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We study the second-order m-point boundary value problem u′′(t) + a(t) f (t,u(t)) =
0, 0 < t < 1, u(0) = u(1) =∑m−2

i=1 αiu(ηi), where 0 < η1 < η2 < ··· < ηm−2 ≤ 1/2, αi > 0
for i= 1,2, . . . ,m− 2 with

∑m−2
i=1 αi < 1,m≥ 3. a : (0,1)→ [0,∞) is continuous, symmetric

on the interval (0,1), and maybe singular at t = 0 and t = 1, f : [0,1]× [0,∞)→ [0,∞) is
continuous, and f (·,x) is symmetric on the interval [0,1] for all x ∈ [0,∞) and satisfies
some appropriate growth conditions. By using Krasnoselskii’s fixed point theorem in a
cone, we get some existence results of symmetric positive solutions.
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1. Introduction

The m-point boundary value problems for ordinary differential equations arise in a va-
riety of different areas of applied mathematics and physics. In the past few years, the
existence of positive solutions for nonlinear second-order multipoint boundary value
problems has been studied by many authors by using the Leray-Schauder continuation
theorem, nonlinear alternative of Leray Schauder, coincidence degree theory, Krasnosel-
skii’s fixed point theorem, Leggett-Wiliams fixed point theorem, or lower- and upper-
solutions method (see [1–21] and references therein). On the other hand, there is much
current attention focusing on questions of symmetric positive solutions for second-order
two-point boundary value problems, for example, Avery and Henderson [22], Henderson
and Thompson [23] imposed conditions on f to yield at least three symmetric positive
solutions to the problem

y′′ + f (y)= 0, 0≤ t ≤ 1,

u(0)= u(1)= 0,
(1.1)
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where f :R→ [0,+∞) is continuous. Both of the papers [22, 23] make an application of
an extension of the Leggett-Williams fixed point theorem. Li and Zhang [24] considered
the existence of multiple symmetric nonnegative solutions for the second-order bound-
ary value problem

−x′′ = f (x,x′), 0≤ t ≤ 1,

u(0)= u(1)= 0,
(1.2)

where f : R×R→ [0,+∞) is continuous. The main tool is the Leggett-Williams fixed
point theorem. Yao [25] gave the existence of n symmetric positive solutions and estab-
lished a corresponding iterative scheme for the two-point boundary value problem

w′′(t) +h(t) f
(
w(t)

)= 0, 0 < t < 1,

αw(0)−βw(0)= 0, αw(1) +βw(1)= 0,
(1.3)

where α > 0, β ≥ 0, and the coefficient h(t) may be singular at both end points t = 0
and t = 1. The main tool is the monotone iterative technique. Very recently, by using the
Leggett-Wiliams fixed point theorem and a coincidence degree theorem of Mawhin, Kos-
matov [26, 27] studied the existence of three positive solutions for a multipoint boundary
value problem

−u′′(t)= a(t) f
(
t,u(t),

∣
∣u′(t)

∣
∣
)
, t ∈ (0,1),

u(0)=
n∑

i=1

μiu
(
ξi
)
, u(1− t)= u(t), t ∈ [0,1],

(1.4)

where 0 < ξ1 < ξ2 < ··· < ξn ≤ 1/2, μi > 0 for i= 1,2, . . . ,n, with
∑n

i=1μi < 1, n≥ 2.
In this paper, we are concerned with the existence of symmetric positive solutions for

the following second-order m-point boundary value problem (BVP):

u′′(t) + a(t) f
(
t,u(t)

)= 0, 0 < t < 1, (1.5)

u(0)= u(1)=
m−2∑

i=1

αiu
(
ηi
)
, (1.6)

where 0 < η1 < η2 < ··· < ηm−2 ≤ 1/2, αi > 0 for i= 1,2, . . . ,m− 2, with
∑m−2

i=1 αi < 1, m≥
3. a : (0,1)→ [0,∞) is continuous, symmetric on the interval (0,1), and may be singular at
both end points t = 0 and t = 1, f : [0,1]× [0,∞)→ [0,∞) is continuous and f (1− t,x)=
f (t,x) for all (t,x)∈ [0,1]× [0,∞). We use Krasnoselskii’s fixed point theorem in cones
and combine it with an available transformation to establish some simple criteria for the
existence of at least one, at least two, or many symmetric positive solutions to BVP (1.5)-
(1.6).

