l
j i;y

w
ij

iJ ¼
Yni
j¼1

l
j i;y

w
ij

j ;

l
j i;y

w
ij

j ¼ f tij; dijjy
w
ij

� �Xr
m1¼1

Xr
m2¼1

· · ·
Xr
mq¼1

1ij
m1;m2; ... ;mk

Pjm1 ;m2 ; ... ;mq
jji;y

w
ij

ð6Þ

and

1ij
m1;m2; ... ;mk

¼ 1 if yij1 ¼ m1; yij2 ¼ m2; . . . ; yijq ¼ mq;

¼ 0 otherwise
;

)

or equivalently

l
j i;y

w
ij

j
¼
Xq
u¼1

Xr
mu¼1

1ijm1 ;m2 ; ... ;mk

Yq
k¼1

f tij; dijjy
w
ij

� �
pjkjj i

¼ f tij; dijjy
w
ij

� �Xq
u¼1

Xr
mu¼1

1ijm1;m2; ... ;mq

Yq
k¼1

F
gk;mk

2 gðxij;a; jiÞ

s0

� �
2F

gk;mk21 2 gðxij;a; jiÞ

s0

� �� �

¼ f ðtij; dijjy
w
ij Þ

Xq
u¼1

Xr
mu¼1

1ijm1;m2; ... ;mq
1ij*m1;m2; ... ;mq

Yq
k¼1

f
gðxij;a; jiÞ

s0

� �� �

ð7Þ
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where

1ijw
m1;m2; ... ;mq

¼ 1 if gk;mk21 # ywijk , gk;mk
for all k ¼ 1; 2; . . . ; q;

¼ 0 otherwise

)

Our objective is to propose a suitable method for obtaining the maximum likelihood

estimates of u ¼ ða;b0;b1Þ
0.

2.1 Latent linear model

As a special case we have also considered a latent linear model. In this case, Equation (4)

changes to

ywij ¼ x0ija1þ ji þ eij; ð8Þ

where 1 is q vector of unit elements and ji ¼ ðji1; ji2; . . . ; jiqÞ
0. The likelihood remains the

same except for the form of the function gð·Þ.

3. Monte Carlo-based EM method

Inference for the joint model can be made using the MCEM algorithm. This MCEM

approach is very effective because integral evaluation in the likelihood Equation (5) is

otherwise impossible. In fact, the parameters appearing in the joint model can be estimated

by performing iterations between an E-step and an M-step. The E-step is based on the

complete data log likelihood which can be expressed as

l ¼
Xm
i¼1

lic;

where

lic ¼

ð
j i;y

w
ij

Yni
j¼1

l
j i;y

w
ij

j hðjiÞdjidy
w
ij ;

where l
j i;y

w
ij

j is given in Equation (7).

The method is based on the relation between the unconditional score and the

conditional score, i.e.

Su ¼
Xm
i¼1

Ð
j i;y

w
ij

›liJ ðuÞ
›u

djidy
w
ijÐ

ji;y
w
ij
liJðuÞdjidy

w
ij

¼
Xm
i¼1

Ej i;ywij jy ij

›log liJðuÞ

›u

� �
¼
Xm
i¼1

Ej i;ywij jdata Swu
	 


: ð9Þ

where Su is the unconditional score and Swu is the conditional score obtained from the

logarithm of the joint likelihood given by Equation (5). In fact, we apply EM algorithm

where at the ðlþ 1Þth stage we generate ji, y
w
ij from Equation (7), when u ¼ uðlÞ (E-step)

and then at the M-step we solve for u from

0 ¼ Su .
Xm
i¼1

1

R

XR
r¼1

Sw
u
ðlÞ
ir

;
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where Sw
u
ðlÞ
ir

is the value Swu for the ith individual, obtained by substituting rth set of

the generated values from the conditional distribution of (ji, y
w
i ) at u ¼ u ðlÞ, r ¼ 1ð1ÞR, R

