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Monogenic extension theorem of complex Clifford algebras-valued functions over a bounded
domainwith fractal boundary is obtained. The paper is dealingwith the class of Hölder continuous
functions. Applications to holomorphic functions theory of several complex variables as well as to
that of the so-called biregular functions will be deduced directly from the isotonic approach.

1. Introduction

It is well known that methods of Clifford analysis, which is a successful generalization to
higher dimension of the theory of holomorphic functions in the complex plane, are a powerful
tool for study boundary value problems ofmathematical physics over bounded domainswith
sufficiently smooth boundaries; see [1–3].

One of the most important parts of this development is the particular feature
of the existence of a Cauchy type integral whose properties are similar to its famous
complex prototype. However, if domains with boundaries of highly less smoothness (even
nonrectifiable or fractal) are allowed, then customary definition of the Cauchy integral falls,
but the boundary value problems keep their interest and applicability. A natural question
arises as follows.

Can we describe the class of complex Clifford algebras-valued functions from Hölder
continuous space extending monogenically from the fractal boundary of a domain through
the whole domain?

In [4] for the quaternionic case and in [5–7] for general complex Clifford algebra
valued functions some preliminaries results are given. However, in all these cases the
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condition ensures that extendability is given in terms of box dimension and Hölder exponent
of the functions space considered.

In this paper wewill show that there is a rich source of material on the roughness of the
boundaries permitted for a positive answer of the question which has not yet been exploited,
and indeed hardly touched.

At the end, applications to holomorphic functions theory of several complex variables
as well as to the so-called biregular functions (to be defined later) will be deduced directly
from the isotonic approach.

The above motivation of our work is of more or less theoretical mathematical nature
but it is not difficult to give arguments based on an ample gamma of applications.

Indeed, the M. S. Zhdanov book cited in [8] is a translation from Russian and the
original title means literally “The analogues of the Cauchy-type integral in the Theory
of Geophysics Fields”. In this book is considered, as the author writes, one of the most
interesting questions of the Potential plane field theory, a possibility of an analytic extension
of the field into the domain occupied by sources.

He gives representations of both a gravitational and a constant magnetic field as such
analogues in order to solve now the spatial problems of the separation of field as well as
analytic extension through the surface and into the domain with sources.

Our results can be applied to the study of the above problems in the more general
context of domains with fractal boundaries, but the detailed discussion of this technical point
is beyond the scope of this paper.

2. Preliminaries

Let (e1, . . . , em) be an orthonormal basis of the Euclidean space R
m.

The complex Clifford algebra, denoted by Cm, is generated additively by elements of
the form

eA = ej1 · · · ejk , (2.1)

where A = {j1, . . . , jk} ⊂ {1, . . . , m} is such that j1 < · · · < jk, and so the complex dimension of
Cm is 2m. For A = ∅, e∅ = 1 is the identity element.

For a, b ∈ Cm, the conjugation and the main involution are defined, respectively, as

a =
∑

A

aAeA, eA = (−1)k(k+1)/2eA, |A| = k, satisfying ab = ba,

ã =
∑

A

aAẽA, ẽA = (−1)keA, |A| = k, satisfying ãb = ãb̃.
(2.2)

If we identify the vectors (x1, . . . , xm) of R
m with the real Clifford vectors x =

∑m
j=1 ejxj ,

then R
m may be considered as a subspace of Cm.
The product of two Clifford vectors splits up into two parts:

xy = −
〈
x, y

〉
+ x ∧ y, (2.3)
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where

〈
x, y

〉
=

m∑

j=1

xjyj ,

x ∧ y =
∑

j<k

ejek
(
xjyk − xkyj

)
.

(2.4)

Generally speaking, we will consider Cm-valued functions u on R
m of the form

u =
∑

A

uAeA, (2.5)

where uA are C-valued functions. Notions of continuity and differentiability of u are
introduced by means of the corresponding notions for its complex components uA.