The organization of this paper is as follows. In Section 2, we present some neces-
sary definitions and preliminary results that will be used to prove our main results. In
Section 3, we discuss the existence of at least one symmetric positive solution for BVP
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(1.5)-(1.6). Then we will prove the existence of two or many positive solutions in
Section 4, where n is an arbitrary natural number.

2. Preliminaries and lemmas

In this section, we introduce some necessary definitions and preliminary results that will
be used to prove our main results. A function w is said to be concave on [0,1] if

w
(
rt1 + (1− r)t2

)≥ rw
(
t1
)

+ (1− r)w
(
t2
)
, r, t1, t2 ∈ [0,1]. (2.1)

A function w is said to be symmetric on [0,1] if

w(t)=w(1− t), t ∈ [0,1]. (2.2)

A function u∗ is called a symmetric positive solution of BVP (1.5)-(1.6) if u∗(t) > 0,
u∗(1− t)= u∗(t), t ∈ [0,1], and (1.5) and (1.6) are satisfied.

We will consider the Banach space C[0,1] equipped with norm ‖u‖ =max0≤t≤1 |u(t)|.
Set

C+[0,1]= {w ∈ C[0,1] : w(t)≥ 0, t ∈ [0,1]
}
. (2.3)

We consider first the m-point BVP:

u′′ +h(t)= 0, 0 < t < 1, (2.4)

u(0)= u(1)=
m−2∑

i=1

αiu
(
ηi
)
, (2.5)

where 0 < η1 < η2 < ··· < ηm−2 < 1.

Lemma 2.1. Let
∑m−2

i=1 αi 
= 1, h∈ C[0,1]. Then the m-point BVP (2.4)-(2.5) has a unique
solution

u(t)=
∫ 1

0
H(t,s)h(s)ds, (2.6)

where

H(t,s)=G(t,s) +E(s), (2.7)

G(x, y)=
⎧
⎨

⎩

x(1− y), 0≤ x ≤ y ≤ 1,

y(1− x), 0≤ y ≤ x ≤ 1,
E(s)= 1

1−∑m−2
i=1 αi

m−2∑

i=1

αiG
(
ηi,s

)
. (2.8)

Proof. From (2.4), we have

u(t)=−
∫ t

0
(t− s)h(s)ds+Bt+A. (2.9)
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In particular,

u(0)= A,

u(1)=−
∫ 1

0
(1− s)h(s)ds+B+A,

u
(
ηi
)=−

∫ ηi

0

(
ηi− s

)
h(s)ds+Bηi +A.

(2.10)

Combining with (2.5), we conclude that

B =
∫ 1

0
(1− s)h(s)ds,

A= 1

1−∑m−2
i=1 αi

m−2∑

i=1

αi

∫ 1

0
G
(
ηi,s

)
h(s)ds.

(2.11)

Therefore, the m-point BVP (2.4)-(2.5) has a unique solution

u(t)=−
∫ t

0
(t− s)h(s)ds+ t

∫ 1

0
(1− s)h(s)ds+

1

1−∑m−2
i=1 αi

m−2∑

i=1

αi

∫ 1

0
G
(
ηi,s

)
h(s)ds

=
∫ 1

0
G(t,s)h(s)ds+

∫ 1

0
E(s)h(s)ds=

∫ 1

0
H(t,s)h(s)ds.

(2.12)

This completes the proof. �

Lemma 2.2. Suppose 0 < η1 < η2 < ··· < ηm−2 ≤ 1/2, αi > 0 for i = 1,2, . . . ,m− 2, with
∑m−2

i=1 αi < 1. Then
(1) H(t,s)≥ 0, t,s∈ [0,1], H(t,s) > 0, t,s∈ (0,1);
(2) G(1− t,1− s)=G(t,s), t,s∈ [0,1];
(3) γH(s,s)≤H(t,s)≤H(s,s), t,s∈ [0,1], where

