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We present a mathematical model and computer simulations for the control of a
pathogenic biofilm by a probiotic biofilm. This is a substantial extension of a previous
model of control of a pathogenic biofilm by microbial control agents that are suspended
in the aqueous bulk phase (H. Khassehkhan and H.J. Eberl, Comp. Math. Meth. Med,
9(1) (2008), pp. 47–67). The mathematical model is a system of double-degenerate
diffusion–reaction equations for the microbial biomass fractions probiotics, pathogens
and inert bacteria, coupled with convection–diffusion–reaction equations for two
growth controlling substrates, protonated lactic acids and hydrogen ions (pH).
The latter are produced by the bacteria and become detrimental at high concentrations.
In simulation studies, we find that the site of attachment of probiotics in the flow
channel is crucial for success and efficacy of the probiotic control mechanism.
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1. Introduction

Bacterial biofilms are microbial depositions on surfaces in aqueous environments. The

microorganisms attach to the surface and start to produce a gel-like matrix of extracelullar

polymers, termed extracellular polymeric substances (EPS) in the biofilm literature

(exopolysaccharides). In the EPS layer the bacteria are embedded and protected against

harmful environmental impacts, such as washout or antibiotics. In the medical context

biofilms are harmful. They are associated with many bacterial infections such as middle

ear infections, periodontitis, dental caries, cystic fibrosis pneumonia or infections as a

consequence of colonization of surgical implants and surfaces; see Costerton et al. [8] for a

more extensive listing.

Diffusive limitation of dissolved substrates is probably the most crucial difference

between biofilm communities and the suspended cultures [37], on which microbiologists

and mathematical biologists have traditionally focused. It is (at least partially) also the

cause of two of the mechanisms that have been identified as reasons for the difficulties in

treating biofilm infections with antibiotics [36]: for one, disinfectants penetrate slowly into

the biofilm. In many cases, the disinfectants are degraded or weakened upon contact with

the bacteria. While the cells in the outer layer of the biofilm are inactivated, the cells in the

inner layer remain virtually unharmed over a long time. Thus, the biofilm community

ISSN 1748-670X print/ISSN 1748-6718 online

q 2010 Taylor & Francis

DOI: 10.1080/17486700902789355

http://www.informaworld.com

*Corresponding author. Email: heberl@uoguelph.ca

Computational and Mathematical Methods in Medicine

Vol. 11, No. 2, June 2010, 99–118



survives and flourishes. Secondly, since also other substrates become limited in the inner

layers of the biofilm, local micro environments can develop in which the living conditions

are different than in the surroundings, e.g. with severe oxygen limitation etc. The cells in

these regions adapt to the changing living conditions. This can slow down their

metabolism and make them less susceptible to disinfectants. Since antibiotic treatment of

bacterial biofilms is so much more difficult than treatment of suspended cultures,

alternative strategies and means are being developed to control biofilm formation.

An effective mechanical control mechanism is biofilm detachment. It seems to occur

when the external shear forces, applied to the biofilm by the flow field in the aqueous

environment, exceed the internal tensile strength of the colony [27,28,30]. The latter

depends on factors such as biofilm composition and strain specific properties, local growth

conditions, internal biochemical reactions, and also the hydrodynamic conditions under

which the biofilm was grown [10,38]. The former depends on the biofilm morphology, the

clustering of the colonies, i.e. their spatial arrangement relative to each other, and of

course chiefly on the local hydrodynamic conditions at the biofilm liquid interface [39,42].

The internal properties of biofilms are difficult to quantify; therefore mathematical models

of detachment often use heuristic and simplifying assumptions or focus solely on the better

understood mechanical detachment forces. Mechanical biofilm control is among the most

efficient control mechanisms in engineering and industrial applications, but it is probably

not appropriate and viable in a medical context.

Another suggested approach for biofilm control is to interfere with the bacterias’ cell-

to-cell communication system by controlling quorum sensing in the biofilm. Mathematical

models for such a therapy have been proposed in Anguige et al. [2,3].

A novel alternative to antibiotics are probiotics [7]. Probiotics are defined to be live

food ingredients, e.g. bacteria, that confer health benefits to the host when administered in

sufficient quantities [19]. Traditionally, probiotics have been used as functional foods,

typically in connection with dairy products, but their potential for therapeutic applications

is increasingly recognized. The idea is to augment the microbial ecosystem in the body by

bacteria that will strengthen the indigenous microflora and worsen the living conditions for

the pathogens and keep them from striving. Particular health benefits of probiotics for the

host and their clinical applications have been summarized recently in several review

articles, e.g. [29,32–34]. Pathogenic bacteria that have been fought with probiotics

include Escherichia Coli, Salmonella spp., Shigella spp., and Clostridium difficile. The

action of probiotics against pathogens is indirect, e.g. by competing for shared resources or

by producing substrates that are detrimental to the pathogens. These effects can be

summarized as changing the environmental conditions that the pathogens experience.

Important examples are the modification of the pH value, and the production of

antimicrobial substances like bacteriocins, organic acids or hydrogen peroxide [34].

A related concept is to use probiotic strains to control quorum sensing of pathogenic

biofilms as investigated experimentally in Valdez et al. [41].

While not all probiotics necessarily form biofilms, [5] argues that colonization of

interfaces is in many instances a prerequisit for probiotic efficacy. We propose in this

study a mathematical model for one probiotic mechanism of biofilm control, namely the

modification of the environmental conditions in the system such that they become less

favourable for the pathogen. More specifically we describe a model for the modulation of

lactic acid concentration and pH by a bio-control agent that is more tolerant than the

pathogens. In a previous modelling study [22], we described a similar system, consisting

of a biofilm forming pathogen and a bio-control agent that was assumed to be suspended in

the bulk liquid. Here we propose a mathematical model for a mixed culture biofilm system,
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consisting of a pathogenic biofilm former and a probiotic biofilm former. This requires a

substantial extension of the previous model.

