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Acute myeloid leukaemia is defined by the expansion of a mutated haematopoietic
stem cell clone, with the inhibition of surrounding normal clones. Haematopoiesis can
be seen as an evolutionary tree, starting with one cell that undergoes several divisions
during the expansion phase, afterwards losing functional cells during the aging-related
contraction phase. During divisions, offspring cells acquire ‘variations’, which can be
either normal or abnormal. If an abnormal variation is present in more than 25% of the
final cells, a monoclonal, leukemic pattern occurs. Such a pattern develops if: (A1) The
abnormal variation occurs early, during the first or second divisions; (A2) The variation
confers exceptional proliferative capacity; (B) A sizable proportion of the normal
clones are destroyed and a previously non-significant abnormal clone gains relative
dominance over a depleted environment; (C) The abnormal variation confers relative
‘immortality’, rendering it significant during the contraction phase. Combinations of
these pathways further enhance the leukemic risk of the system. A simple mathematical
model is used in order to characterize normal and leukemic states and to explain the
above cellular processes generating monoclonal leukemic patterns.
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1. Introduction

Haematopoiesis is usually represented as an evolutionary tree, starting with a pluripotent

stem cell, a cell capable of self-renewal as well as differentiation along various pathways

[41]. The stem cells undergo several divisions coupled with differentiation leading

eventually to the polymorphous picture of the terminally differentiated cells found in the

peripheral blood: red cells, granulocytes (neutrophils, eosinophils, basophils), monocytes,

platelets, T and B lymphocytes. Stem cell differentiation is probably a random, stochastic

event [45]; the fact that the final composition of the blood is relatively stable under normal

conditions is the result of a regulatory process involving a complex network of positive

and negative cellular and humoral factors [23] rather than the outcome of a fixed

programming of the stem cells.

In fact, hematopoiesis can be viewed as an evolutionary process in an expanding

population of unicellular organisms behaving along Darwinian interaction ‘rules’ [18].

ISSN 1748-670X print/ISSN 1748-6718 online

q 2010 Taylor & Francis

DOI: 10.1080/17486700902973751

http://www.informaworld.com

*Corresponding author. Email: r.precup@math.ubbcluj.ro

Computational and Mathematical Methods in Medicine

Vol. 11, No. 1, March 2010, 49–65



Within the haematopoietic microcosm, we can imagine a process in which various

populations, the progeny of various stem cells, interact and ‘compete’. If we view

hematopoiesis as a evolutionary tree starting with one cell, it is conceivable that the

daughter haematopoietic stem cells (HSC) will always display slight differences between

them, variations consisting of differences in gene structure, gene expression and protein

synthesis. These changes are probably more pronounced when the divisions are

asymmetric, but it is highly probable that certain differences will exist even in the case of

symmetric divisions, as one of the characteristics of natural systems is that there is never a

complete identity between two entities, small, fractal changes being always detectable

[15]. In time these differences will play against each other within the changing

haematopoietic environment, leading to evolution.

Haematopoiesis displays tremendous versatility, plasticity and robustness, deriving

from this apparently chaotic, stochastic process of expansion. It can be argued that the

robustness of a network depends on the existence of centres of activity, which relate to a

multitude of peripheral units [8]; the obliteration of a large number of peripheral units has

little effect of the viability of the network while the elimination of the few ‘hubs’ of

activity leads to its collapse. The robustness of hematopoiesis derives from the fact that

HSCs may be regarded as ‘hubs’ of proliferative activity. It is still unclear how many HSC

there are in a human being. It has been proposed that the total number of primitive HSC

may be conserved across mammalian species and is about 10,000–20,000. It has been

reported that in mice there is about one HSC per 30,000–50,000 nucleated marrow cells

but the concentration of HSC seems to decrease in larger animals, being much lower in

humans than in smaller mammals [1,37]. One study has even suggested that in humans, the

primitive HSC concentration may be as low as 1 per 200 million marrow cells [39].