In particular, for bounded set E ⊂ R
m, the class of continuous functions which satisfy

the Hölder condition of order α(0 < α ≤ 1) in Ewill be denoted by C0,α(E).
Let us introduce the so-called Dirac operator given by

∂x =
m∑

j=1

ej∂xj . (2.6)

It is a first-order elliptic operator whose fundamental solution is given by

E
(
x
)
=

1
ωm

x
∣∣x
∣∣m x ∈ R

m \ {0}, (2.7)

where ωm is the area of the unit sphere in R
m.

If Ω is open in R
m and u ∈ C1(Ω), then u is said to be monogenic if ∂xu = 0 in Ω.

Denote by M(Ω) the set of all monogenic functions in Ω. The best general reference here is
[9].

We recall (see [10]) that a Whitney extension of u ∈ C0,α(E), E being compact in R
m, is

a compactly supported function E0u ∈ C∞(Rm \ E) ∩ C0,α(Rm) such that E0u|E = u and

∣∣∂xE0u
(
x
)∣∣ ≤ cdist

(
x,E

)α−1 for x ∈ R
m \ E. (2.8)

Here and in the sequel, we will denote by c certain generic positive constant not necessarily
the same in different occurrences.

The following assumption will be needed through the paper. Let Ω be a Jordan
domain, that is, a bounded oriented connected open subset of R

m whose boundary Γ is a
compact topological surface. By Ω∗ we denote the complement domain of Ω ∪ Γ.

By definition (see [11]) the box dimension of Γ, denoted by dim Γ, is equal to
lim supε→ 0(logNΓ(ε)/ − log ε), where NΓ(ε) stands for the least number of ε-balls needed
to cover Γ.
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The limit above is unchanged ifNΓ(ε) is thinking as the number of k-cubes with 2−k ≤
ε < 2−k+1 intersecting Γ. A cubeQ is called a k-cube if it is of the form: [l12−k, (l1 +1)2−k]× · · · ×
[lm2−k, (lm + 1)2−k], where k, l1, . . . , lm are integers.

Fix d ∈ (m − 1, m], assuming that the improper integral
∫1
0 NΓ(x)xd−1dx converges.

Note that this is in agreement with [12] for Γ to be d-summable.
Observe that a d-summable surface has box dimension dimΓ ≤ d. Meanwhile, if Γ has

box dimension less than d, then Γ is d-summable.

3. Extension Theorems

We begin this section with a basic result on the usual Cliffordian Théodoresco operator
defined by

TΩu
(
x
)
= −

∫

Ω
E
(
y − x

)
u
(
y
)
dy. (3.1)

If u ∈ C0,ν(Γ) such that ν > d/m, which we may assume, then it follows thatm < (m−d)/(1−
ν) and we may choose p such that m < p < (m − d)/(1 − ν). If for such p we can prove that
∂xE0u ∈ Lp(Ω) then by in [3, Proposition 8.1] it follows thatTΩ∂xE0u represents a continuous
function in R

m. Moreover, TΩ∂xE0u ∈ C0,μ(Rm) for any μ < (mν − d)/(m − d), which is due
to the fact that TΩ∂xE0u ∈ C0,(p−m)/p(Rm).

In the remainder of this section we assume that ν > d/m.

3.1. Monogenic Extension Theorem

Theorem 3.1. If u ∈ C0,ν(Γ) is the trace of U ∈ C0,ν(Ω ∪ Γ) ∩M(Ω), then

TΩ∂xE0u|Γ = 0. (3.2)

Conversely, assuming that (3.2) holds, then u is the trace of U ∈ C0,μ(Ω ∪ Γ) ∩ M(Ω), for any
μ < (mν − d)/(m − d).

Proof. Let U∗ = u −U and define

Ωk =
{
x ∈ Q : Q ∈ Wj for some j ≤ k

}
(3.3)

and Δk = Ω \Ωk.
Note that the boundary of Ωk, denoted by Γk, is actually composed by certain faces

(denoted by Σ) of some cubes Q ∈ Wk. We will denote by νΣ, νΓk the outward pointing unit
normal to Σ and Γk, respectively, in the sense introduced in [13].