γ =
∑m−2

i=1 αiηi

1−∑m−2
i=1 αi +

∑m−2
i=1 αiηi

. (2.13)

Proof. The conclusions (1), (2), and the second inequality of (3) are evident. Now we
prove that the first inequality of (3) holds. In fact, from 0 < η1 < η2 < ··· < ηm−2 ≤ 1/2,
we know 1−ηi ≥ ηi, thus for s∈ [0,1], we have

G
(
ηi,s

)=
⎧
⎨

⎩

(
1−ηi

)
s, 0≤ s≤ ηi

ηi(1− s), ηi ≤ s≤ 1
≥ ηis(1− s)= ηiG(s,s), (2.14)

which means that

αiG
(
ηi,s

)≥ αiηiG(s,s), i= 1,2, . . . ,m− 2, (2.15)
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and summing both sides from 1 to m− 2, we get

m−2∑

i=1

αiG
(
ηi,s

)≥
(m−2∑

i=1

αiηi

)

G(s,s). (2.16)

So

m−2∑

i=1

αiG
(
ηi,s

)
+

m−2∑

i=1

αiηiE(s)≥
(m−2∑

i=1

αiηi

)
[
G(s,s) +E(s)

]
. (2.17)

Thus
(

1−
m−2∑

i=1

αi +
m−2∑

i=1

αiηi

)

E(s)≥
(m−2∑

i=1

αiηi

)
[
G(s,s) +E(s)

]=
(m−2∑

i=1

αiηi

)

H(s,s).

(2.18)

Subsequently,

E(s)≥
∑m−2

i=1 αiηi

1−∑m−2
i=1 αi +

∑m−2
i=1 αiηi

H(s,s)= γH(s,s). (2.19)

Therefore,

H(t,s)=G(t,s) +E(s)≥ E(s)≥ γH(s,s), t,s∈ [0,1]. (2.20)

This completes the proof. �

Lemma 2.3. Let
∑m−2

i=1 αi 
= 1, 0 < η1 < η2 < ··· < ηm−2 < 1, h(t) be symmetric on [0,1].
Then the unique solution u(t) of BVP (2.4)-(2.5) is symmetric on [0,1].

Proof. For any t,s∈ [0,1], from (2.7) and Lemma 2.2, we have

u(1− t)=
∫ 1

0
H(1− t,s)h(s)ds=

∫ 1

0
G(1− t,s)h(s)ds+

∫ 1

0
E(s)h(s)ds

=
∫ 0

1
G(1− t,1− s)h(1− s)d(1− s) +

∫ 1

0
E(s)h(s)ds

=
∫ 1

0
G(t,s)h(s)ds+

∫ 1

0
E(s)h(s)ds

=
∫ 1

0
H(t,s)h(s)ds

= u(t).

(2.21)

Therefore,

u(1− t)= u(t), t ∈ [0,1], (2.22)

that is, u(t) is symmetric on [0,1]. �
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Without loss of generality, all constants ηi in the boundary value condition (1.6) are
placed in the interval (0,1/2] because of the symmetry of the solution.

Lemma 2.4. Let αi > 0 for i= 1,2, . . . ,m− 2 with
∑m−2

i=1 αi < 1, 0 < η1 < η2 < ··· < ηm−2 < 1,
h∈ C+[0,1]. Then the unique solution u(t) of BVP (2.4)-(2.5) is nonnegative on [0,1], and
if h(t) 
≡ 0, then u(t) is positive on [0,1].

Proof. Let h ∈ C+[0,1]. From the fact that u′′(t) = −h(t) ≤ 0, t ∈ [0,1], we know that
u(t) is concave on [0,1]. From (2.5) and (2.6), we have

u(1)= u(0)=
∫ 1

0
H(0,s)h(s)ds=

∫ 1

0
E(s)h(s)ds≥ 0. (2.23)

It follows that u(t)≥ 0, t ∈ [0,1], and if h(t) 
≡ 0, then u(t) > 0, t ∈ [0,1]. �

From the proof of Lemma 2.4, we know that if
∑m−2

i=1 αi > 1, h∈ C+[0,1], then the BVP
(2.4)-(2.5) has no positive solution. So in order to obtain positive solution of the BVP
(2.4)-(2.5), in the rest of the paper we assume that

∑m−2
i=1 αi ∈ (0,1).