Therefore, in a normal, polyclonal hematopoiesis, destructive events involving blood cells

have very little chance to actually destroy the whole haematopoietic network. It can be

stated that the robustness of the haematopoietic system actually depends upon the number

of stem cells, acting as hubs of normal mitotic activity, therefore the health of

hematopoiesis depends on the degree of clonal diversity.

Acute myeloid leukaemia (AML) can be viewed as an evolutionary possibility, arising

from the interaction and ‘competition’ between stem cells. Myeloid leukaemias are

defined by the abnormal expansion of a single, usually mutated myeloid haematopoietic

clone associated with the inhibition of the surrounding ‘normal’ clones [13]. It is thought

that the leukemic clone starts with one cell, probably an early progenitor, the leukemic

stem cell [10]. There seems to be, however, significant heterogeneity as to the levels of

differentiation of leukemic stem cells. Some AML seem to occur in early, non-committed

progenitors while in other cases a more differentiated progenitor is presumed [24]. Even

though there is considerable heterogeneity and hierarchical organization within the

leukemic clone, leukaemias are characterized by relative monotony, while normal

hematopoiesis is characterized by polyclonal diversity.

The aimof this paper is to devise a simple theoretical systemresembling hematopoiesis, to

identify the possible general pathways through which the robustness of the system can fail,

leading to leukaemia, and to give mathematical interpretation in terms of dynamic systems.

The normal and leukemic states and the basic cellular processes leading to leukaemia are

characterized in terms of kinetic parameters. Several mathematical models of hematopoiesis

and cancer stem cells, governed by ordinary, partial or delay differential equations and

systems were proposed in the last four decades (see, for example, [2,3,6,16,22,42], and [25]

for a review) for a better understanding of specific biological processes, dynamic disorders

and therapeutic scenarios. Our simple mathematical model was inspired by that of Dingli and
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Michor [21] and Mackey and Glass [36] and consists of a competitive, coupled differential

system like those from population biology (see [11,20,38]). Under some aspects, our analysis

and conclusions can be compared to those fromDjulbegović–Svetina [22], where however a

different system of equations of Rubinow–Lebowitz type [42] was used.

2. The hypothetical model

Haematopoiesis can be represented as a simple evolutionary tree, starting in a central

compartment (e.g. bone marrow) with one HSC, ‘A’ that undergoes several divisions

during the so-called expansion phase. Offspring HSCs are never completely identical,

acquiring ‘variations’, resulting in diversity. Variations designated by Roman letters an

Arabic numbers are considered ‘normal’. After each division, the cells acquire a new

variation. After four rounds of expansion the system has 16 more differentiated HSCs,

each of them possessing five characters. The genealogical closeness between two random

cells can be assessed by counting the identical and different characters (Figure 1).

We postulate that for a certain period there will exist a steady state phase, in which the

16 HSC lines will replicate/differentiate, providing the terminally differentiated cells of

the peripheral compartment (e.g. peripheral blood). In this paper, we only describe what

would take place in the central compartment.

Another assumption of the model is that in time, the systemwill suffer ‘aging’, gradually

and randomly losing HSC lines, entering the third phase, the contraction phase. In other

words,with aging the systemgets poorer, less diverse (Figure 2). In fact, asHSC lines are lost,

the system will develop a monoclonal pattern, usually one with normal HSC variations.

Beside the normal variations shown in Figure 1, there is the possibility of abnormal

variations, designated by Greek letters and Roman numbers (Figure 3). If one single

Figure 1. Normal hematopoiesis represented as an evolutionary tree starting with a primitive stem
cell ‘A’ multiplying during the expansion phase. With each division the offspring cells acquire new
variations. Variations designated by Roman letters and Arabic numbers are considered normal. Even
though stem cells may actually reproduce themselves, this is not relevant here because in the
definition of this model, variations, including abnormal ones, appear with each division (no two cells
are completely identical, not even those cells arising from self replication).

