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We study the following second-order differential equation: (Φp(x′))′ +F(x, t)x′ +ωpΦp(x)+α|x|lx+
e(x, t) = 0, where Φp(s) = |s|(p−2)s (p > 1), α > 0 and ω > 0 are positive constants, and l
satisfies −1 < l < p − 2. Under some assumptions on the parities of F(x, t) and e(x, t), by a
small twist theorem of reversible mapping we obtain the existence of quasiperiodic solutions and
boundedness of all the solutions.

1. Introduction and Main Result

In the early 1960s, Littlewood [1] asked whether or not the solutions of the Duffing-type
equation

x′′ + g(x, t) = 0 (1.1)

are bounded for all time, that is, whether there are resonances that might cause the amplitude
of the oscillations to increase without bound.

The first positive result of boundedness of solutions in the superlinear case (i.e.,
g(x, t)/x → ∞ as |x| → ∞) was due to Morris [2]. By means of KAM theorem, Morris
proved that every solution of the differential equation (1.1) is bounded if g(x, t) = 2x3 −
p(t), where p(t) is piecewise continuous and periodic. This result relies on the fact that
the nonlinearity 2x3 can guarantee the twist condition of KAM theorem. Later, several
authors (see [3–5]) improved Morris’s result and obtained similar result for a large class of
superlinear function g(x, t).
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When g(x) satisfies

0 ≤ k ≤ g(x)
x

≤ K ≤ +∞, ∀x ∈ R, (1.2)

that is, the differential equation (1.1) is semilinear, similar results also hold, but the proof is
more difficult since there may be resonant case. We refer to [6–8] and the references therein.

In [8] Liu considered the following equation:

x′′ + λ2x + ϕ(x) = e(t), (1.3)

where ϕ(x) = o(x) as |x| → +∞ and e(t) is a 2π-periodic function. After introducing
new variables, the differential equation (1.3) can be changed into a Hamiltonian system.
Under some suitable assumptions on ϕ(x) and e(t), by using a variant of Moser’s small twist
theorem [9] to the Pioncaré map, the author obtained the existence of quasi-periodic solutions
and the boundedness of all solutions.

Then the result is generalized to a class of p-Laplacian differential equation.Yang [10]
considered the following nonlinear differential equation

(
Φp

(
x′))′ + αΦp(x+) − βΦp

(
x−) + f(x) = e(t), (1.4)

where f(x) ∈ C5(R \ 0) ∩ C0(R) is bounded, e(t) ∈ C6(R \ 2πZ) is periodic. The idea is
also to change the original problem to Hamiltonian system and then use a twist theorem of
area-preserving mapping to the Pioncaré map.

The above differential equation essentially possess Hamiltonian structure. It is well
known that the Hamiltonian structure and reversible structure have many similar property.
Especially, they have similar KAM theorem.

Recently, Liu [6] studied the following equation:

x′′ + Fx(x, t)x′ + a2x + ϕ(x) + e(x, t) = 0, (1.5)

where a is a positive constant and e(x, t) is 2π-periodic in t. Under some assumption of F, ϕ
and e, the differential equation (1.5) has a reversible structure. Suppose that ϕ(x) satisfies

γxϕ(x) ≥ x2ϕ′(x) > 0, xϕ(x) ≥ αΦ(x), ∀x /= 0, (1.6)

where Φ(x) =
∫x
0 ϕ(t)dt and 0 < γ < 1 < α < 2. Moreover,

∣∣
∣∣∣
xk d

kΦ(x)
dxk

∣∣
∣∣∣
≤ c ·Φ(x), for 3 ≤ k ≤ 6, (1.7)
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where c is a constant. Note that here and below we always use c to indicate some constants.
Assume that there exists σ ∈ (0, α − 1) such that

∣∣
∣∣∣
xk ∂

k+lF(x, t)
∂xk∂tl

∣∣
∣∣∣
≤ c · |x|σ ,

∣∣
∣∣∣
xk ∂

k+le(x, t)
∂xk∂tl

∣∣
∣∣∣
≤ c · |x|σ for k, l ≤ 6. (1.8)

Then, the following conclusions hold true.

(i) There exist ε0 > 0 and a closed set A ⊂ (a/2π, a/2π + ε0) having positive measure
such that for any ω ∈ A, there exists a quasi-periodic solution for (1.5) with the
basic frequency (ω, 1).

(ii) Every solution of (1.5) is bounded.

Motivated by the papers [6, 8, 10], we consider the following p-Laplacian equation:

(
Φp

(
x′))′ + F(x, t)x′ +ωpΦp(x) + α|x|lx + e(x, t) = 0. (1.9)

whereΦp(s) = |s|(p−2)s(p > 1), −1 < l < p−2, and α,ω > 0 are constants. We want to generalize
the result in [6] to a class of p-Laplacian-type differential equations of the form (1.9). Themain
idea is similar to that in [6]. Wewill assume that the functions F and e have some parities such
that the differential system (1.9) still has a reversible structure. After some transformations,
we change the systems (1.9) to a form of small perturbation of integrable reversible system.
Then a KAM Theorem for reversible mapping can be applied to the Poincaré mapping of this
nearly integrable reversible system and some desired result can be obtained.