being the number of samples. In order to solve the above, one-step Newton-Raphson

method is used. This gives

û ðlÞ ¼ û ðl21Þ þ ðM21̂SuÞjû ðl21Þ ; ð10Þ

where for each i, ðj ðlÞ
i1 ; y

wðlÞ
ij1 Þ; ðj ðlÞ

i2 ; y
wðlÞ
ij2 Þ; . . . ; ðj ðlÞ

iR ; y
wðlÞ
ijR Þ are generated from (7) using

Metropolis-Hastings (MH) algorithm [7] and M ¼ ð2›Su=›uÞ.
In summary, the foregoing EM algorithm proceeds as follows:

Step 1. Obtain an initial estimate of u ¼ uð0Þ and generate ðjð0Þi ; ywð0Þ
ij Þ.

Step 2. At the ðlþ 1Þst iteration, obtain MC estimates of the first and second order

derivatives by generating the random effects and latent variable ðj ðlþ1Þ
i ; ywðlþ1Þ

ij Þ by MH

algorithm for the ith individual, l ¼ 1; 2; . . . ; i ¼ 1; 2; . . . ;m.

Step 3. At the ðlþ 1Þst iteration, obtain updated estimates u ðlþ1Þ using one-step

Newton-Raphson method.

Step 4. Iterate between Steps 2 and 3 until convergence.

The proposed algorithm is identical for both the models—linear and nonlinear.

The foregoing MC-based EM algorithm may be slow to converge, especially when the

dimension of the random effects is not small. Again the MH algorithm, within MCEM,

makes things more time consuming. In Section 4, we describe a particularly useful

approximate method, which converges faster by avoiding the sampling of random effects

by MH algorithm.

4. Approximate method

In view of the difficulty that arises in the E-step due to high dimension of random effects, it

looks worthwhile to propose a reasonable approximate method. This approximate method

can at least skip a generation of samples from the posterior distribution of random effects,

or is at least capable of drawing such sample observations from the normal distribution

pretty easily. The method considered in this section is computationally more efficient as it

converges faster and restricts other potential computational problems associated with the

exact method.

There has been several studies on nonlinear mixed effect (NLME) models [15] where

the exact likelihood is approximated on the basis of Taylor expansions or Laplace

approximations [3,17]. Lindstorm and Bates [11] considered linear approximation through

first order Taylor expansion around the current estimates and used posterior modes for the

random effects. This makes the integration over the random effects in the E-step possible.

The approximate method can clearly be explained as follows. In view of (4), we write a

general NLME latent model (conditional on ji) as

ywij ¼ gðxij;a; jiÞ þ eij; j ¼ 1; . . . ; ni; i ¼ 1; . . . ;N ð11Þ

where g is a nonlinear function. To simplify the notations, we suppress iteration numbers

and MC sample numbers. We denote the current estimates of ða; jiÞ by ðâ; ĵiÞ. Adjusting,

we can write

~yij ¼ ywij 2 gðxij; â; ĵiÞ þ ZijâþWijĵi; ð12Þ
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so that the model is taken as

~yij ¼ ZijaþWijji þ eij; eijjji , Nð0;s2IÞ; ji , Nð0;DÞ; D ¼ DðhÞ; ð13Þ

where Zij and Wij are matrices of order q £ p and q £ s, respectively, with

zijk ¼ ð›gðxij;a; ĵiÞÞ=ð›b
0
0Þjâ, wijk ¼ ð›gðxij;a; ĵiÞÞ=ð›j

0

iÞjĵi .

Under the LME model (13), it is straightforward to show that

½jijyij;Wij;Zij; â� , Nð ~ji; ~SiÞ, where ~Si ¼ ðŝ22W0
iWj þ D21ðĥÞÞ21, ~ji is the best linear

unbiased predictor estimates of the random effects (see Robinson 1991) and is equal

to SiW
0
ið ~Yi 2 ZiâÞ=ŝ

2, ~Yi ¼ ð ~Yi1; ~Yi2; ::; ~YiniÞ
0, Zi ¼ ðZi1Zi2; . . . ;ZiniÞ

0, W ¼ ðW i1W i2;
. . . ;W iniÞ

0.