Computational and Mathematical Methods in Medicine 51



abnormal variation is present in more than 25% of the final cells – a proportion similar to

the 20% bone marrow blast cell percentage established as the diagnostic criteria for acute

leukaemia [28] – an abnormal monoclonal leukemic pattern is present. Abnormal

variations can occur at various levels in the haematopoietic tree, from a high level,

involving a primitive stem cell, such as variation ‘m’, to a low, peripheral level, such as

variation ‘VI’.

There are several ways in which abnormal monoclonal patterns can emerge:

(A1) The presence of upstream variations (in primitive stem cells). Monoclonal

patterns are obvious if the abnormal variation occurs during the first divisions as in

variations ‘m’ and ‘g’. (Figure 4).

(A2) The presence of variations that accelerate proliferation rate. If the ‘S’ abnormal

variation confers a proliferative capacity, undergoing more divisions than normal cells,

the cells bearing the ‘S’ variation may progress towards a monoclonal pattern and then

become dominant (Figure 5).

(B) The loss of lineages and diversity in the stem cell population. If an external

catastrophic event, for instance an immune or viral attack on character M, or an

intrinsic weakness of certain stem cells will wipe away at least half the final cells, the

previously ‘invisible’, ‘harmless’, ‘F’ clone, may account for more than 25% of the

cells – a monoclonal pattern (Figure 6). Further events may or may not lead to a more

definite ‘domination’ of the ‘F’ clone. In any case, the chance of the ‘F’ clone to

acquire an opportunistic dominant role (more than 50% of the cells) is higher now than

if the other stem cell lines are present (Figure 3).

Figure 2. In time, the system suffers ‘aging’, gradually and randomly losing functional cell clones
during the contraction phase. In other words, with aging the system gets poorer, less diverse.
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(C) The presence of variations that prevent cell death. If the abnormal variation ‘V’

confers ‘immortality’, without further enhancement, this clone has a high chance of

representing more than 25% of the cells, especially during the contraction phase,

eventually becoming dominant (Figure 7).

Figure 4. Leukemic pathway (A1): Monoclonal patterns are obvious if the abnormal variation
occurs early, during the first divisions as in variations ‘m’, which is found in 50% of the final cells
and ‘g’, found in 25% of the cells.

Figure 3. Divisions can also yield abnormal variations, designated by Greek letters and Roman
numerals. If a certain abnormal variation is present in $25% of the final cells (similar to the
diagnostic criteria for acute leukemia) – an abnormal ‘monoclonal’ pattern is present. Abnormal
variations can occur at various levels on the hematopoietic tree.
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Patterns (A1) and (A2) involve the existence of a ‘dominant’ leukemic clone, whereas

in models (B) and (C) the emergence of the leukemic clone is ‘opportunistic’, against the

background of weakness in the surrounding normal clones (see [19]).

A leukemic pattern can be the result of the above-mentioned algorithmic pathways, acting

alone or in various combinations. If these four patterns can be recognized and quantified in a

certain individual, an acutemyeloid leukaemia risk (AMLR) can be computed.AMLRshould

be at its highest when all features are present, that is AMLR ¼ AðA1 þ A2Þ þ B þ C.

3. The mathematical model

The aim of this section is to give a mathematical interpretation of the hypothetical model

of acute myeloid leukemogenesis presented in Section 2. We show that there is a one-to-

one correspondence between cases (A)–(C) from the hypothetical model and the disjoint

parameter states of the differential system modelling the dynamic of the normal-leukemic

cells competition. Stability of the steady states of the differential system is discussed

suggesting the mathematical characterization of the normal and leukemic states and

correlations between the kinetic parameters in the system are used in order to explain basic

monoclonal leukemic patterns.