Lemma 2.5. Let
∑m−2

i=1 αi ∈ (0,1), 0 < η1 < η2 < ··· < ηm−2 ≤ 1/2, h ∈ C+[0,1]. Then the
unique solution u(t) of BVP (2.4)-(2.5) satisfies

min
t∈[0,1]

u(t)≥ γ‖u‖, (2.24)

where γ is as in Lemma 2.2.

Proof. Applying (2.6) and Lemma 2.2, we find that for t ∈ [0,1],

u(t)=
∫ 1

0
H(t,s)h(s)ds≤

∫ 1

0
H(s,s)h(s)ds. (2.25)

Therefore,

‖u‖ ≤
∫ 1

0
H(s,s)h(s)ds. (2.26)

On the other hand, for any t ∈ [0,1], by (2.7) and Lemma 2.2, we have

u(t)=
∫ 1

0
H(t,s)h(s)ds≥

∫ 1

0
γH(s,s)h(s)ds= γ

∫ 1

0
H(s,s)h(s)ds. (2.27)

From (2.26) and (2.27) we know that (2.24) holds. �

We will use the following assumptions.
(A1) 0 < η1 < η2 < ··· < ηm−2 ≤ 1/2, αi > 0 for i= 1,2, . . . ,m− 2, with

∑m−2
i=1 αi < 1;

(A2) a : (0,1)→ [0,∞) is continuous, symmetric on (0,1), and

0 <
∫ 1

0
H(s,s)a(s)ds < +∞; (2.28)

(A3) f : [0,1]× [0,∞)→ [0,∞) is continuous and f (·,x) is symmetric on [0,1] for all
x ≥ 0.
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Define

K = {w ∈ C+[0,1] : w(t) is symmetric, concave on [0,1], min
0≤t≤1

w(t)≥ γ‖w‖}.
(2.29)

It is easy to see that K is a cone of nonnegative functions in C[0,1]. Define an integral
operator T : E→ E by

Tu(t)=
∫ 1

0
H(t,s)a(s) f

(
s,u(s)

)
ds, t ∈ [0,1]. (2.30)

It is easy to see that BVP (1.5)-(1.6) has a solution u= u(t) if and only if u is a fixed point
of the operator T defined by (2.30).

Lemma 2.6. Suppose that (A1), (A2), and (A3) hold, then T is completely continuous and
T(K)⊂ K .

Proof. (Tu)′′(t)=−a(t) f (t,u(t))≤ 0 implies that Tu is concave, thus from Lemmas 2.3,
2.4, and 2.5, we know that T(K)⊂ K . Now we will prove that the operator T is completely
continuous. For n≥ 2, define an by

an(t)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

inf0<s≤1/n a(s), 0 < t ≤ 1
n

,

a(t),
1
n
< t < 1−d

1
n

,

inf1−1/n≤s<1 a(s), 1− 1
n
≤ t < 1,

(2.31)

and define Tn : K → K by

Tnu(t)=
∫ 1

0
H(t,s)an(s) f

(
s,u(s)

)
ds. (2.32)

Obviously, Tn is compact on K for any n≥ 2 by an application of Ascoli-Arzela theorem
[28]. Denote BR = {u ∈ K : ‖u‖ ≤ R}. We claim that Tn converges on BR uniformly to
T as n→∞. In fact, let MR =max{ f (s,x) : (s,x) ∈ [0,1]× [0,R]}, then MR <∞. Since
0 <

∫ 1
0 H(s,s)a(s)ds < +∞, by the absolute continuity of integral, we have

lim
n→∞

∫

e(1/n)
H(s,s)a(s)ds= 0, (2.33)

where e(1/n)= [0,1/n]∪ [1− 1/n,1]. So, for any t ∈ [0,1], fixed R > 0, and u∈ BR,