2. Mathematical model

2.1 Biofilm model

The mathematical model that we study here is a major extension of a biofilm control model

that was introduced previously in Khassehkhan and Eberl [22], based on the biocontrol

model for suspended cultures [6] and the biofilm model [15]. We allow for mixed culture

biofilms, formed by pathogen and control agent. Thus, we introduce the biocontrol agent

as a second particular biofilm fraction. Moreover, while previously we assumed that dead

cells are instantaneously removed from the system, we keep them now as inert biomaterial.

This introduces one more particular biomass fraction. The third extension is to explicitly

account for local hydrodynamic effects and their contribution to transport of dissolved

substrates. Moreover, we aim here at two-dimensional simulations while in the previous

study only 1D computations were carried out.

As in Khassehkhan and Eberl [22], we assume that nutrients and other required

substances are available to the bacteria in abundance. Biofilm growth and decay are

assumed to be controlled only by protonated lactic acids and local pH. Both bacterial

species, pathogen and control agent, are in a growth mode if the local concentration of

lactic acids is small and if the pH is sufficiently large. If the lactic acids concentration

becomes large or if the pH becomes small, the bacterial cells are inactivated. Between

growth and decay stages lies an extended neutral range with vanishing net growth rate.

The biofilm model that we use is developed in the framework of a density-dependent

diffusion–reaction model that has been introduced for a single-species/single-

substrate biofilm in Eberl et al. [15] and since been studied analytically and numerically

in a number of papers on various biofilm processes or for mathematical interest

[9,11–14,16,17,21–23].

We adapt the biocontrol model [6] and formulate our model in terms of the dependent

variables volume fraction occupied by the pathogen X, volume fraction occupied by the

biocontrol agent Y, volume fraction occupied by inert biomass Z, concentration of

protonated lactic acids C, concentration of hydrogen ions P. Note that

pH ¼ 2log10P;

if P is measured in mole. The biofilmmodel in the two-dimensional computational domain

V reads

›tC ¼ 7·ðDCðMÞ7C 2 uCÞ þ a1Xðk1 2 CÞ þ a2Yðk2 2 CÞ;

›tP ¼ 7·ðDPðMÞ7P2 uPÞ þ a3Cðk3 2 PÞ;

›tX ¼ 7·ðDMðMÞ7XÞ þ m1g1ðC;PÞX;

›tY ¼ 7·ðDMðMÞ7YÞ þ m2g2ðC;PÞY ;

›tZ ¼ 7·ðDMðMÞ7ZÞ2 m1g
2
1 ðC;PÞX 2 m2g

2
2 ðC;PÞY ;

8>>>>>>>><
>>>>>>>>:

ð1Þ

where all constant parameters in (1) are non-negative. The total local volume fraction

occupied by biofilm is denoted by

M ¼ X þ Y þ Z:
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The actual biofilm is thus the region V2ðtÞ :¼ {x [ V : Mðt; xÞ . 0}. The region V1ðtÞ U

{x [ V : Mðt; xÞ ; 0} is the surrounding water phase. See also Figure 1. The biofilm

liquid interface is thus GðtÞ :¼ �V1ðtÞ> �V2ðtÞ.

In (1), the vector u is the hydrodynamic flow velocity of the aqueous phase V1(t).

It vanishes in the biofilm phase V2(t). In our simulations it is determined by an analytical

approximation to the Navier–Stokes equations that has been developed in Eberl and

Sudarsan [14] and is briefly described below in Section 2.2.

The density dependent biomass diffusion coefficient DM(M) in (1) was suggested in

Eberl et al. [15] as

DMðMÞ ¼ e
Ma

ð12MÞb
; ð2Þ

where a, b . 1 and 0 , e r 1. The power law M a guarantees that biomass does not

spread if the local density is small; the power law (1 2 M)2b guarantees that the biomass

density remains bounded by the maximum possible cell density, even if inside the biofilm

production of new biomass continues. Thus the model includes both finite speed of

interface propagation (between biofilm and aqueous phase) and volume filling features.

For visualizations of biofilm growth simulations of this density-dependent diffusion model

in 2D or 3D we refer to [12,15,18].

In the biomass equations, it is implicitly assumed that all particulate substances follow

the same spreading mechanism. This is certainly a straightforward assumption for the inert

biomass fraction Z which is produced locally by and only if active biomass is present and

is moved around with the active biomass when the biofilm expands due to production of

new cells. On the other hand, that both active species have the same spreading mechanism

strictly speaking needs not be the case. We adopt this assumption here for simplicity, in

order to keep the number of parameters small, and for lack of more information; see Eberl

and Schraft [13] for a dual species biofilm model with different spreading mechanisms for

both bacterial fractions.

In Stewart [37] it is pointed out that the role that diffusion of dissolved substrates plays,

in our case C and P, constitutes the main difference between biofilm communities and

suspended cultures. While in the latter case all cells experience the same conditions, in

biofilm communities often dissolved substrates cannot completely penetrate the biofilm or

only at a reduced concentration. Moreover, the biofilm matrix poses an increased

resistance to diffusing substrates. Therefore, we assume DC and DP to be dependent on the

density of the biofilm density, M as well. Due to a lack of more detailed experimental

information we make a first order, linearized ansatz,

DCðMÞ ¼ DCð0Þ2MðDCð0Þ2 DCð1ÞÞ

DPðMÞ ¼ DPð0Þ2MðDPð0Þ2 DPð1ÞÞ;
ð3Þ

Figure 1. Flow in a long thin channel with aspect ratio 1 U H/L ,, 1: The biofilm growing on the
walls of the channel (grey regionV2(t)) induces a perturbation of the Poiseuille profile that is observed
in an empty flow channel. In the white region V1(t) the flow field is described by the flow model (6).
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where DC (0) and DP(0) are the diffusion coefficients in the bulk liquid and DC (1) and

DP(1) the diffusion coefficients in a fully developed biofilm. Thus DC (M) and DP(M) are

bounded from below and above by known positive constants. Since inside the biofilm

M < 1, diffusion of dissolved substrates in both the aqueous and the biofilm phase behaves

essentially like Fickian diffusion.