Figure 5. Leukemic pathway (A2): If the ‘S’ abnormal variation confers enhanced proliferative
capacity, undergoing more divisions than the normal cells, the excess ‘S’ bearing cells may progress
towards a monoclonal pattern.
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3.1. The normal-leukemic dynamic system

We shall assume that at each time t, the differentiated cell population divides into two: the

normal population xðtÞ and the leukemic population yðtÞ. By x0; y0, we shall denote the

normal and leukemic populations at time t ¼ 0 (diagnostic time). We denote by a; b; c and

A;B;C (model parameters) the growth, microenvironment sensitivity and death rates of

normal and leukemic cells, respectively. The conservation laws for normal and leukemic

cells can be expressed as a system of first-order differential equations (see [21,36]):

x 0 ¼ a
1

1þ bðx þ yÞ
x 2 cx; ð1Þ

y 0 ¼ A
1

1þ Bðx þ yÞ
y 2 Cy:

Here x0 ¼ dx=dt is the time derivative which at each time gives the rate of change of

population x, the term ða=ð1 þ bðxðtÞ þ yðtÞÞÞÞxðtÞ represents the new normal cells

population at time t, and cxðtÞ the removed normal cells at time t. Similar interpretations

hold for y. The terms 1=ð1 þ bðx þ yÞÞ and 1=ð1 þ Bðx þ yÞÞ simulate the crowding effect

in the bone marrow microenvironment and introduce competition between normal and

leukemic cells. Notice that the cell proliferation is faster while the total cell population

x þ y is small, and slower for large x þ y. Thus these terms simulate the feedback of the

proliferation system. We assume that for both cell populations, the growth rate is greater

than the death rate, i.e.,

a . c and A . C: ð2Þ

Figure 6. Leukemic pathway (B): If a catastrophic event, for instance an immune, viral, chemical
or physical attack on character M, or an intrinsic weakness of cell harbouring the M variation results
in the disappearance of at least half the final cells, the previously non-significant ‘F’ clone may
passively account for $25% of the cells yielding a monoclonal pattern.
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Denote

d :¼
1

b

a

c
2 1

� �
and D :¼

1

B

A

C
2 1

� �
:

Here are some basic properties which can be deduced from system (1):

(1) Monotonicity of solutions. Normal cell population grows, that is x0ðtÞ . 0, as long as

a=ð1 þ bðx þ yÞÞ2 c . 0, i.e., x þ y , d, and decreases if x þ y . d. Similarly, y

grows as long as x þ y , D and decreases if x þ y . D.

(2) Steady-states. Steady-states or equilibria are constant solutions, i.e., solutions with

x0 ¼ 0, y
0

¼ 0. If d – D, then the steady-states are:

ð0; 0Þ; ðd; 0Þ; ð0;DÞ:

If d ¼ D, then the equilibria are:

ð0; 0Þ; ða; d 2 aÞ for 0 # a # d:

Figure 7. Leukemic pathway (C): If the ‘V’ abnormal variation confers relative ‘immortality’,
without further enhancement it has a high chance of appearing in more than 25% of the cells during
the contraction phase, eventually becoming dominant.
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(3) Stability. Recall (see, for example, [4,14]) that an equilibrium ða;bÞ of the differential
system

x 0 ¼ f ðx; yÞ;

y 0 ¼ gðx; yÞ;

i.e. a solution of the algebraic system f ða;bÞ ¼ 0; gða;bÞ ¼ 0, is said to be stable if small

changes at any given time t0 bring only small changes in the solutions for all t $ t0.

Otherwise, we say that the solution ða;bÞ is unstable. Also, ða;bÞ is said to be

asymptotically stable if it is stable and in addition xðtÞ tends to a and yðtÞ tends to b as t

goes to infinity, whenever xðt0Þ; yðt0Þ are close enough to a, b, respectively. It is well

known [4, Chapter 24], [14, Chapter 13] that ða;bÞ is asymptotically stable if the Jacobian

matrix Jða;bÞ is Hurwitz, i.e., Re l , 0 for all its characteristic roots l, and unstable if Re

l . 0 for at least one of its characteristic roots. Recall that the Jacobian matrix Jðx; yÞ is

defined by

f 0xðx; yÞ f 0yðx; yÞ

g0
xðx; yÞ g0

yðx; yÞ

2
4

3
5:

Using these criteria, we can show that the solution (0, 0) is unstable under our assumption

(2). Also

ðd; 0Þ is asymptotically stable and ð0;DÞ is unstable; if d . D;

ðd; 0Þ is unstable and ð0;DÞ is asymptotically stable; if d , D:

The case of the equality d ¼ D is particularly interesting from the point of view of

stability. For example, in case that a ¼ A; b ¼ B and c ¼ C, when d ¼ D as well, if we add

the equations in (1), we obtain the equation of x þ y, namely

ðx þ yÞ0 ¼ a
1

1þ bðx þ yÞ
2 c

� �
ðx þ yÞ:

For this equation, the steady-state x þ y ¼ d is asymptotically stable. Also, if we multiply

the first equation in (1) by y, and the second equation by x and we substrate, we obtain

x

y

� �0

¼ 0

which shows that the ratio x=y is constant in time. Hence y ¼ gx for g ¼ y0=x0, and if we

substitute into the first equation of (1) we obtain the equation of x, namely

x 0 ¼ a
1

1þ bð1þ gÞx
x 2 cx:

Notice that the positive steady-state of this equation a: ¼ d/(1 þ g) is asymptotically
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stable. Consequently, the equilibrium

ða; d 2 aÞ is stable for every 0 , a , d:

3.2. Numerical simulation

We shall simulate numerically system (1) using the Maple package, version 11. Graphs of

xðtÞ (broken line) and yðtÞ (solid line) for 0 # t # 100, are represented for different values

of the model parameters a; b; c;A;B;C and initial values xð0Þ and yð0Þ. For example, if

a :¼ 0:3; b :¼ 0:5; c :¼ 0:1; A :¼ 0:3; B :¼ 0:5; C :¼ 0:1; xð0Þ ¼ 4:5 and yð0Þ ¼ 1:5, we
use the following sequence of commands:

with(DEtools):
with(plots):
ec1:¼ diff(x(t),t) ¼ (a/(1 þ bnast(x(t) þ y(t))) 2 c)nastx (t);

ec2:¼ diff(y(t),t) ¼ (A/(1 þ Bnast(x(t) þ y(t))) 2 C)nasty (t);

a:¼ 0.3;b:¼ 0.5;c:¼ 0.1;A:¼ 0.3;B:¼ 0.5;C:¼ 0.1;
(a/c 2 1)/b;
(A/C 2 1)/B;
g1: ¼ DEplot([ec1,ec2],[x,y],t ¼ 0..100,x ¼ 0..6,
y ¼ 0..10,$ $[[x(0) ¼ 4.5,$ $%y(0) ¼ 1.5]],linecolor ¼

blue,linestyle ¼ 3,scene ¼ [t,x(t)]):
g2: ¼ DEplot([ec1,ec2],[x,y],t ¼ 0..100,x ¼ 0..6,
y ¼ 0..10,$ $[[x(0) ¼ 4.5,$ $%y,(0) ¼ 1.5]],linecolor ¼

black,linestyle ¼ 1,scene ¼ [t,y(t)]):
display([g1,g2]);

The aim of our numerical simulations confines to the understanding of the dynamic

behaviour of the mathematical system. In this respect, we use fictive values of parameters

and not clinical, experimental ones, although such values are available in the literature [21].

3.3. Mathematical basis of leukemogenesis

The stability analysis in Section 3.1 shows that there is only one asymptotically stable

steady-state of the system, namely x* ¼ d, y * ¼ 0 (no leukemic cells) if d . D. Therefore,

we may say that the case d . D corresponds to a healthy haematopoietic system or to the

eradication of the disease. Thus leukemic cells exist only if d # D. We already know that

d , D implies the unique asymptotically stable steady-state x* ¼ 0 (no normal cells),

y* ¼ D (leukemic cells only), hence the case d , D corresponds to leukemic diseases.