∣
∣Tnu(t)−Tu(t)

∣
∣=

∣
∣
∣
∣
∣

∫ 1

0

[
a(s)− an(s)

]
H(t,s) f

(
s,u(s)

)
ds

∣
∣
∣
∣
∣

≤MR

∫ 1

0

∣
∣a(s)− an(s)

∣
∣H(t,s)ds

≤MR

∫

e(1/n)
a(s)H(s,s)ds−→ 0(n−→∞),

(2.34)
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where we have used assumptions (A1), (A2), and (A3) and the fact that H(t,s) ≤H(s,s)
for t,s ∈ [0,1]. Hence the completely continuous operator Tn converges uniformly to T
as n→∞ on any bounded subset of K , and therefore T is completely continuous. �

We will use the following notations:

f0 = liminf
x→+0

min
t∈[0,1]

f (t,x)
x

, f∞ = liminf
x→+∞ min

t∈[0,1]

f (t,x)
x

,

f 0 = limsup
x→+0

max
t∈[0,1]

f (t,x)
x

, f ∞ = limsup
x→+∞

max
t∈[0,1]

f (t,x)
x

,

Λ=
(∫ 1

0
H(s,s)a(s)ds

)−1

.

(2.35)

Now we formulate a fixed point theorem which will be used in the sequel (cf. [29, 30]).

Theorem 2.7. Let E be a Banach space and let K ⊂ E be a cone in E. Assume Ω1 and Ω2

are open subsets of E with 0∈Ω1 and Ω1 ⊂Ω2, let T : K ∩ (Ω2 \Ω1)→ K be a completely
continuous operator such that

(A) ‖Tu‖ ≤ ‖u‖, for all u∈ K ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖, for all u∈ K ∩ ∂Ω2; or
(B) ‖Tu‖ ≥ ‖u‖, for all u∈ K ∩ ∂Ω1 and ‖Tu‖ ≤ ‖u‖, for all u∈ K ∩ ∂Ω2.

Then T has a fixed point in K ∩ (Ω2 \Ω1).

3. The existence of single positive solution

In this section, we will impose growth conditions on f which allow us to apply Theorem
2.7 with regard to obtaining the existence of at least one symmetric positive solution for
BVP (1.5)-(1.6). We obtain the following existence results.

Theorem 3.1. Assume that (A1), (A2), and (A3) hold. If there exist two constants R1, R2

with 0 < R1 ≤ γR2 such that
(D1) f (t,x) ≤ ΛR1, for all (t,x) ∈ [0,1] × [γR1,R1], and f (t,x) ≥ (1/γ)ΛR2, for all

(t,x)∈ [0,1]× [γR2,R2]; or
(D2) f (t,x) ≥ (1/γ)ΛR1, for all (t,x) ∈ [0,1] × [γR1,R1], and f (t,x) ≤ ΛR2, for all

(t,x)∈ [0,1]× [γR2,R2],
then BVP (1.5)-(1.6) has at least one symmetric positive solution u∗ satisfying

R1 ≤
∥
∥u∗

∥
∥≤ R2. (3.1)

Proof. We only prove the case (D1). Let

Ω1 =
{
u : u∈ E, ‖u‖ < R1

}
, Ω2 =

{
u : u∈ E, ‖u‖ < R2

}
. (3.2)

For u∈ K , from Lemma 2.5 we know that min0≤s≤1u(s)≥ γ‖u‖. Therefore, for u∈ K ∩
∂Ω1, we have u(s) ∈ [γR1,R1], s ∈ [0,1], which imply that f (s,u(s)) ≤ ΛR1. Thus for
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t ∈ [0,1], we have

Tu(t)=
∫ 1

0
H(t,s)a(s) f

(
s,u(s)

)
ds≤

∫ 1

0
H(s,s)a(s) f

(
s,u(s)

)
ds

≤ΛR1

∫ 1

0
H(s,s)a(s)ds= R1 = ‖u‖.

(3.3)