Our main result is the following theorem.

Theorem 1.1. Suppose that e and F are of class C6 in their arguments and 2π-periodic with respect
to t such that

F(−x,−t) = −F(x, t), e(−x,−t) = −e(x, t),
F(x,−t) = −F(x, t), e(x,−t) = e(x, t).

(1.10)

Moreover, suppose that there exists σ < l such that

∣
∣∣∣
∣
xk ∂

k+mF(x, t)
∂xk∂tm

∣
∣∣∣
∣
≤ c · |x|σ,

∣
∣∣∣
∣
xk ∂

k+me(x, t)
∂xk∂tm

∣
∣∣∣
∣
≤ c · |x|σ+1, (1.11)

for all x /= 0, for all 0 ≤ k ≤ 6, 0 ≤ m ≤ 6. Then every solution of (1.9) is bounded.

Remark 1.2. Our main nonlinearity α|x|lx in (1.9) corresponds to ϕ in (1.5). Although it is
more special than ϕ, it makes no essential difference of proof and can simplify our proof
greatly. It is easy to see from the proof that this main nonlinearity is used to guarantee the
small twist condition.
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2. The Proof of Theorem

The proof of Theorem 1.1 is based on Moser’s small twist theorem for reversible mapping. It
mainly consists of two steps. The first one is to find an equivalent system, which has a nearly
integrable form of a reversible system. The second one is to show that Pincaré map of the
equivalent system satisfies some twist theorem for reversible mapping.

2.1. Action-Angle Variables

We first recall the definitions of reversible system. Let Ω ⊂ �
n be an open domain, and Z =

Z(z, t) : Ω × � → �
n be continuous. Suppose G : �n → �

n is an involution (i.e., G is a C1-
diffeomorphism such that G2 = Id) satisfying G(Ω) = Ω. The differential equations system

z′ = Z(z, t) (2.1)

is called reversible with respect to G, if

G∗Z(z,−t) = DG(Gz)Z(Gz,−t) = −Z(z, t), ∀z ∈ Ω, ∀t ∈ R (2.2)

with DG denoting the Jacobian matrix of G.
We are interested in the special involution G(x, y) → (x,−y) with z = (x, y) ∈ R2. Let

Z = (Z1, Z2). Then z′ = Z(z, t) is reversible with respect to G if and only if

Z1
(
x,−y,−t) = −Z1

(
x, y, t

)
,

Z2
(
x,−y,−t) = Z2

(
x, y, t

)
.

(2.3)

Below we will see that the symmetric properties (1.10) imply a reversible structure of the
system (1.9).

Let y = Φp(x′) = |x′|p−2x′. Then x′ = Φq(y), where q satisfies 1/p + 1/q = 1. Hence, the
differential equation (1.9) is changed into the following planar system:

x′ = Φq

(
y
)
,

y′ = −ωpΦp(x) − α|x|lx − e(x, t) − F(x, t)Φq

(
y
)
.

(2.4)

By (1.10) it is easy to see that the system (2.4) is reversible with respect to the involution
G : (x, y) → (x,−y).

Below we will write the reversible system (2.4) as a form of small perturbation. For
this purpose we first introduce action-angle variables (r, θ).

Consider the homogeneous differential equation:

(
Φp

(
u′))′ + Φp(u) = 0. (2.5)
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This equation takes as an integrable part of (1.9). We will use its solutions to construct a pair
of action-angle variables. One of solutions for (2.5) is the function sinp as defined below. Let
the number πp defined by

πp = 2
∫ (p−1)1/p

0

ds
[
1 − sp/

(
p − 1

)]1/p . (2.6)

We define the function w(t) : [0, πp/2] → [0, (p − 1)1/p], implicitly by

∫w(t)

0

ds
[
1 − sp/

(
p − 1

)]1/p = t. (2.7)

The function w(t) will be extended to the whole real axis R as explained below, and the
extension will be denoted by sinp. Define sinp on [πp/2, πp] by sinp(t) = w(πp − t). Then,
we define sinp on [−πp, 0] such that sinp is an odd function. Finally, we extend sinp to R by
2πp-periodicity. It is not difficult to verify that sinp has the following properties:

(i) sinp(0) = 0, sin′
p(0) = 1;

(ii) (p − 1)|sin′
p(t)|p + |sinp(t)|p = p − 1;

(iii) sinpt is an odd periodic function with period 2πp.

It is easy to verify that x = sinp(ωt) satisfies

(
Φp

(
x′))′ +ωpΦp(x) = 0 (2.8)

with initial condition (x(0), x′(0)) = (0, ω). Define a transformation Θ : (x, y) �→ (r, θ) by

x = r2/psinpωθ,

y = r2/qΦp

(
ω sin′

pωθ
)
.