The reaction terms on the right hand side of (1) stem from Breidt and Flemming [6].

They have the following meaning:

2.1.1 Protonated lactic acids, C

Lactic acids are produced by both bacterial species until locally a maximum concentration

is reached. This is described by first order reaction kinetics. In the model formulation (1)

we used two parameters k1 and k2 to describe this effect, as originally proposed in Breidt

and Flemming [6]. However, in Breidt and Flemming [6] it was also suggested based on

experiments that k1 < k2, which we will always assume.

2.1.2 Hydrogen ion concentration, P

The local hydrogen ion concentration increases (pH decreases) until a saturation level is

reached. This is facilitated by lactic acids and, again, described by first order kinetics.

2.1.3 Biomass fractions, X, Y, Z

Biomass production is controlled by C and P. The growth and inhibition functions

g1,2(C, P) in the equations for X, Y, Z are piecewise linear, such that they are positive if

both C and P are small, and become negative if one of C and P becomes large. Between the

growth and inhibition range there is an extended neutral range. More specifically,

giðC;PÞ ¼ min 12
C

HðiÞ
1 ðCÞ

; 12
P

HðiÞ
2 ðPÞ

( )
; ð4Þ

where the auxiliary functions HðiÞ
1 ðCÞ and HðiÞ

2 ðPÞ, for i ¼ 1,2, are defined by

HðiÞ
1 ðCÞ ¼ kðiÞ1 H kðiÞ1 2 C

� �
þ C·H C 2 kðiÞ1

� �
·H kðiÞ2 2 C

� �
þ kðiÞ2 H C 2 kðiÞ2

� �
and

HðiÞ
2 ðPÞ ¼ kðiÞ3 H kðiÞ3 2 P

� �
þ P·H P2 kðiÞ3

� �
·H kðiÞ4 2 P

� �
þ kðiÞ4 H P2 kðiÞ4

� �
:

The function H is defined by

HðxÞ ¼

1; if x . 0;

1
2
; if x ¼ 0;

0; if x , 0:

8>><
>>:

Parameters kðiÞ1;2;3;4 are positive constants with kðiÞ1 , kðiÞ2 and kðiÞ3 , kðiÞ4 . The growth

function gi (C, P) of (4) is plotted in Figure 2 for a typical set of parameters that were

estimated from laboratory experiments in Breidt and Flemming [6]. Moreover, for a

probiotic strategy to be successful, the parameters must be such that the probiotics are
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more tolerant to lactic acids and pH than the pathogen, e.g. kð1Þj # kð2Þj for j ¼ 1, . . . ,4 with

a strict inequality for at least one j.

In (1), we used the notation g2i ðC;PÞ as short hand for the negative part of the growth

rate gi(C, P),

g2i ðC;PÞ :¼ min{0; giðC;PÞ}:

Note from the equation for Z that, if gi(C, P) , 0, active biomass X or Y, respectively, is

converted into inert biomass, one-to-one. We do not distinguish between inactive bacterial

species but lump them together into one volume fraction Z. If a growth rate is locally

negative, the total biomassM is conserved but transformed from active into inert material;

if it is positive the total biomass increases.

Model (1) is to be completed by appropriate boundary conditions. We consider a

rectangular flow channel of length L and height H, i.e. the rectangular computational

domain V ¼ [0, L ] £ [0,H ]. On inflow, nonhomogeneous Dirichlet conditions are

specified for the dissolved substrates C and P, while homogeneous Neumann conditions

are specified everywhere else on the boundary of V,

Pjx¼0 ¼ P0; ›nPj›Vn{x¼0} ¼ 0

and

Cjx¼0 ¼ C0; ›nCj›Vn{x¼0} ¼ 0;

where we assume that P0 and C0 are small enough to be in the growth range for both

species

g1ðC0;P0Þ . 0; g2ðC0;P0Þ . 0:

0
24

681012

 0
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Figure 2. Growth function mg(C, P) according to Breidt and Flemming [6]: a piecewise linear
function that is positive if both arguments are small and becomes negative if one of the arguments
becomes large. Growth and decay phase are separated by a large neutral phase. From Khassehkhan
and Eberl [22].
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For the biomass fractions we specify the homogeneous Neumann conditions

›nXj›V ¼ 0; ›nYj›V ¼ 0; ›nZj›V ¼ 0:

We also specify the following initial conditions for pH and lactic acids

Pjt¼0 ¼ P0; Cjt¼0 ¼ C0:

Biomass is initially placed in few small discrete pockets along the substratum, i.e. close to

x2 ¼ 0 or x2 ¼ H. We denote this by

Xjt¼0 ¼ X0ðxÞ Yjt¼0 ¼ Y0ðxÞ:

Note that the support of X0 (and similarly of Y0) is not connected if the substratum is

inoculated with more than one colony initially. For all practical purposes X0 ¼ Y0 ¼ 0 for

the largest part of V. The initial data satisfy furthermore

X0 þ Y0 , d , 1; 0 # X0; 0 # Y0:

These functions may be continuous or piecewise constant. We furthermore assume

normally that initially no inert biomass is in the system

Zjt¼0 ¼ 0:

Note that with these assumptions, if the initial colonies are separated by species, the

biofilm model reduces locally to the single species model that was introduced in

Khassehkhan and Eberl [22], as long as the local growth conditions are positive or neutral.