Let x ∈ Ω and let k0 be so large chosen that x ∈ Ωk0 and dist(x,Γk) ≥ |Q0| for k > k0,
where Q0 is a cube of Wk0 . Here and below |Q| denotes the diameter of Q as a subset of R

m.
Let y ∈ Γk, Q ∈ Wk a cube containing y, and z ∈ Γ such that |y − z| = dist(y,Γ).
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Since U∗ ∈ C0,ν(Γ), U∗|Γ = 0, we have

∣∣∣U∗
(
y
)∣∣∣ =

∣∣∣U∗
(
y
)
−U∗(z

)∣∣∣ ≤ c
∣∣∣y − z

∣∣∣
ν
≤ c|Q|ν. (3.4)

Let Σ be an (m−1)-dimensional face of Γk andQ ∈ Wk the k-cube containing Σ; then if k > k0,
we have

∣∣∣∣

∫

Σ
E
(
y − x

)
νΣU

∗
(
y
)
dy

∣∣∣∣ ≤
1

|Q0|m−1

∫

Σ

∣∣∣U∗
(
y
)∣∣∣dy ≤ c

|Q0|m−1 |Q|ν−1+m. (3.5)

Each face of Γk is one of those 2m of some Q ∈ Wk. Therefore, for k > k0

∣∣∣∣∣

∫

Γk
E
(
y − x

)
νΣU

∗
(
y
)
dy

∣∣∣∣∣ ≤
c

|Q0|m−1

∑

Q∈Wk

|Q|ν−1+m. (3.6)

Since ν − 1 +m > νm > d, we get

lim
k→∞

∫

Γk
E
(
y − x

)
νΓk

(
y
)
U∗

(
y
)
dy = 0. (3.7)

By Stokes formula we have

∫

Ω
E
(
y − x

)
∂xU

∗
(
y
)
dy = lim

k→∞

(∫

Δk

+
∫

Ωk

)
E
(
y − x

)
∂xU

∗
(
y
)
dy

= lim
k→∞

(∫

Δk

E
(
y − x

)
∂xU

∗
(
y
)
dy −

∫

Γk
E
(
y − x

)
νΓk

(
y
)
U∗

(
y
)
dy

)
= 0.

(3.8)

Therefore

TΩ∂xE0u|Γ = TΩ∂xU|Γ = 0. (3.9)

The same conclusion can be drawn for x ∈ R
m \ Ω. The only point now is to note that

dist(x,Γk) ≥ dist(x,Γ) for x ∈ R
m \Ω.

Finally, due to the fact that

∫

Ω

∣∣∂xE0u
(
y
)∣∣pdy =

∑

Q∈W

∫

Q

∣∣∂xE0u
(
y
)∣∣pdy ≤ c

∑

Q∈W

∫

Q

(
dist

(
y,Γ

))p(ν−1)
dy

≤ c
∑

Q∈W
|Q|p(ν−1)|Q|n = c

∑

Q∈W
|Q|m−p(1−ν) < +∞,

(3.10)

we prove that ∂xE0u ∈ Lp(Ω), and the second assertion follows directly by taking U = E0u +
TΩ∂xE0u.
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The finiteness of the last sum follows from the d-summability of Γ together with the
fact that m − p(1 − ν) > d.

For Ω∗ the following analogous result can be obtained.

Theorem 3.2. Let u ∈ C0,ν(Γ). If u is the trace of U ∈ C0,ν(Ω∗ ∪ Γ) ∩M(Ω∗), and U(∞) = 0, then

TΩ∗∂xE0u|Γ = −u
(
x
)
. (3.11)

Conversely, assuming that (3.11) holds, then u is the trace of U ∈ C0,μ(Ω∗ ∪ Γ) ∩ M(Ω∗), for any
μ < (mν − d)/(m − d).

3.2. Isotonic Extension Theorem

For our purpose we will assume that the dimension of the Euclidean spacem is even whence
we will put m = 2n from now on.