(2.9)

It is easy to see that

∂
(
x, y

)

∂(r, θ)
= −2

q
ωpr. (2.10)

Since the Jacobian matrix of Θ is nonsingular for r > 0, the transformation Θ is a local
homeomorphism at each point (r, θ) of the set R+ × [0, 2πp/ω), while Θ−1 : (r, θ) �→ (x, y)
is a global homeomorphism from R+ × [0, 2πp/ω) to R2 \ {0}. Under the transformationΘ the
system (2.4) is changed to

r ′ = f1(t, θ, r) = N1(t, θ, r) + P1(t, θ, r),

θ′ = 1 + f2(t, θ, r) = 1 +N2(t, θ, r) + P2(t, θ, r),
(2.11)
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where

N1(t, θ, r) = −αq
2

1
ωp−1 r

4/p−1+(2/p)lsin′
pθ̃
∣∣
∣sinl

pθ̃
∣∣
∣sinpθ̃,

P1(t, θ, r) = −q
2

1
ωp−1 r

1−2/qsin′
pθ̃F

(
r2/psinpθ̃, t

)
Φq

(
r2/qΦp

(
ω sin′

pθ̃
))

− q

2
1

ωp−1 r
1−2/qsin′

pθ̃e
(
r2/psinpθ̃, t

)
,

N2(t, θ, r) = α
q

p

1
ωp

r4/p−2+(2/p)l
∣
∣∣sinl

pθ̃
∣
∣∣sin2

pθ̃,

P2(t, θ, r) =
q

p

1
ωp

r−2/qsinpθ̃F
(
r2/psinpθ̃, t

)
Φq

(
r2/qΦp

(
ω sin′

pθ̃
))

+
q

p

1
ωp

r−2/qsinpθ̃e
(
r2/psinpθ̃, t

)
,

(2.12)

with θ̃ = ωθ.
It is easily verified that f1(−t,−θ, r) = −f1(t, θ, r) and f2(−t,−θ, r) = f2(t, θ, r) and so

the system (2.11) is reversible with respect to the involution G : (r, θ) → (r,−θ).

2.2. Some Lemmas

To estimate f1(t, θ, r) and f2(t, θ, r), we need some definitions and lemmas.

Lemma 2.1. Let F(t, θ, r) = F(r2/psinpθ, t), e(t, θ, r) = e(r2/psinpθ, t). If F(x, t) and e(x, t) satisfy
(1.11), then

∣∣
∣∣∣
rk

∂k+sF(t, θ, r)
∂rk∂ts

∣∣
∣∣∣
≤ c · r(2/p)σ ,

∣∣
∣∣∣
rk

∂k+se(t, θ, r)
∂rk∂ts

∣∣
∣∣∣
≤ c · r(2/p)(σ+1), (2.13)

for ∀θ ∈ R, k + s ≤ m.

Proof. We only prove the second inequality since the first one can be proved similarly.

∣
∣∣∣∣
rk

∂k+se(t, θ, r)
∂rk∂ts

∣
∣∣∣∣
=

∣
∣∣∣∣
rk

∂k+se(x, t)
∂xk∂ts

(
∂x

∂r

)k

+ · · · + rk
∂1+se(x, t)
∂x∂ts

∂kx

∂rk

∣
∣∣∣∣

=

∣∣∣∣
∣
c1
(
p
)
rk

∂k+se(x, t)
∂xk∂ts

(
r2/p−1

)k
sink

pθ + · · · + ck
(
p
)
rk

∂1+se(x, t)
∂x∂ts

r2/p−ksinpθ

∣∣∣∣
∣

=

∣∣
∣∣∣
cxk ∂

k+se(x, t)
∂xk∂ts

+ · · · + cx
∂1+se(x, t)
∂x∂ts

∣∣
∣∣∣

≤ c · |x|σ+1 ≤ c · r(2/p)(σ+1).
(2.14)
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To describe the estimates in Lemma 2.1, we introduce function spaceMn(Ψ), whereΨ
is a function of r.

Definition 2.2. Let n = (n1, n2) ∈ N2. We say f ∈ Mn(Ψ), if for 0 < j ≤ n1, 0 < s ≤ n2, there
exist r0 > 0 and c > 0 such that

rj
∣∣∣D

j
rD

s
t f(t, θ, r)

∣∣∣ ≤ c ·Ψ(r), ∀r ≥ r0, ∀(t, θ) ∈ S1 × S1. (2.15)

Lemma 2.3 (see [6]). The following conclusions hold true:

(i) if f ∈ Mn(Ψ), thenD
j
rf ∈ Mn−(0,j)(r−jΨ) andDs

t f ∈ Mn−(s,0)(Ψ);

(ii) if f1 ∈ Mn(Ψ1) and f2 ∈ Mn(Ψ2), then f1f2 ∈ Mn(Ψ1Ψ2);

(iii) Suppose Ψ,Ψ1,Ψ2 satisfy that, there exists c > 0 such that for ∀0 ≤ ξ ≤ 2 · r,

Ψ(ξ) ≤ cΨ(r),

lim
r→+∞

r−1Ψ1 = lim
r→+∞

Ψ2 = 0.
(2.16)

If f ∈ Mn(Ψ), g1 ∈ Mn(Ψ1), g2 ∈ Mn(Ψ2), then, we have

f
(
t + g1, θ, r + g2

) ∈ Mn′(Ψ), n′ =
(
n′
1, n

′
2
)
with n′

1 = n′
2 = min{n1, n2}. (2.17)

Moreover,

f
(
t + g1, θ, r

) − f(t, θ, r) ∈ M(n1−1,min{n1,n2})(Ψ ·Ψ1),

f
(
t, θ, r + g2

) − f(t, θ, r) ∈ M(min{n1,n2},n2−1)
(
r−1Ψ ·Ψ2

)
.