For computational convenience, we non-dimensionalize the model (1). As charac-

teristic time scale we use

T ¼ L2=DCð0Þ

and as characteristic length scale the length of the rectangular domain in primary flow

direction, L. The new dimensionless concentration variables are

Ĉ ¼
C

k1
; P̂ ¼

P

k3
:

We note that the volume fractions X, Y, Z, and, thus, M, of the biomass constituents were

non-dimensional from the start. The new reaction parameters are obtained as

m̂ i ¼
mi

T
; âi ¼

aiki

T
; k̂

ðjÞ

1;2 ¼
k
ðjÞ
1;2

k1
; k̂

ðjÞ

3;4 ¼
k
ðjÞ
3;4

k3

and the diffusion coefficients become

D̂CðMÞ ¼
DCðMÞT

L2
; D̂PðMÞ ¼

DPðMÞT

L2
; D̂MðMÞ ¼ ê

Ma

ð12MÞb
; ê ¼

eT

L2
:
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This leads to the non-dimensional variant of (1)

›tĈ ¼ 7·ðD̂C7Ĉ2 ûĈÞ þ ðâ1X þ â2YÞð12 ĈÞ;

›tP̂ ¼ 7·ðD̂P7P̂2 ûP̂Þ þ â3Ĉð12 P̂Þ;

›tX ¼ 7·ðD̂MðMÞ7XÞ þ m̂1ĝ1ðĈ; P̂ÞX;

›tY ¼ 7·ðD̂MðMÞ7YÞ þ m̂2ĝ2ðĈ; P̂ÞY ;

›tZ ¼ 7·ðD̂MðMÞ7ZÞ2 m̂1ĝ
2
1 ðĈ; P̂ÞX 2 m̂2ĝ

2
2 ðĈ; P̂ÞY:

8>>>>>>>><
>>>>>>>>:

ð5Þ

The non-dimensional model has five parameters fewer than the original version (1): The

parameters k1,2,3 are not explicitly required anymore, and also the parameters L and DC(0)

are fixed to unity. For the remainder of this paper we will use (5), although the _̂will be

dropped from the notation.

2.2 Hydrodynamic model

The computational domain in our simulations is a rectangular flow channel with a small

height:length aspect ratio 1 U H/L ,, 1. The biofilm growing on the channel walls

induces a perturbation of the Poiseuille flow field that can be observed for a ‘clean’ flow

channel in the absence of biofilms, cf. Figure 1. A dimensionless parameter that is

commonly used to characterize such pipe flow regimes is the Reynolds number

Re ¼
rUH 2

mUH
¼

rUH

m
¼

UH

n
;

where r is the density of the medium and m its dynamic viscosity. By nU m/r we denote

the kinematic viscosity. U is a characteristic flow velocity scale. We maintain a constant

flow rate q in the flow channel. This is a common flow control mechanism in biofilm

experiments that use flow channels or tubular reactors. For the maximum flow velocity of

the underlying unperturbed Poiseuille flow we derive U ¼ 3/2(q/H) and, thus,

Re ¼
3

2

q

n
:

The effect of bulk hydrodynamics in a flow channel on the biofilm is manifested in two

clearly distinct phenomena: (i) shear induced deformation and detachment and (ii)

convective transport of the dissolved substrates C and P in the flow channel.

The first effect (i) can be expressed by the dimensionless number

S ¼
shear

material strength
¼

mU

H
·
1

G
¼

m2

r1
·
Re

H 2G

where G is the biofilm’s apparent elastic modulus, cf. [14]. Measurements for this quantity

are sparse in the biofilm literature. In Towler et al. [40] it is found to be around

G < 10 g cm21 s22; in Klapper et al. [24] it ranges between 10 and 1000 g cm21 s22. We

use these values as order of magnitude estimates. For water typical values of m and r are

m < 1022 g cm21 s21, r ¼ 1 g cm23. In our simulations later on we will consider slow

flows with Re ¼ 2 £ 1023 and domains with 1022 cm , H , 1 cm, 1 < 0.1.
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Then, S ,, 1 and deformations of the biofilm matrix indeed can be neglected, as it is the

case in our bioflm model.

The second effect (ii) is expressed in terms of the dimensionless Peclet number

Pe ¼
convective transport

diffusive transport
¼

UL

D
¼

UH

n
·
L

H
·
n

D
¼ Re·

1

1
·Sc;

where D is the diffusion coefficient of the transported substrate in the flowing liquid and

Sc ¼ n/D is the Schmitt number that approximates the ratio of the (fluid) momentum

diffusivity and (substrate) mass diffusivity. This is a constant that depends on both the

substrate and the fluid. For small molecules like oxygen in water one has large values for

Sc, e.g. n < 0.01 cm2 s21 andD < 2 £ 1025 cm2 s21, hence, Sc < 103. Since also 1 ,, 1

is small, we obtain 1/1 .. 1 and, thus, Pe .. Re. Hence convective contribution to

substrate transport can be substantial, even if Re ,, 1. This was also shown in numerical

simulations in Eberl and Sudarsan [14]. In the case of our biocontrol model (1) with the

boundary conditions specified above, the effect of the flow field is to remove detrimental

substrates C and P from the channel and to replenish the system by supplying fresh

medium in growth conditions, i.e. with low concentrations C0 and P0.