In a series of recent papers, so-called isotonic Clifford analysis has emerged as
yet a refinement of the standard case but also has strong connections with the theory of
holomorphic functions of several complex variables and biregular ones, even encompassing
some of its results; see [14–18].

Put

Ij =
1
2
(
1 + iejen+j

)
, j = 1, . . . , n; (3.12)

then a primitive idempotent is given by

I =
n∏

j=1

Ij . (3.13)

We have the following conversion relations:

en+jaI = iãejI, (3.14)

with a ∈ Cn (complex Clifford algebra generated by {e1, . . . , en}).
Note that for a, b ∈ Cn one also has that

aI = bI ⇐⇒ a = b. (3.15)

Let us introduce the following real Clifford vectors and their corresponding Dirac operators:

x1 =
n∑

j=1

ejxj , ∂x1
=

n∑

j=1

ej∂xj ,

x2 =
n∑

j=1

ejxn+j , ∂x2
=

n∑

j=1

ej∂xn+j .

(3.16)
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The function u : R
2n → Cn is said to be isotonic in Ω ⊂ R

2n if and only if u is continuously
differentiable in Ω and moreover satisfies the equation

∂isotx u := ∂x1
u + iũ∂x2

= 0. (3.17)

We will denote by I(Ω) the set of all isotonic functions in Ω.
We find ourselves forced to introduce two extra Cauchy kernels, defined by

E1

(
x
)
=

1
ω2n

x1∣∣x
∣∣2n

x ∈ R
2n \ {0},

E2

(
x
)
=

1
ω2n

x2∣∣x
∣∣2n

x ∈ R
2n \ {0}.

(3.18)

Now we may introduce the isotonic Théodoresco transform of a function u to be

(
Tisot

Ω u
)(

x
)
:= −

∫

Ω

[
E1

(
y − x

)
u
(
y
)
+ iũ

(
y
)
E2

(
y − x

)]
dy. (3.19)

It is straightforward to deduce that

TΩ(uI) =
(
Tisot

Ω u
)
I. (3.20)

Theorem 3.3. If u ∈ C0,ν(Γ), is the trace of U ∈ C0,ν(Ω ∪ Γ) ∩ I(Ω), then

Tisot
Ω ∂isotx E0u|Γ = 0. (3.21)

Conversely, assuming that (3.21) holds, then u is the trace of U ∈ C0,μ(Ω ∪ Γ) ∩ I(Ω), for any
μ < (2nν − d)/(2n − d).

Proof. LetU be an isotonic extension of u toΩ such thatU ∈ C0,ν(Ω). Then,UI is a monogenic
extension of uI to Ω, which obviously belongs to C0,ν(Ω). Therefore

Tisot
Ω

[
∂xE0uI

]
|Γ = 0 (3.22)

by Theorem 3.1.
We thus get

Tisot
Ω

[
∂isotx E0uI

]
|Γ = TΩ

[
∂xE0uI

]
|Γ = 0, (3.23)

the first equality being a direct consequence of (3.20). According to (3.15) we have (3.21),
which is the desired conclusion.

On account of Theorem 3.1 again, the converse assertion follows directly by taking
U = E0u +Tisot

Ω [∂isotx E0u], and the proof is complete.
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Remark 3.4. Theorems 3.1 and 3.3 extend the results in [4–7], since the restriction putted there
(ν > dimΓ/m) implies that of this paper.

4. Applications

In this last section, we will briefly discuss two particular cases which arise when considering
(3.17).

Case 1. It is easily seen that if u takes values in the space of scalars C, then u is isotonic if and
only if

(
∂xj + i∂xn+j

)
u = 0, j = 1, . . . , n, (4.1)

which means that u is a holomorphic function with respect to the n complex variables xj +
ixn+j , j = 1, . . . , n.

Case 2. If u, isotonic function, takes values in the real Clifford algebra R0,n, then

∂x1
u = 0,

ũ∂x2
= 0,

(4.2)

or, equivalently, by the action of the main involution on the second equation we arrive to the
overdetermined system:

∂x1
u = 0,

u∂x2
= 0,

(4.3)

whose solutions are called biregular functions. For a detailed study we refer the reader to
[19–21].