The E-step for the ith individual can be written as

Qiðuju
ðlÞÞ ¼ Ej i; ~Y ijY i;x i

½licðu; ~Yi; jiÞjYi; xi� ¼ E ~Y ijY i;u ðlÞ ½Ej ij ~Y i;Y i;u ðlÞ{licðu; ~Yi; jiÞ}�;

where

lic ¼ log Lic

Lic ¼ Li1 £ Li2c £ hðjiÞ

Li1 ¼
Yni
j¼1

f ðtij; dijÞ

Li2c ¼
Yni
j¼1

Xq
u¼1

Xr
mu¼1

1ij
m1;m2; ... ;mq

�
Yq
k¼1

F
gk;mk

2 gðxij;a; jiÞ

s0

� �
2F

gk;mk21 2 gðxij;a; jiÞ

s0

� �� �

<
Yni
j¼1

Xq
u¼1

Xr
mu¼1

1ij
m1;m2; ... ;mq

�
Yq
k¼1

F
gk;mk

2 Zija2Wijji
s0

� �
2F

gk;mk21 2 Zija2Wijji
s0

� �� �

The foregoing integral generally does not have a closed form, and evaluation of the

integral by numerical method is generally infeasible except for simple cases. However,

this can be evaluated by using MCEM algorithm (see [16]). Specifically, we may use the

Gibbs sampler to generate samples from the joint conditional distributions of ~yij and ji.
For individual i and at time tij, let ðð~yðlÞij1; j

ðlÞ
i1 Þ; ð~y

ðlÞ
ij2; j

ðlÞ
i2 Þ; . . . ; ð~y

ðlÞ
ijMi

; j ðlÞ
iMi

ÞÞ be a random

sample of size Mi generated from the following full conditional distributions

½~yðlþ1Þ
ij jj ðlÞ

i ; uðlÞ; yðlÞij � , truncated NðZijaþWijji;s
2IÞ; j ¼ 1; . . . ; ni

j ðlþ1Þ
i j ~Y

ðlþ1Þ

i ; uðlÞ , Nðj ðlÞ
i ; ~S

ðlÞ

i Þ:
ð14Þ
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The E-step at the ðlþ 1Þst iteration can be written as

Qiðuju
ðlÞÞ ¼

1

Mi

XMi

l¼1

licðu; ~Yi; jilju
ðlÞÞ:

In view of the simpler full conditional form, we do not need to take the help of MH

sampling. This leads to faster convergence (less computation time). The M step of the

MCEM algorithm maximizes QðujuðlÞÞ ¼ SiQiðuju
ðlÞÞ to produce an updated estimate

uðlþ1Þ. The score function SðuÞ can be computed as

SðuÞ ¼

›
P
i

Qiðuju
ðlÞÞ

›u
¼
X
i

1

Mi

XMi

l¼1

›licðu; ~Yi; jilÞ

›u

and hence M ¼ ›SðuÞ=›u.

The foregoing EM algorithm in this case may be summarized as follows:

Step 1. Consider l ¼ 0 and initialize u ¼ uð0Þ.

Step 2. Using Gibbs sampler, generate Mi observations ð~yijw; jiwÞ, w ¼ 1; . . . ;Mi

from (14).

Step 3. At the ðlþ 1Þst iteration, obtain updated estimates uðlþ1Þ using one-step

Newton-Raphson method as earlier.

Step 4. Continue till a convergence is achieved.