A mathematical model for the calculation of the flow field u in (1) that is consistent

with the assumptions discussed above has been introduced in Eberl and Sudarsan [14] for

biofilms growing in long skinny channels. This is the thin liquid film flow model, which is

frequently used in lubrication theory [4,35]. It reads

0 ¼ 2 ›p
›x1

þ m ›2u1
›x2

2

;

0 ¼ 2 ›p
›x2

;

0 ¼ ›u1
›x1

þ ›u2
›x2

;

8>>>><
>>>>:

ð6Þ

in the liquid region V1(t), while u ; 0 in the biofilm region V2(t). In (6) p is the pressure

field and (u1, u2)
T ¼ u is the flow velocity vector. At the biofilm/water interface in the flow

channel and at the walls of the channel where they are not covered by biofilm, the no-slip

condition u ¼ 0 is enforced. The flow is driven by prescribing the flow rate q, or, which is

equivalent, the Reynolds number Re.

The system of partial differential equations (6) can be solved analytically inV1(t) with

elementary techniques. This allows for very fast calculations in the numerical simulation.

The solution is not repeated here. Instead, we refer the reader to Eberl and Sudarsan [14]. We

note that the solution of (6) is an O(1 2) approximation of the Stokes equations that are

commonly used (and numerically solved) to describe low Reynolds number flow, Re ,, 1.

2.3 Numerical discretization scheme

The numerical discretization of (1) follows the strategy that was introduced in Eberl and

Demaret [12] for a single-species biofilm model. The critical component of every

discretization scheme is the treatment of the biomass equations while standard methods

can be used to compute C and P. The key feature in our numerical treatment is a non-local

(in time) discretization of the nonlinearities of the model, according to the definition of

Nonstandard Finite Difference Schemes [1,26]. In the time-step tn ! tnþ1 we use for the
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density-dependent diffusive flux

DMðMÞ·7X < DMðMðtn; ·ÞÞ·7Xðtnþ1; ·Þ ð7Þ

(and similarly for Y, Z, C, P), for the convective flux

uC < uðtn; ·ÞCðtnþ1; ·Þ; ð8Þ

(similar for P). The nonlinear reaction terms can be straightforwardly treated in the same

manner.

For the numerical realization we introduce a uniform rectangular grid of n1 £ n2 cells

with mesh size Dx. The substrate concentrations C and P and the biomass fractions X, Y, Z

are approximated in the cell centres. We denote by Ck
i;j the numerical approximation of

Cðtk; ði2 1=2ÞDx; ðj2 1=2ÞDxÞ etc. Moreover, we denote the (variable) time step size

t k U tkþ1 2 tk.

In order to be able to write the discretized equations in standard matrix–vector

notation, we introduce a bijective grid ordering

p : {1; . . . ; n1} £ {1; . . . ; n2}! {1; . . . ; n1n2}; ði; jÞ 7! pði; jÞ:

We will use the simple lexicographical ordering p ¼ (i 2 1)n1 þ j. The vectors

X, Y, Z, C, P are then defined by their coefficients as Xp ¼ Xi, j with p ¼ p(i, j), etc.

For the discretization of the diffusion operator we introduce for every grid point the grid

neighbourhood Np as the index set of direct neighbour points. For grid points (i, j) in the

interior of the domain 1 , i , n1,1 , j , n2 this is the set with four elements

Npði; jÞ ¼ {pði^ 1; jÞ; pði; j^ 1Þ}. In the case of grid cells that are aligned with boundaries

of the domain, i.e. i ¼ 1 or i ¼ n1 or j ¼ 1 or j ¼ n2, this definition of the grid

neighbourhood leads to ghost cells outside the domain. These can be eliminated in the

usual way by substituting the boundary conditions.

The resulting discretization scheme reads

Ckþ1
p ¼ Ckp þ

t k

2Dx2

X
s[N p

ðDCðMk
s Þ þ DCðMk

pÞÞðCkþ1
s 2 Ckþ1

p Þþ

2 convection

þ t kð12 Ckþ1
p Þ a1X k

p þ a2X k
p

h i ð9Þ

Pkþ1
p ¼ Pk

p þ
t k

2Dx2

X
s[N p

ðDPðMk
s Þ þ DPðMk

pÞÞðPkþ1
s 2 Pkþ1

p Þþ

2 convection

þ t ka3Ckpð12 Pkþ1
p Þ

ð10Þ
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X kþ1
p ¼ X k

p þ
t k

2Dx2

X
s[N p

ðDMðMk
s Þ þ DMðMk

pÞÞðX kþ1
s 2 X kþ1

p Þ

þ t km1g1ðCkp;Pk
pÞX kþ1

p

ð11Þ

Ykþ1
p ¼ Yk

p þ
t k

2Dx2

X
s[N p

ðDMðMk
s Þ þ DMðMk

pÞÞðYkþ1
s 2 Ykþ1

p Þ

þ t km2g2ðCkp;Pk
pÞYkþ1

p

ð12Þ

Zkþ1
p ¼ Zk

p þ
t k

2Dx2

X
s[N p

DM Mk
s

� �
þ DM Mk

p

� �� �
Zkþ1

s 2 Zkþ1
p

� �

2 t k m1g
2
1 Ckp;Pk

p

� �
X kþ1

p þ m2g
2
2 Ckp;Pk

p

� �
Ykþ1

p

� � ð13Þ

Note that in (9) and (10) the discretization of the convective flux is not explicitly

specified. For all practical purposes any standard scheme from the Finite Volume Method

literature can be used, e.g. those in Morton [25]. In complying with the rule of constructing

nonstandard-finite difference schemes to keep the order of the discrete difference

approximation the same as the order of the continuous derivative [26], we use a simple 1st

order upwinding method.

For non-homogeneous Dirichlet or Neumann boundary cells, additional boundary

contributions are obtained on the right-hand side in the usual manner.