(2.18)

Proof. This lemma was proved in [6], but we give the proof here for reader’s convenience.
Since (i) and (ii) are easily verified by definition, so we only prove (iii). Let

v(t, θ, r) = t + g1(t, θ, r), u(t, θ, r) = r + g2(t, θ, r). (2.19)

Since g2 ∈ Mn(Ψ2), we have |r · ∂g2/∂r| ≤ cΨ2. So |∂g2/∂r| ≤ cr−1Ψ2 → 0 (r → ∞). Thus
|∂g2/∂r| is bounded and so |∂u/∂r| ≤ 1 + |∂g2/∂r| ≤ c. Similarly, we have

∣
∣∣∣
∂u

∂t

∣
∣∣∣ ≤ c ·Ψ2,

∣
∣∣∣
∂v

∂t

∣
∣∣∣ ≤ c,

∣
∣∣∣
∂v

∂r

∣
∣∣∣ ≤ c · r−1Ψ1. (2.20)

For j + s ≥ 2, we have

∂j+su

∂rj∂ts
=

∂j+sg2

∂rj∂ts
,

∂j+sv

∂rj∂ts
=

∂j+sg1

∂rj∂ts
. (2.21)
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Since g1 ∈ Mn(Ψ1), g2 ∈ Mn(Ψ2), it follows that

∂j+su

∂rj∂ts
∈ Mn

(
r−jΨ2

)
,

∂j+sv

∂rj∂ts
∈ Mn

(
r−jΨ1

)
. (2.22)

Let g(t, θ, r) = f(v(t, θ, r), θ, u(t, θ, r)). Since g2 ∈ Mn(Ψ2), we know that for r sufficiently
large

r0  r + g2 ≤ 2r. (2.23)

By the property of Ψ, we have

∣∣g(t, θ, r)
∣∣ ≤ c ·Ψ(u) = c ·Ψ(

r + g2
) ≤ c ·Ψ(r), (2.24)

for r0 sufficiently large.
If k + s ≥ 1, then by a direct computation, we have

∂k+sg

∂rk∂ts
=
∑ ∂b+mf(v, θ, u)

∂rb∂tm
· ∂j1+j

′
1u

∂rj1∂tj
′
1
· · · ∂

jb+j ′bu

∂rjb∂tj
′
b

· ∂i1+i
′
1v

∂ri1∂ti
′
1
· · · ∂

im+i′mv

∂rim∂ti
′
m
, (2.25)

where the sum is found for the indices satisfying

j1 + · · · + jb + i1 + · · · + im = k, j ′1 + · · · + j ′b + i′1 + · · · + i′m = s. (2.26)

Without loss of generality, we assume that

j1 + j ′1 = 1, . . . , jb1 + j ′b1 = 1,

i1 + i′1 = 1, . . . , im1 + i′m1
= 1.

(2.27)

Furthermore, we suppose that among j1, . . . , jb1 , there are b2 numbers which equal to 0, and
among i1, . . . , im1 , there arem2 numbers which equal to 0.

Since

∂k+sg

∂rk∂ts
=
∑ ∂b+mf(v, θ, u)

∂rb∂tm
· ∂j1+j

′
1u

∂rj1∂tj
′
1
· · · ∂

jb2+j
′
b2u

∂rjb2∂t
j ′
b2

· ∂
jb2+1+j

′
b2+1u

∂rjb2+1∂t
j ′b2+1

· · · ∂
jb1+j

′
b1u

∂rjb1∂t
j ′b1

· ∂
jb1+1+j

′
b1+1u

∂rjb1+1∂t
j ′b1+1

· · · ∂
jb+j ′bu

∂rjb∂tj
′
b

· ∂i1+i
′
1v

∂ri1∂ti
′
1
· · · ∂

im2+i
′
m2v

∂rim2∂ti
′
m2

· ∂
im2+1+i

′
m2+1v

∂rim2+1∂t
i′m2+1

· · · ∂
im1+i

′
m1v

∂rim1∂ti
′
m1

· ∂
im1+1+i

′
m1+1v

∂rim1+1∂t
i′m1+1

· · · ∂
im+i′mv

∂rim∂ti
′
m
,

(2.28)



Boundary Value Problems 9

we have

∂k+sg

∂rk∂ts
≤
∑

c · r−bΨr−(jb1+1+···+jb)rm2−m1Ψb−b1+b2
1 r−(im1+1+···+im)Ψ(m−m2+(m2−m1))

2

≤ c · r(b2−b1)−(jb1+1+···+jb)+(m2−m1)−(im1+1+···+im)
(
r−(b+b2−b1)Ψb+b2−b1

1

)
Ψm−m1

2

≤ c · r−kΨ,

(2.29)

and then,

f
(
t + g1, θ, r + g2

) ∈ Mn′(Ψ). (2.30)

Obviously

f
(
t + g1, θ, r

) − f(t, θ, r) =
∫1

0

∂f

∂t

(
t + ηg1, θ, r

)
g1dη. (2.31)

Since

∂f

∂t
∈ Mn−(1,0)(Ψ), lim

r→+∞
(
ηg1

)
= 0, η ∈ [0, 1]. (2.32)

By the condition of (iii) we obtain

f
(
t + g1, θ, r

) − f(t, θ, r) ∈ M(n1−1,min{n1,n2})(Ψ ·Ψ1), (2.33)

In the same way we can consider f(t, θ, r + g2) − f(t, θ, r) and we omit the details.