Finally, the equality d ¼ D allows the coexistence of normal and malignant cell

populations around different equilibria of the type x* ¼ a; y* ¼ d 2 a, depending on the

initial conditions x0; y0. Thus, if the leukemic cell population yðtÞ is caused by an abnormal

mutation (a mild clone) which does not distort the basic cell parameters: growth,

sensitivity and death rates, i.e., a ¼ A; b ¼ B, c ¼ C, and consequently, d ¼ D, then the

normal and abnormal cell populations x, y will coexist (Figure 8) under the constant

proportion k :¼ x0=y0, the total cell population x þ y tends to d, x tends to a and y to

d 2 a, for some a depending on initial concentrations x0; y0. More exactly, from x=y ¼ k,

we obtain a=ðd 2 aÞ ¼ k, whence a ¼ kd=ð1 þ kÞ.

However, a condition like d ¼ D is physiologically very unstable since no matter how

small the variations of kinetic parameters, they can switch it into the leukemic state d , D.
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Our next goal is to explain the four basic pathways leading to leukaemia which were

described in Section 2, and their corresponding monoclonal patterns, by the alteration of a

single one of the kinetic parameters a, b, c in (1). In our model, the leukemic state being

characterized by the inequality d , D, three cases are mathematically possible: a ,

A; b . B and c . C.

Case (A1). We assume that the abnormal variation occurring during the first divisions

does not change neither the interval between divisions and nor sensibility and death

parameters. Hence b ¼ B and c ¼ C. A monoclonal pattern is then perceptible if at a given

time T the ratio yðTÞ=xðTÞ between abnormal and normal cells becomes greater than the

initial (at time 0) ratio y0=x0. From (1), we have

x 0

x
¼

a

1þ bðx þ yÞ
2 c;

y 0

y
¼

A

1þ bðx þ yÞ
2 c:

Integration from 0 to T gives

ln
xðTÞ

x0
¼

ðT

0

a

1þ bðx þ yÞ
2 c

� �
dt;

ln
yðTÞ

y0
¼

ðT

0

A

1þ bðx þ yÞ
2 c

� �
dt:

Consequently,

ln
yðTÞ

y0
2 ln

xðTÞ

x0
¼ ðA 2 aÞ

ðT

0

1

1þ bðx þ yÞ
dt

Figure 8. Numerical simulations for the coexistence case d ¼ D. Here a ¼ A ¼ 0:3; b ¼ B ¼ 0:5;
c ¼ C ¼ 0:1, and d ¼ D ¼ 4. The normal cell population x (broken line) and the abnormal cell
population y (solid line) will coexist under the constant proportion k :¼ x0=y0. Two cases are
considered: (a) x0 ¼ 4:5 . d; y0 ¼ 1:5 , d, x0 þ y0 . d and (b) x0 ¼ 2:5 , d; y0 ¼ 0:7 , d,
x0 þ y0 , d.
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or, equivalently,

ln
yðTÞ

xðTÞ

x0

y0
¼ ðA 2 aÞ

ðT

0

1

1þ bðx þ yÞ
dt: ð3Þ

This together with ðyðTÞ=xðTÞÞ . y0=x0 implies that A 2 a . 0 (Figure 9), i.e. cancer cells

have a larger proliferation rate than normal cells. Notice that for small x þ y formula (3)

gives

A 2 a .
1

T
ln

yðTÞ

xðTÞ

x0

y0
;

a measure of ‘aggressivity’ of the cancer cells.

Case (A2). An accelerated proliferation rate can also be put in connection with a shortened

interval between divisions. Thus, in our model, pathway (A2) is also characterized by the

parameter inequality a , A (Figure 9).

Case (B). Monoclonal patterns caused by external catastrophic events or intrinsic

weakness of certain stem cells can be explained by the change of sensibility of particular

clones. Thus, we put case (B) in connection with the sensitivity parameter inequality

b . B (Figure 10).