The new flow variables u kþ1 are computed after the new values for X, Y, Z are

available, i.e. for the new biofilm structure. We use the analytical solution to (6) to

approximate the flow velocities on the same uniform grid that was used for the other

variables, albeit in a staggered fashion. The pressure is evaluated in the cell-centres like

the dissolved and the particulate substrates. The flow velocity components are evaluated

on the cell edges, i.e. u1;i, j approximates the primary flow velocity in the point

(iDx,( j 2 1/2)Dx), and u2;i, j approximates the secondary flow velocity in ((i 2 1/2)Dx,j).

After rearranging terms, Equations (9)–(13) can be written as five sparse, structurally

symmetric but not symmetric linear system that need to be solved in every time-step. The

numerical discretization method is rather standard for the non-degenerate equations

describing the dissolved substrates C and P. More interesting is the computation of the

biomass fractions X, Y, Z because of the degenerate and fast diffusion effects.

In Eberl and Demaret [12] it was shown that this discretization method applied to a

single species biofilm model renders the following properties of the solution of the

underlying continuous model: (i) positivity, (ii) boundedness by 1, (iii) finite speed of

interface propagation, (iv) a discrete interface condition that corresponds to the continuous

interface condition of the partial differential equations (PDE), (v) a sharp interface in the

numerical solution with only weak interface smearing effects, (vi) monotonicity of

solutions near the interface and well-posedness of the merging of colonies (no spurious

oscillations).

Proposition 1. These properties carry over to the multi-species biofilm system

investigated here.
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Proof. To see this we rewrite (11)–(13) in matrix–vector form

ðI 2 t kDk 2 t kGk
XÞX kþ1 ¼ X k

ðI 2 t kDk 2 t kGk
Y ÞYkþ1 ¼ Yk

ðI 2 t kDkÞZkþ1 ¼ Zk 2 t kG2;k
X X kþ1 2 t kG2;k

Y Ykþ1

8>>><
>>>:

ð14Þ

where I is the n1n2 £ n1n2 identity matrix, the matrixDk contains the diffusive contribution,

i.e. ðDkÞp;p ¼ 21=ð2Dx2Þ
P

s[N p
ðDMðMk

s Þ þ DMðMk
pÞÞ and ðDkÞp;s ¼ ð1=ð2Dx2ÞÞ �

ðDMðMk
s Þ þ DMðMk

pÞÞ for component p and s [ Np, and the diagonal matrices GX,Y and

G2;k
X;Y contain the reaction terms Gk

X ¼ diagp¼1; ... ;n1n2 ðm1g1ðCkp;Pk
pÞÞ, Gk

Y ¼ diagp¼1; ... ;n1n2

ðm2g2ðCkp;Pk
pÞÞ, G

2;k
X ¼ diagp¼1; ... ;n1n2ðm1g

2
1 ðCkp;Pk

pÞÞ, Gk
Y ¼ diagp¼1; ... ;n1n2 ðm2g

2
2 ðCkp;Pk

pÞÞ.

The positivity of each biomass fraction X, Y, Z individually follows with exactly the

same argument that was used in Eberl and Demaret [12] for the single species model: the

matrix Dk is (at least) weakly diagonally dominant with negative diagonal entries and

positive off-diagonal entries. If t k is chosen such that the diagonal matrices I 2 t kGk
X and

I 2 t kGk
Y are positive, then the system matrices in (14) are diagonally dominant with

positive diagonal entries and negative off-diagonal entries. Thus, they areM-matrices [20]

and, therefore, their inverses are non-negative. Hence, if X k, Y k,Z k are non-negative, then

so are X kþ1 ¼ ðI 2 t kDk 2 t kGk
XÞ

21X k, Ykþ1 ¼ ðI 2 t kDk 2 t kGk
Y Þ

21Yk and finally

Zkþ1 ¼ ðI 2 t kDkÞ21ðZk 2 t kG2;k
X X kþ1 2 t kG2;k

Y Ykþ1Þ. The sufficient time-step restric-

tion for t k depends on the growth rates only. In fact t k is bounded by the reciprocal of the

maximum growth rate, maxi¼1,2{1/migi(0,0)}. This is the time-scale for growth. Since we

want to describe the time-evolution of the biofilm, i.e. resolve a time-scale not bigger than

the time-scale for growth, the restriction placed here on the time-step is not critical for

practical purposes.

Having positivity of the individual components of the numerical solution X, Y, Z
established, we can deduce the remaining properties with the following trick: adding

Equations (11)–(13) [or the equations in (14) for that matter], we obtain for

M U X þ Y þ Z the (component wise) inequality

Mk ¼ ðI 2 t kDkÞMkþ1 2 t kðGk
X 2 G2;k

X ÞX kþ1 2 t kðGk
Y 2 G2;k

Y ÞYkþ1

$ ðI 2 t kDk 2 t kGþ;kÞMkþ1
ð15Þ

where the diagonal matrices Gk
X 2 G2;k

X and Gk
Y 2 G2;k

Y are non-negative and Gþ;k :¼

max fGk
X 2 G2;k

X ;Gk
Y 2 G2;k

Y g $ 0 entry-wise. We denote by ~M kþ1 the solution of the

associated linear system

ðI 2 t kDk 2 t kGþ;kÞ ~M kþ1 ¼ Mk: ð16Þ

The system matrix I 2 t kDk 2 t kGþ,k is again an M-matrix, i.e. its inverse has

only non-negative entries. Then it follows from (15) and (16) immediately that
~M kþ1 $ Mkþ1.