Therefore,

‖Tu‖ ≤ ‖u‖, u∈ K ∩ ∂Ω1. (3.4)

On the other hand, for u∈ K ∩ ∂Ω2, we have u(s)∈ [γR2,R2], s∈ [0,1], which imply that
f (s,u(s))≥ (1/γ)ΛR2. Thus for t ∈ [0,1], we have

Tu(t)=
∫ 1

0
H(t,s)a(s) f

(
s,u(s)

)
ds≥ 1

γ
ΛR2

∫ 1

0
H(t,s)a(s)ds

≥ 1
γ
ΛR2

∫ 1

0
γH(s,s)a(s)ds= R2 = ‖u‖,

(3.5)

which implies that

‖Tu‖ ≥ ‖u‖, u∈ K ∩ ∂Ω2. (3.6)

Therefore, from (3.4), (3.6), and Theorem 2.7, it follows that T has a fixed point
u∗ ∈ K ∩ (Ω2 \Ω1). So, u∗ is a symmetric positive solution of BVP (1.5)-(1.6) with
R1 ≤ ‖u∗‖ ≤ R2. �

Theorem 3.2. Assume that (A1), (A2), and (A3) hold. If one of the following conditions is
satisfied:

(D3) f0 > (1/γ2)Λ and f ∞ <Λ (particularly, f0 =∞ and f ∞ = 0),
(D4) f 0 <Λ and f∞ > (1/γ2)Λ (particularly, f 0 = 0 and f∞ =∞),

then BVP (1.5)-(1.6) has at least one symmetric positive solution.

Proof. We only prove the case (D3). From f0 > (1/γ2)Λ, we know that there exists R1 > 0
such that f (s,x) ≥ (1/γ2)Λx for (s,x) ∈ [0,1]× [0,R1]. Let Ω1 = {u : u ∈ E, ‖u‖ < R1},
then for u∈ K ∩ ∂Ω1 and t ∈ [0,1], we have

Tu(t)=
∫ 1

0
H(t,s)a(s) f

(
s,u(s)

)
ds≥ 1

γ2
Λ

∫ 1

0
H(t,s)a(s)u(s)ds

≥ 1
γ2

Λ

∫ 1

0
γG(s,s)a(s)γ‖u‖ds= ‖u‖.

(3.7)

Therefore,

‖Tu‖ ≥ ‖u‖, u∈ K ∩ ∂Ω1. (3.8)

On the other hand, from f ∞ < Λ we know that there exists R > 0 such that f (s,x) ≤ Λx
for (t,x)∈ [0,1]× (R,∞). Let R2 > max{R1, (1/γ)R}, and Ω2 = {u : u∈ E,
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|u‖ < R2}. Then, for u ∈ K ∩ ∂Ω2, we have u(s) ≥ γ‖u‖ = γR2 > R, which implies that
f (u(s))≤Λu(s) for s∈ [0,1]. Thus,

Tu(t)=
∫ 1

0
H(t,s)a(s) f

(
s,u(s)

)
ds≤

∫ 1

0
H(t,s)a(s)Λu(s)ds

≤Λ

∫ 1

0
H(s,s)a(s)‖u‖ds= ‖u‖.

(3.9)

Hence we have

‖Tu‖ ≤ ‖u‖, u∈ K ∩ ∂Ω2. (3.10)

Therefore, from (3.8), (3.10), and Theorem 2.7, it follows that T has a fixed point
u∗ ∈ K ∩ (Ω2 \Ω1), and thus u∗ is a symmetric positive solution of BVP (1.5)-(1.6). �

Theorem 3.3. Assume that (A1), (A2), and (A3) hold. If there exists two constants R1, R2

with 0 < R1 ≤ R2 such that
(D5) f (t,·) is nondecreasing on [0,R2] for all t ∈ [0,1],
(D6) f (s,γR1)≥ (1/γ)ΛR1, and f (t,R2)≤ΛR2 for all t ∈ [0,1],

then BVP (1.5)-(1.6) has at least one symmetric positive solution u∗ satisfying

R1 ≤
∥
∥u∗

∥
∥≤ R2. (3.11)