2.3. Some Estimates

The following lemma gives the estimate for f1(t, θ, r) and f2(t, θ, r).

Lemma 2.4. f1(t, θ, r) ∈ M(5,5)(rβ+1), f2(t, θ, r) ∈ M(5,5)(rβ), where β = 2(2 − p + l)/p.

Proof. Since f1(t, θ, r) = P1(t, θ, r) + N1(t, θ, r), we first consider P1(t, θ, r) and N1(t, θ, r). By
Lemma 2.1, F(t, θ, r) ∈ M(5,5)(r(2/p)σ). Again Φq(r2/qΦp(ω sin′

pθ̃)) = r2/pΦq(Φp(ω sin′
pθ̃)) ∈

M(5,5)(r2/p), using the conclusion (iii) of Lemma 2.3, we have P1(t, θ, r) ∈ M(5,5)(rβ
′+1), where

β′ = 2(2 − p + σ)/p. Note that N1(t, θ, r) ∈ M(5,5)(rβ+1) and β′ < β, we have f1(t, θ, r) ∈
M(5,5)(rβ+1). In the same way we can prove f2(t, θ, r) ∈ M(5,5)(rβ). Thus Lemma 2.4 is proved.



10 Boundary Value Problems

Since −1 < l < p − 2, we get β < 0. So |f2| ≤ rβ  1 for sufficiently large r. When r � 1
the system (2.11) is equivalent to the following system:

dr

dθ
= f1(t, θ, r)

(
1 + f2(t, θ, r)

)−1
,

dt

dθ
=
(
1 + f2(t, θ, r)

)−1
.

(2.34)

It is easy to see that f1(−t,−θ, r) = −f1(t, θ, r) and f2(−t,−θ, r) = f2(t, θ, r). Hence,
system (2.34) is reversible with respect to the involution G : (r, t) → (r,−t).

We will prove that the Poincaré mapping can be a small perturbation of integrable
reversible mapping. For this purpose, we write (2.34) as a small perturbation of an integrable
reversible system. Write the system (2.34) in the form

dr

dθ
= f1(t, θ, r) + h1(t, θ, r) = N1(t, θ, r) + (P1(t, θ, r) + h1(t, θ, r)),

dt

dθ
= 1 − f2(t, θ, r) + h2(t, θ, r) = 1 −N2(t, θ, r) + (−P2(t, θ, r) + h2(t, θ, r)),

(2.35)

where h1(t, θ, r) = −f1f2/(1+f2), h2(t, θ, r) = f2
2/(1+f2), with f1(t, θ, r) and f2(t, θ, r) defined

in (2.11). It follows h1(−t,−θ, r) = −h1(t, θ, r), h2(−t,−θ, r) = h2(t, θ, r), and so (2.35) is also
reversible with respect to the involution G : (r, t) → (r,−t). Below we prove that h1(t, θ, r)
and h2(t, θ, r) are smaller perturbations.

Lemma 2.5. h1(t, θ, r) ∈ M(5,5)(r2β+1), h2(t, θ, r) ∈ M(5,5)(r2β).

Proof. If r0 is sufficiently large, then |f2(t, θ, r)| < 1/2 and so 1/(1 + f2(t, θ, r)) =∑+∞
s=0(−1)sfs

2 (t, θ, r). Hence

h1(t, θ, r) =
∞∑

s=0
(−1)sfs+1

2 (t, θ, r)f1(t, θ, r). (2.36)

It is easy to verify that

∂k+m

∂rk∂tm
fs+1
2 f1 =

∑

|i|=k,|j|=m,

ci,j
∂i1+j1

∂ri1∂tj2
f1

∂i2+j2

∂ri2∂tj2
f2 · · · ∂is+2+js+2

∂ris+2∂tjs+2
f2, (2.37)

where i = (i1, . . . , il+2), |i| = i1 + · · · + is+2, and j and |j| are defined in the same way as i and |i|.
So, we have

∂k+m

∂rk∂tm
h1 =

∑

|i|=k,|j|=m,n≥2
ci,j

∂i1+j1

∂ri1∂tj1
f1

∂i2+j2

∂ri2∂tj2
f2 · · · ∂in+jn

∂rin∂tjn
f2, (2.38)
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where

∂iτ+jτ

∂riτ ∂tjτ
f2 ≤ c, τ = 2, . . . , n for f2 ∈ M(5,5)

(
rβ
)
. (2.39)

So

∣
∣∣∣
∣
∂k+m

∂rk∂tm
h1

∣
∣∣∣
∣
≤ ci,jr

β+1−i1rβ−i2 · · · rβ−in

≤ c1r
β+1rβ

(
rβ
)n−2

r−(i1+···+in)

≤ cr−kr2β+1.