Case (C). Dominant clones due to abnormal variations conferring ‘immortality’ are

characterized by a lower death rate. Thus case (C) is mathematically expressed by the

Figure 9. Numerical simulations for the case a , A. Here, a ¼ 0:25;
A ¼ 0:3; b ¼ B ¼ 0:5; c ¼ C ¼ 0:1, d ¼ 3 and D ¼ 4. In time, the normal cell population xðtÞ
(broken line) approaches 0 while the abnormal cell population yðtÞ (solid line) becomes arbitrarily
close to the value D. Two cases are considered: (a) x0 ¼ 2:9; y0 ¼ 1:5 and (b) x0 ¼ 1:8; y0 ¼ 2:4.
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inequality C , c. Notice that, as in case (A1), we can obtain the estimation

c 2 C ¼
1

T
ln

yðTÞ

xðTÞ

x0

y0
;

a measure of the ‘immortality’ of the clone.

In conclusion, each one of basic cases (A–C) leading to leukaemia corresponds to the

alteration of a single kinetic parameter: thus (A) corresponds to an increased growth rate

A . a; (B) to a decreased sensibility rate B , b and (C) to a decreased death parameter

C , c. Obviously, a monoclonal pattern becomes more prominent when two of these

alterations or all three of them hold. More complex leukemic patterns are due to the

proliferation of several (say n) abnormal clones with their own alterations of the kinetic

parameters. Mathematically, this could be described by an ðn þ 1Þ-dimensional

competitive system whose parameters are a, b, c (for normal cells) and Ai;Bi;Ci ði ¼

1; 2; . . . ; nÞ (for each of the abnormal clones). Then the dynamic of the whole system

depends on the own parameter modifications of the clones.

4. Conclusions

4.1. Some clinical remarks

The models that we have outlined could be extrapolated to real leukaemia cases.

Theoretically, all terms can be quantified; practically there probably are still too many

unknown parameters to devise a clinically useful mathematical model. However, there are

some clues as to the applicability of these patterns, deriving from the epidemiological

picture in various patient populations.

1. In the general population, AMLR is low, amounting to approximately 4–

5/100,000/year [13]. In fact, AML is quite a rare oncological event probably due to

the robustness of the haematopoietic system, conferred by its rich clonal diversity.

Figure 10. Numerical simulations for the case b . B. Here a ¼ A ¼ 0:3; b ¼ 0:8; B ¼ 0:5;
c ¼ C ¼ 0:1, when d ¼ 2:5, D ¼ 4. In time, the normal cell population xðtÞ (broken line) approaches
0 while the abnormal cell population yðtÞ (solid line) becomes arbitrarily close to the value D. Two
cases are considered: (a) x0 ¼ 1:5; y0 ¼ 1 and (b) x0 ¼ 3:5; y0 ¼ 2.
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However, even in the general population there are marked differences in AML

incidence, according to age. The incidence is very low, about 1/100,000/year under

30 years, and much higher, 10–20/100,000/year in subjects over 60 years. It is

possible that in some older subjects the clonal diversity may weaken, as suggested

by a study showing an increase of blood monoclonal patterns with aging [12].

These findings were not confirmed in a more recent study [44], and it seems that the

absolute number of stem cells does not decrease significantly with age. However, it

was shown that hematopoiesis is functionally disregulated in aging subjects,

resulting in reduced bone marrow cellularity and impaired response to stimuli [26].

Therefore, in old subjects, pattern (C) may play an important role, while in young

subjects, it takes a highly proliferative clone to become dominant, such as in

model (A2).

2. In patients with myelodysplastic syndromes (MDS), AMLR is high, 5–50% of all

cases progressing to overt AML [5]. MDS occurs mostly in old subjects and is

characterized by clonal, ineffective hematopoiesis. MDS progenitors display an

increased propensity towards cell death through apoptosis, leading to ineffective

hematopoiesis [40]. It is conceivable that against this background of widespread

apoptosis, even a slow-proliferating leukemic clone, resistant to apoptosis,

relatively ‘immortal’, might gain proliferative advantage and eventually become

dominant. Therefore, in MDS, AMLR could be enhanced in an opportunistic

manner through a combination of patterns (B) (intrinsic defect of the non-leukemic

clones) and (C) (old age).