The proof of Theorem 3.3 may readily be adapted to establish analogous results for
both holomorphic and biregular functions context. Clearly, we prove that if we replace u by
a C-valued, respectively, R0,n-valued function, such that (3.21) holds, then there exists an
isotonic extension U, which, by using the classical Dirichlet problem, takes values precisely
in C or R0,n, respectively. On the other direction the proof is immediate. The corresponding
statements are left to the reader.
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[7] R. Abreu-Blaya, J. Bory-Reyes, and T. Moreno-Garcı́a, “A biregular extensiontheorem from a fractal
surface in R

2n,” to appear in Georgian Mathematical Journal.
[8] M. Shapiro, N. L. Vasilievski, and M. S. Zhdanov, “Space analogs of the Cauchy type integrals and

the quaternion theory,” in Integral Transforms in Geophysics, M. S. Zhdanov, Ed., p. 367, Springer,
Heidelberg, Germany, 1988, (Appendix A: 344–350).

[9] F. Brackx, R. Delanghe, and F. Sommen, Clifford Analysis, vol. 76 of Research Notes in Mathematics,
Pitman, Boston, Mass, USA, 1982.

[10] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, PrincetonMathematical Series,
no. 30, Princeton University Press, Princeton, NJ, USA, 1970.

[11] K. J. Falconer, The Geometry of Fractal Sets, vol. 85 of Cambridge Tracts in Mathematics, Cambridge
University Press, Cambridge, UK, 1986.

[12] J. Harrison and A. Norton, “The Gauss-Green theorem for fractal boundaries,” Duke Mathematical
Journal, vol. 67, no. 3, pp. 575–588, 1992.

[13] H. Federer, Geometric Measure Theory, vol. 153 of Die Grundlehren der mathematischen Wissenschaften,
Springer, New York, NY, USA, 1969.

[14] R. Abreu-Blaya and J. Bory-Reyes, “A Martinelli-Bochner formula on fractal domains,” Archiv der
Mathematik, vol. 92, no. 4, pp. 335–343, 2009.

[15] R. Abreu-Blaya, J. Bory-Reyes, D. Peña Peña, and F. Sommen, “The isotonic Cauchy transform,”
Advances in Applied Clifford Algebras, vol. 17, no. 2, pp. 145–152, 2007.

[16] A. Abreu-Blaya, J. Bory-Reyes, D. P. Peña, and F. Sommen, “Holomorphic extension theorems in
Lipschitz domains of C

2,” Advances in Applied Clifford Algebras, vol. 20, no. 1, pp. 1–12, 2010.
[17] J. Bory-Reyes, D. Peña Peña, and F. Sommen, “A Davydov theorem for the isotonic Cauchy

transform,” Journal of Analysis and Applications, vol. 5, no. 2, pp. 109–121, 2007.
[18] F. Sommen and D. Peña Peña, “Martinelli-Bochner formula using Clifford analysis,” Archiv der

Mathematik, vol. 88, no. 4, pp. 358–363, 2007.
[19] F. Brackx and W. Pincket, “A Bochner-Martinelli formula for the biregular functions of Clifford

analysis,” Complex Variables: Theory & Application, vol. 4, no. 1, pp. 39–48, 1984.
[20] F. Brackx and W. Pincket, “The biregular functions of Clifford analysis: some special topics,” in

Clifford Algebras and Their Applications in Mathematical Physics (Canterbury, 1985), vol. 183 of NATO
Advanced Science Institutes Series C: Mathematical and Physical Sciences, pp. 159–166, Reidel, Dordrecht,
The Netherlands, 1986.

[21] F. Brackx and W. Pincket, “Two Hartogs theorems for nullsolutions of overdetermined systems in
Euclidean space,” Complex Variables: Theory & Application, vol. 4, no. 3, pp. 205–222, 1985.