It is well known that the EM algorithm is highly dependent on the choice of the initial

estimates. In order to obtain a good initial choice of the estimates, we develop a

hierarchical Bayesian framework (see Appendix). This provides a posterior solution in a

very short time span. Since our primary concern is to carry out an MCEM-based analysis,

we did not emphasize on the choices of priors of parameters and hyperparameters. Just a

standard Bayesian framework with conjugate priors is considered for obtaining a posterior

solution.

5. Analysis of muscle score data

5.1 The models and estimation

This article is motivated by a study on muscular dystrophy among the children. The data

consist of scores of six different muscles (q ¼ 6), (neck, deltoid, bicep, iliopsoas,

quadriceps and hamstrings), responsible for walking, observed on different time points.

These scores are discrete in nature and can vary from 0 (very weak) to 10 (normal). Along

with these, few important covariates such as age of the patient, on-set age and weight

are recorded. To see the trajectory of the composite score (average of the muscle scores)

over time, a LOWESS smoothing was done. The exploratory data analysis revealed that

the composite score varies over time. This justifies the assumption of time dependency

of the model.

It is natural that both the time to events are highly associated. In fact, in an earlier

investigation, this was observed in a 2 £ 2 contingency table based on a total of 80

observations. By plotting the composite score versus a model-based estimate of hazard,

given in Figure 1, we see a decrease in the hazard estimates. This phenomenon is observed

for both time to event measurements, and, therefore, gives us initial evidence that there is

indeed some positive association between high composite score and longer relapse-free

survival.
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The proposed model is used here to analyse the data on muscular dystrophy. The study

provides the data on children (patient) ranging from 4 to 12 years. The muscle scores and

time to failure from the particular causes are taken into account for each patient. The only

covariate considered is the weight of each patient. Here the muscle score can vary from 0

to 10. To reduce the number of categories, we condense the data a bit. Observing the

frequency distribution of the muscle scores, six categories are taken into consideration.

Together with these, the time taken by a patient to walk is recorded, subject to censoring.

Specifically we express the latent nonlinear mixed model (corresponding to categorical

variable yij) as

ywij ¼ expða1 þ a2x0ijÞ1þ ji þ eij; ð15Þ

where 1 is a q £ 1 vector with each term being unity and for

lijðtijÞ ¼ l0ðtijÞexp
Xq
k¼1

ywijkbk

 !

ji , Nqð0;SÞ; eij , Nq 0;s2
0 I

	 

with

S ¼ ððs2r js2tjÞÞ; s; t ¼ 1ð1Þ4:

Note that for the latent linear mixed set-up, we consider, instead of (15), the model

ywij ¼ ða1 þ a2x0ijÞ1þ ji þ eij

for our analysis. Hazard function has been computed following the counting process

formulation of Anderson and Gill [1]. This addresses the computational problem of the

time-dependent covariate in the Cox proportional hazard model. For the sake of

2
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H
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Time to walk
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76543

Figure 1. Model-based hazard.
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convenience we assume the regression coefficient b02 that comes in the above two latent

models is the same although it could be assumed to be different for latent variables

associated with different muscles.

5.2 Conclusions

The performance of the MCEM-based ‘exact’ and ‘approximate’ algorithm can be seen in

Figure 2. Note that in order to have stabilized values of the standard errors (SEs) of the

estimates, we consider here a MC-based sandwich technique (see [6]). On the basis of the

methodologies proposed in Sections 2 and 3, we carry out a numerical study. The estimated

values of the parameters at convergence along with their SEs are given in Table 1. Clearly,

the three methods may give different results, which is evident from Table 1. In most cases

we found that the approximate estimates are closer to exact estimates than the linear mixed

model estimates, and the linear mixed model method generally produces larger standard

errors than the approximate estimates, possibly indicating inefficiency of the method

based on a linear mixed model. The covariate effects in the model are tested based on

Wald statistics. With regards to the computational time, it turns out that the standard

MCEM for the exact method is quite slow for this example. All computations were done

by using ‘R-2.10.1’, and the codes can be obtained from the authors on request.