3. In subjects previously treated with chemo/radiotherapy, AMLR is high. For

instance, the risk of treatment-related AML and MDS in non-Hodgkin’s lymphoma

is 10% within 10 years of primary therapy, a much higher risk than that observed in

the general population [7]. One can assume that alkylating agents and radiotherapy,

aside from increasing the variation rate, also lead to the destruction of a large

number of HSC lines, such as in model B. The same pattern may apply to AML

following hereditary disorders associated with marrow aplasia such as Fanconi’s

anaemia or Bloom’s syndrome [32,34] in which the depletion of normal progenitors

creates the background in which a ‘sluggish’ leukemic clone can emerge.

4. In chronic myelogenous leukaemia, (CML), AMLR is high, practically 100% of the

patients progressing to AML [17]. CML in chronic phase is best described by

pattern (A1), with variation ‘m’ as BCR–ABL and additional variation ‘IX’ related

to clonal evolution leading to the AML-like blastic phase. Actually in CML, blastic

phase may be the result of a combination of cases (A1) and (A2).

5. Pattern (A2) may describe best the so-called ‘true de novo’ AML, such as the core-

binding factor (CBF) mutated AML, the NPM1 positive AML or the CBPA-

positive AMLs, which generally occur in younger patients and the mutations

appear in more differentiated progenitor cells, leading to a dominant pattern

through enhanced proliferation [30,35].

4.2. Implications for therapy

In leukaemia, therapy should aim at reversing the monoclonal pattern. Targeted therapy,

meaning the specific removal or repair of the leukemic variation is still not feasible in

most AML patients, even though incriminating genetic variations can nowadays be

found in a significant proportion of patients [43]. Even if targeted therapies do become

available in the future, they have the highest chance of success in models (A1) and (A2),
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where there is an active proliferation. In models (B) and (C) targeted therapy would not

reverse the poverty and instability of the system. Presently, aggressive chemotherapy is

the main weapon in AML. However, chemotherapy is often ineffective against primitive

stem cells, which frequently include leukemic HSC [27]. Therefore, conventional

aggressive chemotherapy is best suited for model (A2). In model (A1) it leaves the

variation in place and in models (B) and (C), chemotherapy may only worsen the

intrinsic poverty of the system. This assumption is somewhat supported by the poor

results obtained with chemotherapy in older AML subjects and in secondary and MDS-

related AML [33]. Allogeneic HSC transplantation (alloHSC) is still the best therapy in

AML, especially in high-risk cases [46]. Theoretically, it may best be suited for models

(A1), (B) and (C), where normal hematopoiesis is intrinsically deficient and has to be

replaced or ‘rejuvenated’. One notable example is the fact that alloHSC remains the only

curative treatment in CML, despite the advent of the relatively targeted treatment

represented by tyrosine kinase inhibitors (TKI). Even though TKI are more successful in

controlling the disease than previous therapies, they rarely lead to complete molecular

remissions, in other words they do not eradicate the CML stem cells [9,31].

Unfortunately alloHSC transplantation is associated with a much higher rate of

procedure-related mortality and morbidity in older subjects than in younger ones.

AlloHSC may not be needed in AML described by pattern (A2), in which the mutations

occur in more differentiated HSC. Indeed, ‘true de novo’ AML, such as CBF-mutated

AML, CBPA and NPM1 mutated AML, have a good prognosis with conventional

chemotherapy alone [29,35].

In conclusion, there is a finite number of ways in which a genealogical tree-like system

resembling hematopoiesis can acquire a monoclonal, leukemic pattern. A mutated clone

may become dominant either actively, through variations conferring increased

proliferation potential, or opportunistically, taking advantage of a damaged or aging

normal clone compartment. Therapeutic strategies should take into account these profiles

in individual leukaemia patients.
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