(2.40)

Thus, h1 ∈ M(5,5)(r2β+1). In the same way, we have h2 ∈ M(5,5)(r2β).

Now we change system (2.35) to

dr

dθ
= N1(t, θ, r) + g1(t, θ, r),

dt

dθ
= 1 −N2(t, θ, r) + g2(t, θ, r),

(2.41)

where g1(t, θ, r) = P1(t, θ, r) +h1(t, θ, r) and g2(t, θ, r) = −P2(t, θ, r) + h2(t, θ, r). By the proof of
Lemma 2.4, we know P1 ∈ M(5,5)(rβ

′+1) and P2 ∈ M(5,5)(rβ
′
). Thus, g1(t, θ, r) ∈ M(5,5)(rβ+1−σ̃)

and g2(t, θ, r) ∈ M(5,5)(rβ−σ̃) where

σ̃ = min
{
−β,−2

p
(σ − l)

}
> 0, (2.42)

with σ < l < p − 2, −1 < l.

2.4. Coordination Transformation

Lemma 2.6. There exists a transformation of the form

t = t, λ = r + S(r, θ), (2.43)

such that the system (2.41) is changed into the form

dλ

dθ
= g̃1(t, θ, λ),

dt

dθ
= 1 −N2(t, θ, λ) + g̃2(t, θ, λ),

(2.44)
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where g̃1, g̃2 satisfy:

g̃1 ∈ M(5,5)

(
λβ+1−σ̃

)
, g̃2 ∈ M(5,5)

(
λβ−σ̃

)
. (2.45)

Moreover, the system (2.44) is reversible with respect to the involution G: (λ,−t) �→ (λ, t).

Proof. Let

S(r, θ) =
∫θ

0
N1(t, θ, r)dθ =

q

2
α

ωp−1
1

l + 2

∣∣∣sinl+2
p θ̃

∣∣∣rβ+1, (2.46)

then

S(r, θ) = S
(
r, θ + 2πp

)
, S(r,−θ) = S(r, θ). (2.47)

It is easy to see that

S(r, θ) ∈ M(5,5)

(
rβ+1

)
. (2.48)

Hence the map (r, θ) → (λ, t)with λ = r + S(r, θ) is diffeomorphism for r � 1. Thus, there is
a function L = L(λ, θ) such that

r = λ + L(λ, θ) (2.49)

where

L
(
λ, θ + 2πp

)
= L(λ, θ), L(λ,−θ) = L(λ, θ), L(λ, θ) ∈ M(5,5)

(
λβ+1

)
. (2.50)

Under this transformation, the system (2.41) is changed to (2.44) with

g̃1(t, θ, λ) = g1(t, θ, λ + L), g̃2(t, θ, λ) = N2(t, θ, λ) −N2(t, θ, λ + L) + g2(t, θ, λ + L).
(2.51)

Belowwe estimate g1 and g2. We only consider g2 since g1 can be considered similarly or even
simpler.

Obviously,

lim
λ→∞

(
λ−1λ4/p−1+(2/p)l

)
= lim

λ→∞

(
λ2β

)
= 0. (2.52)

Note that

g2(t, θ, r) ∈ M(5,5)

(
rβ−σ̃

)
. (2.53)
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By the third conclusion of Lemma 2.3, we have that

g2(t, θ, λ + L) ∈ M(5,5)

(
λβ−σ̃

)
. (2.54)

In the same way as the above, we have

N2(t, θ, r) = N2(t, θ, λ + L) ∈ M(5,5)

(
λβ
)

(2.55)

and so

N2(t, θ, r) −N2(t, θ, λ) = N2(t, θ, λ + L) −N2(t, θ, λ) ∈ M(5,5)

(
λ−1λβλ4/p−1+(2/p)σ

)

= M(5,5)

(
λβ+β′

)
.

(2.56)

By (2.54) and (2.56), noting that β′ < β, it follows that

g̃2(t, θ, λ) ∈ M(5,5)

(
λβ−σ̃

)
. (2.57)

Since L(λ,−θ) = L(λ, θ), the system (2.44) is reversible in θ with respect to the involution
(λ, t) → (λ,−t). Thus Lemma 2.6 is proved.

Now we make average on the nonlinear term N2(t, θ, λ) in the second equation of
(2.44).

Lemma 2.7. There exists a transformation of the form

τ = t + S̃(λ, θ), λ = λ (2.58)

which changes (2.44) to the form

dλ

dθ
= H1(λ, τ, θ),

dτ

dθ
= 1 − [N2] +H2(λ, τ, θ), (2.59)

where [N2] = α̃ · λβ with α̃ = (1/2πp)(q/p)(α/ωp)(2/p)
∫2πp/ω

0 |sinl
pθ̃|l+2dθ̃ and the new

perturbations H1(λ, τ, θ),H2(λ, τ, θ) satisfy:

∣∣∣
∣∣
λk ∂k+s

∂λk∂ts
H1(λ, τ, θ)

∣∣∣
∣∣
,

∣∣∣
∣∣
λk+1 ∂k+s

∂λk∂ts
H2(λ, τ, θ)

∣∣∣
∣∣
≤ C · λβ+1−σ̃ . (2.60)

Moreover, the system (2.59) is reversible with respect to the involution G: (λ, τ) �→ (λ,−τ).
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Proof. We choose