Moreover, as a solution of (16), ~M is also a numerical solution of a single species

biofilm equation, as studied in Eberl and Demaret [12]. Thus, it has the properties (i)–(vi)

above. By comparison, it follows, again due to positivity, immediately that also X kþ1,

Y kþ1, Z kþ1 are bounded by 1, have a finite speed of interface propagation, show only

weak interface smearing effects and are oscillation free. A
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We use the stabilized bi-conjugated gradient method to solve the linear system of

(9)–(13) in every time-step of the simulation. This is the computationally most expensive

part of the numerical algorithm and has been prepared for parallel execution on shared

memory architectures using OpenMP. The code has been implemented in platform

portable Fortran 90. To solve the linear system in every time-step we use selected routines

of the reverse communication Fortran 77 source code library SPARSKIT [31]. The code

was compiled and tested onthe following computer system: an off-the-shelf Intel Pentium

4 based Notebook under Windows XP using the gnu95 compiler as well as the Salford

FTN95 compiler; a desktop workstation with two Intel Xeon processors under Red Hat

Linux using the Fortran compiler; a SGI Altix 330 compute server with 16 Intel Itanium 2

processors under SUSE Linux using the Intel Fortran compiler. The simulations that are

reported in this paper have been conducted on the latter machine, in most cases using 2 or 4

processors per compute job, after testing for parallel speed-up efficiency.

3. Simulation experiment

For our numerical simulation we consider a two-dimensional rectangular domain of size

V ¼ L £ H, which we discretize by a uniform grid of 600 £ 60 computational cells.

A pressure driven creeping flow (Re ¼ 2 £ 1023) is applied along the length side of the

domain. The model parameters that were used in this study are given in Table 1.

Table 1. Dimensionless model parameters used in the numerical simulations.

Parameter Symbol Value

Length of domain L 1
Height of domain H 0.1
Aspect ratio 1 H/L

Reynolds number Re 2 £ 1023

Maximum growth rate, pathogens m1 267
Maximum growth rate, probiotics m2 267
Acid production rate of pathogens a1 4.44 £ 105

Acid production rate of probiotics a2 4.44 £ 105

Hydrogen ion production rate a3 8.89 £ 105

Pathogen growth kinetics kð1Þ1 0.30

kð1Þ2 0.40

kð1Þ3 0.30

kð1Þ4 0.40

Probiotic growth kinetics kð2Þ1 0.35

kð2Þ2 0.45

kð2Þ3 0.35

kð2Þ4 0.45
Bulk concentration, lactic acids (normalized) C0 0.1
Bulk concentration, hydrogen ions (normalized) P0 0.1
Diffusion coefficient of C in biofilm DC(1) 0.9
Diffusion coefficient of C in water DC(0) 1
Diffusion coefficient of P in biofilm DP(1) 0.72
Diffusion coefficient of P in water DP(0) 0.8

Biofilm interface exponent a 4
Biofilm threshold exponent b 4
Biofilm motility coefficient e 6.25 £ 10210
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Initially biomass is placed in discrete inoculation sites on the substratum, i.e. in few

grid cells along the length sides of the domain, y ¼ 0( j ¼ 1) or y ¼ H( j ¼ n2). The

number of inoculation sites is specified for both active biomass fractions, probiotic (5 sites)

and pathogen (10 sites). Their locations are chosen randomly. Also the initial biomass

density in these inoculation sites is chosen randomly, in a given interval. Initially no inert

biomass is assumed in the system, Z0 ; 0.

A typical model simulation is illustrated in Figure 3. Initially, the entire domain lies

under growth conditions. In a first transient phase the active biomass densities increase

locally without much spatial spreading. Eventually, as locally the maximum cell density is

approached, X < 1 or Y < 1, the biofilm colonies start to expand. All active biomass in the

system produces lactic acids, which in turn increases the hydrogen ion concentration. The

flow field carries both detrimental substrates downstream where they attain higher

concentrations than in the inflow region. Thus, the active biomass colonies closer to the

entrance region live under more favourable conditions than the ones in the outflow region

of the domain. Accordingly they develop faster and bigger. Initially separated

neighbouring colonies eventually can merge into a single, larger colony. In the centre

of the domain and in the downstream region biofilm growth is inhibited rather quickly.

Probiotics remain largely in a neutral no-growth mode. Inert biomass is first formed

downstream by the pathogens which are less tolerant against lactic acids and pH.

Eventually also in the pathogenic biofilm colonies in the upstream regions conversion of

active to inert biomass takes place. The last plotted time-step shows how in one colony

both processes, killing and production of new biomass can happen simultaneously. More

specific, the colony grows upstream toward the region of better conditions (lower C, P),

while in the downstream end of these colonies, active biomass is converted into dead

biomass.

t = 400

t = 845

t = 1289

t = 1733

Figure 3. Population dynamics in a mixed-culture biofilm system of probiotics (red) and pathogens
(green); inert biomass is depicted in blue. The flow direction is from left to right. Shown are the
volume fractions for the indicated time levels encoded as RGB channels, i.e. colour intensities reflect
biomass densities. Also shown are equidistant iso-concentration lines for lactic acids C.
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At the lower substratum, approximately in the middle of the domain, a small colony

can be found that is formed by probiotics and pathogens, as a consequence of the random

choice of inoculation sites and subsequent merger of two different colonies. The evolution

of this mixed-culture colony is visualized in more detail in the Figure 4 where the volume

fractions X, Y and Z are shown as surface plots for selected time instances. As time

progresses it can be observed how the pathogen is continuously transformed into inert

biomass while the probiotics survive. All other colonies remain single-species throughout,

as a consequence of the sparse random inoculation.

It should be noted that in the simulation depicted here, the eradication of the pathogen

is due to an increased concentration of lactic acids. The pH remains in the growth range

upstream and in the neutral no growth/no decay range further downstream.