Proof. Let

Ω1 =
{
u : u∈ E, ‖u‖ < R1

}
, Ω2 =

{
u : u∈ E, ‖u‖ < R2

}
. (3.12)

For u∈ K , from Lemma 2.5, we know that min0≤t≤1u(t)≥ γ‖u‖. Therefore, for u∈ K ∩
∂Ω1, we have u(s)≥ γ‖u‖ = γR1 for s∈ [0,1], thus by (D5) and (D6), we have

Tu(t)=
∫ 1

0
H(t,s)a(s) f

(
s,u(s)

)
ds≥

∫ 1

0
H(t,s)a(s) f

(
s,γR1

)
ds

≥
∫ 1

0
γH(s,s)a(s)

1
γ
ΛR1ds= R1 = ‖u‖.

(3.13)

Therefore,

‖Tu‖ ≥ ‖u‖, u∈ K ∩ ∂Ω1. (3.14)

On the other hand, for u ∈ K ∩ ∂Ω2, we have u(s) ≤ R2 for s ∈ [0,1], thus by (D5) and
(D6), we have

Tu(t)=
∫ 1

0
H(t,s)a(s) f

(
s,u(s)

)
ds≤

∫ 1

0
H(t,s)a(s) f

(
s,R2

)
ds

≤
∫ 1

0
H(s,s)a(s)ΛR2ds= R2 = ‖u‖.

(3.15)
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Hence we have

‖Tu‖ ≤ ‖u‖, u∈ K ∩ ∂Ω2. (3.16)

Therefore, from (3.14), (3.16), and Theorem 2.7, it follows that T has a fixed point u∗ ∈
K ∩ (Ω2 \Ω1) satisfying R1 ≤ ‖u∗‖ ≤ R2, u∗ is a symmetric positive solution of BVP
(1.5)-(1.6). �

4. The existence of many positive solutions

Now we discuss the multiplicity of positive solutions for BVP (1.5)-(1.6). We obtain the
following existence results.

Theorem 4.1. Assume that (A1), (A2) and (A3) hold. In addition, suppose that
(D7) f0 > (1/γ2)Λ and f∞ > (1/γ2)Λ (particularly, f0 = f∞ =∞);
(D8) there exists a constant ρ1 such that

f (s,x)≤Λρ1, (s,x)∈ [0,1]× [γρ1,ρ1
]
. (4.1)

Then BVP (1.5)-(1.6) has at least two symmetric positive solutions u1 and u2 satisfy-
ing 0 < ‖u1‖ ≤ ρ1 ≤ ‖u2‖.

Proof. At first, in view of f0 > (1/γ2)Λ, there exists r ∈ (0,ρ1) such that

f (s,x)≥ 1
γ2

Λx, (s,x)∈ [0,1]× [0,r]. (4.2)

Set Ωr = {u : u∈ E, ‖u‖ < r}. Then for u∈ K ∩ ∂Ωr , we have

Tu(t)=
∫ 1

0
G(t,s)a(s) f

(
s,u(s)

)
ds≥

∫ 1

0
G(t,s)a(s)

1
γ2

Λu(s)ds

≥ 1
γ2

Λ

∫ 1

0
γG(s,s)a(s)γ‖u‖ds= ‖u‖,

(4.3)

which implies that

‖Tu‖ ≥ ‖u‖, u∈ K ∩ ∂Ωr . (4.4)

Next, since f∞ > (1/γ2)Λ, there exists R∈ (ρ1,∞) such that

f (s,x)≥ 1
γ2

Λx, (s,x)∈ [0,1]× [0,R]. (4.5)

Set ΩR = {u : u ∈ E, ‖u‖ < R}. For u ∈ K , from Lemma 2.5, we know that u(s) ≥ γ‖u‖,
for s∈ [0,1]. Therefore, for u∈ K ∩ ∂ΩR, we have u(s)∈ [γR,R], s∈ [0,1], which imply
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that f (s,u(s))≥ (1/γ2)Λu(s)≥ (1/γ)Λ‖u‖. Thus,

Tu(t)=
∫ 1

0
G(t,s)a(s) f

(
s,u(s)