The analysis leads to some interesting conclusions. As the coefficients b03, b05 and b06 are

statistically significant, in all models, it indicates that the third, fifth and sixth muscle

(biceps, quadriceps and hamstring, respectively) scores are strongly related to the failure

0 10 15 20 25
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0.5

Iteration number
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–0.5

0.0

0.5

Nonlinear approximate method

β01
β02
β1
β2
β3
β4
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σ2

ρ

–1.0

0.0
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Iteration number

5
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Iteration number

5

Figure 2. Performance of the MCEM-based proposed algorithm: data analysis.
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time. Thus the low quadriceps, hamstring and biceps muscle scores give a strong signal to

the doctors on the patients’ health condition. The Akaike Information Criterion (AIC),

which indicates model fit and model parsimony, is also computed for both the models. It is

found to be 75.38 in latent linear models. In the case of a nonlinear model, it is found to be

29.76 and 35.49 corresponding to the exact method and approximate method, respectively.

Among these models, on the basis of AIC, the nonlinear model with the exact method may

be assumed to be the best fit for these data.

6. Simulations

We conducted simulation studies to compare the exact and approximate methods. Here,

we consider the same model that has been used in data analysis. We take a continuous

time-dependent covariate for the latent model. The survival model is expressed

conditionally with longitudinal outcomes and covariates as the predictor. The longitudinal

model involves subject-specific random effects. The covariate xij is simulated from a

Normal distribution Nð0:65; 1Þ. The latent variable ywijkðk ¼ 1; 2; . . . ; 6Þ are generated in

view of the above model with a1 ¼ 0:2, a2 ¼ 20:3, s2 ¼ 0:7, r ¼ 0:6, s2
0 ¼ 1 and hence

the ordinal data yij are generated for k ¼ 1; 2; . . . ; 6. Note that the values of the cut-off

points are taken here as g0 ¼ 21; g1 ¼ 22 log 3; g2 ¼ 2 log 3; g3 ¼ 0; g4 ¼ log 3; g5 ¼

2 log 3; g6 ¼ 1. Furthermore, based on 25% censoring proportion (i.e. c ¼ 25%),

censoring times were generated as independent uniform random variable on ½0; c� for both

cases. The parameters b01 to b06 appearing as coefficients associated with the observed

ordinal variables are taken as b01 ¼ 20:3;b02 ¼ 20:6;b03 ¼ 20:4;b04 ¼ 20:6;b05 ¼

20:5; b06 ¼ 20:6. These values are chosen on the basis of data analysis.

Note that using MH algorithm, 500 samples are generated from Equation (7) where for

each sample MC average of first order and second order derivatives is taken on the basis of 500

such observations. An improved estimate is obtained using Newton-Raphson method.

The iteration is continued until the desired level ðju ðkþ1Þ 2 u kj , 0:0001Þ of accuracy is

achieved. Like the data analysis, the exact method is found to be very slow here in terms

of convergence.

Simulation study is also carried out for the latent linear model. The initial choices for

parameters appearing in the latent longitudinal model are obtained by replacing ywij by yij
and taking the model as a mixed model. The other parameters in the survival model are

estimated independently. In this case also, convergence is achieved within 25 iterations.

Table 1. Estimates of parameters with standard errors in parentheses: data analysis.

Nonlinear

Parameter Linear Approximate method Exact method

a1 20.219 (0.528) 20.203 (0.552) 20.323 (0.395)
a2 20.563 (0.792) 20.681 (0.853) 20.480 (0.427)
b01 20.328 (0.964) 20.464 (0.781) 20.279 (0.196)
b02 20.787 (0.703) 20.953 (0.753) 20.858 (0.486)
b03 20.441 (0.889) 20.546* (0.104) 20.726* (0.121)
b04 20.608 (0.752) 20.779 (0.277) 20.639 (0.375)
b05 20.551 (0.226) 20.498* (0.248) 20.601* (0.144)
b06 20.774*(0.393) 20.741* (0.134) 20.784* (0.224)
s2 0.677 (0.732) 0.661 (0.062) 0.647 (0.187)
r 0.565 (0.821) 0.505 (0.022) 0.556 (0.117)