We repeated the simulation described above several times, with different randomly

chosen inoculation sites (i.e. inital data). In Figure 5 we plot the total biomass of probiotic,
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Figure 4. Biomass density surfaces of pathogens X(t,·) [green], probiotics Y(t,·) [red], and inerts
Z(t,·) [blue] in a mixed culture colony for selected time-instances.
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pathogen and inert biomass in the system, i.e. the functions

XtotalðtÞ ¼

ð
V

Xðt; x; yÞdx dy; Y totalðtÞ ¼

ð
V

Yðt; x; yÞdx dy; Z totalðtÞ ¼

ð
V

Zðt; x; yÞdx dy

for five such runs, namely (a)–(e). The size of the biofilm

vðtÞ ¼

Ð
V2ðtÞ

dx dyÐ
V
dx dy

is plotted in Figure 6(a).

For the given parameter sets and inflow concentrations the model shows different

behaviour across these five cases. In case (a) the probiotic population reaches quickly a
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Figure 5. (a)–(e) Biomass of pathogens X, probiotics Y, and inerts Z for randomly chosen
inoculation sites. (f) five simulations with some probiotics placed in the upstream region: Y is
increasing, X eventually declines, Z increases as X decreases.
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plateau phase while the pathogenic population as well as the inerts increase. In cases (b)

through (e) the probiotics continue growing while the pathogenic population decreases

after an initial growth phase.

While the qualitative behaviour is the same in the cases (b)–(e), the time scales are

different. In case (d) the pathogens are depleted after t < 400, while in case (c) this

happens only at t ¼ 1200. In case (b) the pathogenic population is still considerable at

t ¼ 1000, where it appears to approach a plateau.

The steep increase of the probiotic population in case (c) indicates that a large

probiotic biofilm colony develops in the inflow region, where the growth conditions are

favourable.

These simulation results indicate that the initial sites of inoculation can affect not only

the duration of the eradication process but, indeed, can also determine whether such a

control strategy will be successful. To validate this, we conducted another series of five

simulations, in which a probiotic colony was deliberately placed in the entrance region of

the channel, where growth conditions are most favourable. In Figures 5(f) and 6(b) the

lumped parameters are plotted for these simulations. No strong deviations are observed

across these simulations. The probiotic colony in the entrance region controls the system

behaviour. From this we conclude that in a sparsely inoculated system, like the one under

investigation here, the inoculation sites indeed can determine the success of control.

In the probiotic simulation study, the bacteria that are furthest away from the inflow are

hit fastest and hardest, while the ones closest to the inflow remain longer under favourable

conditions. This is in contrast to what one observes in studies of antibiotic control, where

usually the outer rim of the biofilm colonies facing upstream is first neutralized, as e.g.

observed in Eberl and Sudarsan [14]. This confirms the findings of the simpler one-

dimensional study [22], where the growth limiting substrates C and Pwere controlled from

the liquid phase above the biofilm. Mathematically this can be explained by the maximum

principle.

4. Conclusion

We presented a quasilinear parabolic system of diffusion–reaction system that shows two

non-linear diffusion effects: a finite speed of interface propagation due to ‘porous

medium’ degeneracy and an a priori bound on the solution due to a fast diffusion

singularity. This system models a mixed-culture biofilm that is formed by a pathogenic
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Figure 6. Biofilm occupancy v(t) for (a) five simulations in which all inocculation sites were
chosen randomly, and (b) for five in which some probiotics were deliberately placed in the inflow
region of the flow channel.
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species and a probiotics species. The probiotics control the pathogens by modifying the

living conditions for the pathogens in the environment, in particular by increasing the local

concentration of protonated lactic acids and decreasing the local pH. In our modelling

study, we considered this biological system in a slow flowing narrow flow channel that is

operated under growth favourable inflow conditions for both species.

This model represents a major extension of a previously studied model [22] of

suspended probiotics controlling a pathogenic biofilm. Instead of a single double-

degenerate diffusion equation a system of three such equations is obtained, for which we

could show that important qualitative properties of a non-standard finite difference method

carry over from the better understood case of a scalar equation.

The published literature in probiotic research to date seems rather observational.

Therefore, due to a lack of quantitative information (e.g. parameter values, reaction

kinetics) at this point most modelling studies of probiotic mechanisms must be to some

extent phenomenological, focusing on qualitative model features without necessarily

being able to make quantitative predictions. Nevertheless, the numerical simulation

studies suggest, at least for sparsely inoculated substrata, that the site of inoculation of the

probiotic biofilm colonies might be an important factor determining the long term

behaviour of control strategies that are based on modification of pH and lactic acid

concentrations.

In addition to the more complex multi-species interaction and the explicit account of

the hydrodynamic contribution to mass transfer, a major difference between this study and

the previous simulation study of biofilm control by a suspended probiotic culture, is the

following: In our 2D simulations we considered a sparse colonization of the susbtratum

with biofilms of either kind. The 1D description in Khassehkhan and Eberl [22], however,

implied that a dense and uniform pathogenic biofilm covers the substratum. One of the

major findings of the earlier study was that the cells close to the substratum are deactivated

first, in contrast to antibiotic disinfection where usually the cells at the biofilm/water

interface are inactivated first, while the bacteria in the inner layers might be able to survive

virtually unharmed. As expected from these previous results, the maximum principle, and

the consideration of convective transport of harmful substances downstream, we found in

our 2D simulations that the (isolated) biofilm colonies in the downstream regions are

deactivated first while often the upstream colonies may remain under favourable growth

conditions. Again, this is in contrast to the results of the antibiotic disinfection results of

Eberl and Sudarsan [14], in which the opposite was found. This might suggest to test for a

combination of probiotic (modification of pH, lactic acids) and antibiotic treatment.

Including this into one mathematical model will further increase computational

complexity but should be possible and relatively straightforward under the modelling

framework used here.
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