S̃(λ, θ) =
∫θ

0
(N2(λ) − [N2])dθ. (2.61)

Then

S̃(λ,−θ) = S̃(λ, θ), S̃
(
λ, 2πp + θ

)
= S̃(λ, θ), S̃(λ, θ) ∈ M(5,5)

(
λβ
)
. (2.62)

Defined a transformation by

τ = t + S̃(λ, θ), λ = λ. (2.63)

Then the system of (2.44) becomes

dλ

dθ
= H1(λ, τ, θ),

dτ

dθ
= 1 − [N2] +H2(λ, τ, θ), (2.64)

where

H1(λ, τ, θ) = g̃1
(
λ, τ − S̃(λ, θ), θ

)
,

H2(λ, τ, θ) = g̃2
(
λ, τ − S̃(λ, θ), θ

)
+
∂S̃

∂λ
g̃1
(
λ, τ − S̃(λ, θ), θ

)
.

(2.65)

It is easy to very that

H1(λ,−τ,−θ) = −H1(λ,−τ,−θ), H2(λ,−τ,−θ) = H2(λ, τ, θ), (2.66)

which implies that the system (2.59) is reversible with respect to the involution G: (λ, τ) �→
(λ,−τ). In the same way as the proof of g1(λ, t, θ) and g2(λ, t, θ), we have

∣
∣∣∣
∣
λk ∂k+s

∂λk∂ts
H1(λ, τ, θ)

∣
∣∣∣
∣
,

∣
∣∣∣
∣
λk+1 ∂k+s

∂λk∂ts
H2(λ, τ, θ)

∣
∣∣∣
∣
≤ C · λβ+1−σ̃ . (2.67)

Thus Lemma 2.7 is proved.

Below we introduce a small parameter such that the system (2.4) is written as a form
of small perturbation of an integrable.

Let

[N2] = ερ. (2.68)
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Since

[N2] = α̃ · λβ −→ 0 as λ −→ +∞, (2.69)

then

λ −→ +∞ ⇐⇒ ε −→ 0+. (2.70)

Now, we define a transformation by

λ =
(ερ
α̃

)1/β
, τ = τ. (2.71)

Then the system (2.59) has the form

dρ

dθ
= g1

(
ρ, τ, θ, ε

)
,

dτ

dθ
= 1 − ερ + g2

(
ρ, τ, θ, ε

)
, (2.72)

where

g1
(
ρ, τ, θ, ε

)
= ε−1

d[N2]
dλ

H1
(
λ
(
ε, ρ

)
, τ, θ

)
, g2

(
ρ, τ, θ, ε

)
= H2

(
λ
(
ε, ρ

)
, τ, θ

)
. (2.73)

Lemma 2.8. The perturbations g1 and g2 satisfy the following estimates:

∣∣∣
∣∣

∂k+s

∂ρk∂τs
g1

∣∣∣
∣∣
≤ c · ε1+σ0 ,

∣∣∣
∣∣

∂k+s

∂ρk∂τs
g2

∣∣∣
∣∣
≤ c · ε1+σ0 , σ0 = − σ̃

β
> 0. (2.74)

Proof. By (2.73), (2.60) and noting that λ = (ερ/α̃)1/β, it follows that

∣
∣g1

∣
∣ =

∣
∣∣∣
∣
[N]′

ε
H̃1

∣
∣∣∣
∣
≤ c ·

∣∣∣ε−1λβ+1H̃1

∣∣∣

≤ c · ε−1λβ−1λβ+1−σ̃ ≤ c · ε−1λ2β−σ̃ ≤ c · ε1+σ0 .

(2.75)

In the same way, |g2| = |H̃2| ≤ c ·λβ−σ̃ ≤ c · ε1+σ0 . The estimates (2.74) for k + s ≥ 1 follow easily
from (2.60).

2.5. Poincaré Map and Twist Theorems for Reversible Mapping

We can use a small twist theorem for reversible mapping to prove that the Pioncaré map P
has an invariant closed curve, if ε is sufficiently small. The earlier result was due to Moser
[11, 12], and Sevryuk [13]. Later, Liu [14] improved the previous results. Let us first recall the
theorem in [14].
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LetA = [a, b]×S1 be a finite part of cylinder C = S1×R, where S1 = R/2πZ, we denote
by Γ the class of Jordan curves in C that are homotopic to the circle r = constant. The subclass
of Γ composed of those curves lying in Awill be denoted by ΓA, that is,

ΓA = {L ∈ Γ : L ⊂ A}. (2.76)

Consider a mapping fε : A ⊂ C → C, which is reversible with respect to G : (ρ, τ) �→ (ρ,−τ).
Moreover, a lift of fε can be expressed in the form:

τ1 = τ +ω + εl1
(
ρ, τ

)
+ εg̃1

(
ρ, τ, ε

)
,

ρ1 = ρ + εl2
(
ρ, τ

)
+ εg̃2

(
ρ, τ, ε

)
,

(2.77)

where ω is a real number, ε ∈ [0, 1] is a small parameter, the functions l1, l2, g̃1, and g̃2 are 2π
periodic.