*Significant effect.
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The simulation results are presented in Table 2. The presence of longitudinal model

has been assured through their SEs. The SE values have been improved by stabilizing

through the sandwich approach. The proposed MCEM algorithm converges in all cases

within 25 iterations. It is evident from Figure 3 that the parameters associated with the

longitudinal model initially show somewhat erratic behaviour in the convergence,

although at a later stage they ultimately converge. In contrast, the estimates of survival

parameters in the survival model exhibit a very steady convergent behaviour. Table 2

shows a comparison between exact and alternative methods. It shows that the approximate
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Figure 3. Performance of the MCEM-based proposed algorithm: simulation.

Table 2. Estimates of parameters with standard errors in parentheses: simulation study.

Nonlinear

Parameter True value Linear Approximate method Exact method

a1 0.2 0.195 (0.509) 0.178 (0.474) 0.181 (0.905)
a2 20.3 20.363 (0.485) 20.339 (0.186) 20.331 (0.132)
b01 20.2 20.212 (0.434) 20.258 (0.220) 20.226 (0.331)
b02 20.6 20.425 (0.652) 20.560 (0.460) 20.540 (0.542)
b03 20.4 20.442 (0.411) 20.323 (0.771) 20.385 (0.107)
b04 20.6 20.457 (0.436) 20.521 (0.203) 20.528 (0.365)
b05 20.5 20.251 (0.354) 20.422 (0.139) 20.512 (0.325)
b06 20.6 20.574 (0.352) 20.579 (0.175) 20.661 (0.139)
s2 0.7 0.677 (0.218) 0.693 (0.163) 0.624 (0.143)
r 0.6 0.615 (0.315) 0.664 (0.271) 0.658 (0.144)
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method performs quite well. There seems to be very little difference between the exact and

approximate estimates. Thus in this context, the approximate method may offer important

advantages because it iteratively solves linear models with less computing time. Clearly

our exact method exhibits a better performance in the sense of smaller bias. Here, we also

found that the approximate estimates are closer to the exact estimates except for the

estimate of b03, which is underestimated by the approximate method, whereas b02

is overestimated by the exact method, although the magnitude of biases in both cases

is very small.

7. Discussion

We have proposed a joint model for the observed longitudinal and survival data that link

the responses via a common frailty. Observe that in our joint model, the survival model

part depends on the longitudinal outcomes. This arises from the fact that the muscle score

has a big role to play for the time to failure. Furthermore, we have assumed that there may

be a nonlinear relationship between weight and the muscle scores through a latent vector.

It is important to check the appropriateness of this covariate model and the sensitivity of

parameters under alternative covariate models. Sensitivity analysis may be carried out by

fitting various covariate models. There is scope for further extension in the direction of

nonlinear relationship. However, the linear mixed model is also fitted. We have considered

the exact and approximate methods for NLME models in joint modelling. When the exact

method exhibits computational problems such as slow convergence, the approximate

method may be preferable, because it is computationally more appealing. A good idea may

be to use the approximate method for model selection while the exact method is for final

selection. This may be done by using the approximate estimates as the starting values for

the exact method. Furthermore, the estimates obtained by fitting the linear mixed model

may act as the initial estimates for the approximate method. Note that the nonlinear

function is expanded by Taylor series and only the linear part is retained. On the basis of

the AIC value computed thereafter, one can think of considering higher order terms in the

expression to get improved results in subsequent stages. For the sake of simplicity, under

both simulation and data analysis, we have assumed the error dispersion matrix in the

latent model to be an identity matrix up to a scaler multiple. Albeit, this could be carried

out easily with an unknown value of the error variance–covariance matrix. To avoid any

subjectivity in the choice of the cut-off points, one can also estimate them along with the

parameters. This will just enhance the computational complexity. In our investigation, we

have assumed the time to failure data for the two causes are independent. Further extension

with the Bivariate survival set-up would be possible at the cost of computational

simplicity. This investigation is currently being carried out and is being planned to

communicate soon.
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Appendix: Choice of the initial estimates

It is known that the proposed EM algorithm may be trapped in local maxima area. To overcome this
difficulty, we used a fully Bayesian approach to get ‘good’ initial choice of the parameters. Let us
denote S ¼ {g : gk;mk

; k ¼ 1; 2; . . . ; q;21 ¼ gk;mk21
, gk;mk21þ1 , · · · , gk;mk

¼ 1}:
Consider the following priors
lr , Gðar; brÞ; r ¼ 1; 2; . . . ;R0 (assuming the hazard function to be piecewise continuous)
s 2 , IGða; bÞ
b0 , Nð0;AÞ, (eigenvalues of A are large enough to justify the improper prior)
a , Nðd; diagðsÞÞ; diagðsÞ ¼ diagðs2

1 ;s
2
2 ; . . . ;s

2
p Þ

ji , Nð0;SÞ
S
21 , Wðc;C21Þ

g , kISðgÞ, ISðgÞ is an indicator function defined on S
dljs

2
b , Nð0;s2

bÞ; l ¼ 1ð1Þp
s22
l js1; s2 ,ind Gammaðs1; s2Þ; l ¼ 1ð1Þp

Note that for applying Gibbs sampler, we need the full conditionals given the data and the latent
observations.

First of all, the latent observations are generated from

ywijkjb0; ji; g; yi / Nðgðxij;a; jiÞ;s
2Þ1½guk ;ijk21,yw

ijk
,guk ;ijk�
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Full conditionals can then be formed as follows:

ajd;b0;s; j; y
w; y/

Ym
i¼1

Yn
j¼1

Xq
u¼1

Xru
mu¼1

1ijm1 ;m2 ; ... ;mq

Yq
k¼1

p
ji
jk

" #
Nðd; diagðsÞÞ;

b0jd;a;s; j; y
w; y/

Ym
i¼1

Yn
j¼1

Xq
u¼1

Xru
mu¼1

1ijm1 ;m2; ... ;mq

Yq
k¼1

p
j i

jk Nð0;AÞ;

dja;s , N Dwdiag s22
1 ;s22

2 ; ::;s22
p

� �
a;Dw

� �
;

Dw ¼ diag s22
1 ;s22

2 ; ::;s22
p

� �
þ s22I;

s22ja; d ,ind Gamma s1 þ
1

2
; s2 þ

ðb0 2 dÞ2

2

� �
;

jija;b0;g;s; yi; y
w
i / l

j i

ij Nð0;SÞ;

S
21 , Wq C þ

Xm
i¼1

jij
0
i

" #21

; cþ q

0
@

1
A;

lrja;b0; d;s; j; y
w; y , Gamma dij þ ar; br þ

Xm
i¼1

Xni
j¼1

exp ½y0ijbþ z0ijji�Sijr

 !
;

Sijr ¼ expðexp½y0ijbþ z0ijji�Iðtij . ur21ÞÞgja;b0; d;s; j; y
w; y

, U max yi : ywi ¼ k
� �

; min yi : ywi ¼ k þ 1
� �	 


:

s22ja;b0; d; j; y
w; y , Gamma aþ

q

2

Xm
i¼1

ni; bþ
Xm
i¼1

Xni
j¼1

½yij 2 gðxij;a; jiÞ�

 !
:

We have considered the following set of values for the hyperparameters:

a ¼ 2; b ¼ 1;s2
b ¼ 10; s1 ¼ 1; s2 ¼ 0:005; c ¼ 13;A;C ¼ diagonal matrix
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