Lemma 2.9 (see [14, Theorem 2]). Let ω = 2nπ with an integer n and the functions l1, l2, g̃1, and
g̃2 satisfy

l1 ∈ C6(A), l1 > 0,
∂l1
∂ρ

> 0, ∀(ρ, τ) ∈ A,

l2(·, ·), g̃1(·, ·, ε), g̃2(·, ·, ε) ∈ C5(A).

(2.78)

In addition, we assume that there is a function I : A → R satisfying

I ∈ C6(A),
∂I

∂ρ
> 0, ∀(ρ, τ) ∈ A,

l1
(
ρ, τ

) · ∂I
∂τ

(
ρ, τ

)
+ l2

(
ρ, τ

) · ∂I
∂ρ

(
ρ, τ

)
= 0, ∀(ρ, τ) ∈ A.

(2.79)

Moreover, suppose that there are two numbers ã, and b̃ such that a < ã < b̃ < b and

IM(a) < Im(ã) ≤ IM(ã) < Im
(
b̃
)
≤ IM

(
b̃
)
< Im(b), (2.80)

where

IM(r) = max
ρ∈S1

I
(
ρ, τ

)
, Im(r) = min

ρ∈S1
I
(
ρ, τ

)
. (2.81)

Then there exist ς > 0 and Δ > 0 such that, if ε < Δ and

∥
∥g̃1(·, ·, ε)

∥
∥
C5(A) +

∥
∥g̃2(·, ·, ε)

∥
∥
C5(A) < ς (2.82)

the mapping fε has an invariant curve in ΓA, the constant ς and Δ depend on a, ã, b̃, b, l1, l2, and I.
In particular, ς is independent of ε.
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Remark 2.10. If −l1, l2, g̃1, g̃2 satisfy all the conditions of Lemma 2.9, then Lemma 2.9 still holds.

Lemma 2.11 (see [14, Theorem 1]). Assume that ω /∈ 2πQ and l1(·, ·), l2(·, ·)g̃1(·, ·, ε) and
g̃2(·, ·, ε) ∈ C4(A). If

∫2π

0

∂l1
∂ρ

(
τ, ρ

)
dτ > 0, ∀ρ ∈ [a, b]. (2.83)

then there exist Δ > 0 and ς > 0 such that fε has an invariant curve in ΓA if 0 < ε < Δ and

∥
∥g̃1(·, ·, ε)

∥
∥
C4(A) +

∥
∥g̃2(·, ·, ε)

∥
∥
C4(A) < ς. (2.84)

The constants ς and Δ depend on ω, l1, l2 only.

We use Lemmas 2.9 and 2.11 to prove our Theorem 1.1. For the reversible mapping
(2.86), l1 = −2πpερ, l2 = 0.

2.6. Invariant Curves

From (2.73) and (2.66), we have

g1
(
ρ,−τ,−θ, ε) = −g1

(
ρ, τ, θ, ε

)
, g2

(
ρ,−τ,−θ, ε) = g2

(
ρ, τ, θ, ε

)
(2.85)

which yields that system (2.72) is reversible in θ with respect to the involution G : (ρ, τ) �→
(ρ,−τ). Denote by P the Poincare map of (2.72), then P is also reversible with the same
involution G : (ρ, τ) �→ (ρ,−τ) and has the form

P :

⎧
⎨

⎩

τ1 = τ + 2πp − 2επpρ + g̃1
(
ρ, τ, ε

)
,

ρ1 = ρ + g̃2
(
ρ, τ, ε

)
,

(2.86)

where τ ∈ S1 and ρ ∈ [1, 2]. Moreover, g̃1 and g̃2 satisfy

∣
∣∣∣∣

∂k+l

∂ρk∂τl
g̃1

∣
∣∣∣∣
,

∣
∣∣∣∣

∂k+l

∂ρk∂τl
g̃2

∣
∣∣∣∣
≤ c · ε1+σ0 . (2.87)

Case 1 (2πp is rational). Let I = −l1 = 2πpρ, it is easy to see that

l1
(
ρ, τ

) ∈ C6(A), l1
(
ρ, τ

)
= −2πpρ < 0,

∂l1
(
ρ, τ

)

∂ρ
< 0,

I
(
ρ, τ

) ∈ C6(A),
∂I

∂ρ

(
ρ, τ

)
> 0, l2

(
ρ, τ

)
= 0,

l1
(
ρ, τ

)∂I
∂τ

(
ρ, τ

)
+ l2

(
ρ, τ

)∂I
∂ρ

(
ρ, τ

)
= 0.

(2.88)

Since I only depends on ρ, and (∂I/∂ρ)(ρ, τ) > 0, all conditions in Lemma 2.9 hold.
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Case 2 (2πp is irrational). Since

∫2πp

0

∂l1
∂ρ

(
τ, ρ

)
dτ = −(2πp

)2
< 0, (2.89)

all the assumptions in Lemma 2.11 hold.

Thus, in the both cases, the Poincare mapping P always have invariant curves for ε
being sufficient small. Since ε  1 ⇔ λ � 1, we know that for any λ � 1, there is an invariant
curve of the Poincare mapping, which guarantees the boundedness of solutions of the system
(2.11). Hence, all the solutions of (1.9) are bounded.
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