)
ds≥

∫ 1

0
G(t,s)a(s)

1
γ
Λ‖u‖ds

≥ 1
γ
Λ

∫ 1

0
γG(s,s)a(s)‖u‖ds= ‖u‖,

(4.6)

which implies that

‖Tu‖ ≥ ‖u‖, u∈ K ∩ ∂ΩR. (4.7)

Finally, set Ωρ1 = {u : u ∈ E, ‖u‖ < ρ1}. For any u ∈ K ∩ ∂Ωρ1 , we have u(s) ∈ [γρ1,ρ1],
s∈ [0,1]. Thus, from (2.30) and (D8), we obtain

Tu(t)=
∫ 1

0
G(t,s)a(s) f

(
s,u(s)

)
ds≤

∫ 1

0
G(t,s)a(s)Λu(s)ds

≤Λ

∫ 1

0
G(s,s)a(s)‖u‖ds= ‖u‖,

(4.8)

which yields

‖Tu‖ ≤ ‖u‖, u∈ K ∩ ∂Ωρ1 . (4.9)

Hence, since r < ρ1 < R, from (4.4), (4.7), and (4.9), it follows from Theorem 2.7 that T
has a fixed point u1 ∈ K ∩ (Ωρ1 \Ωr), and a fixed point u2 ∈ K ∩ (ΩR \Ωρ1 ). Both are
symmetric positive solutions of BVP (1.5)-(1.6). �

Remark 4.2. From the proof, we know that if (D8) holds and f0 > (1/γ2)Λ (or f∞ >
(1/γ2)Λ), then BVP (1.5)- (1.6) has a symmetric positive solution u satisfying 0 < ‖u‖ ≤
ρ1 (or ‖u‖ ≥ ρ1).

In a similar way, we can get the following results.

Theorem 4.3. Assume that (A1), (A2), and (A3) hold. If the following conditions are satis-
fied.

(D9) f 0 <Λ and f ∞ <Λ (particularly, f 0 = f ∞ = 0).
(D10) There exists a constant ρ2 such that

f (s,x)≥ 1
γ2

Λρ2, (s,x)∈ [0,1]× [γρ2,ρ2
]
. (4.10)

Then BVP (1.5)-(1.6) has at least two symmetric positive solutions u1 and u2 satisfy-
ing 0 < ‖u1‖ < ρ2 < ‖u2‖.

Remark 4.4. If (D10) holds and f 0 <Λ (or f ∞ <Λ), then BVP (1.5)-(1.6) has a symmetric
positive solution u satisfying 0 < ‖u‖ ≤ ρ2 (or ‖u‖ ≥ ρ2).

Theorem 4.5. Assume that (A1), (A2), and (A3) hold. If there exist 2n positive numbers rk,
Rk, k = 1,2, . . . ,n, with r1 < γR1 < r2 < γR2 < ··· < rn < γRn such that
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(D11) f (s,x) ≤ Λrk for (s,x) ∈ [0,1] × [γrk,rk], and f (s,x) ≥ (1/γ)ΛRk for (s,x) ∈
[0,1]× [γRk,Rk], k = 1,2, . . . ,n; or

(D12) f (s,x) ≥ (1/γ)Λrk for (s,x) ∈ [0,1] × [γrk,rk], and f (s,x) ≤ ΛRk for (s,x) ∈
[0,1]× [γRk,Rk], k = 1,2, . . . ,n,

then BVP (1.5)-(1.6) has n symmetric positive solutions uk satisfying rk ≤ ‖uk‖ ≤ Rk for
k = 1,2, . . . ,n.

Theorem 4.6. Assume that (A1), (A2), and (A3) hold. If there exist 2n positive numbers
r1 < R1 < r2 < R2 < ··· < rn < Rn such that
(D13) f (t,·) is nondecreasing on [0,Rn] for all t ∈ [0,1];
(D14) f (s,γrk)≥ (1/γ)Λrk, and f (s,Rk)≤ΛRk, k = 1,2, . . . ,n for all s∈ [0,1],
then BVP (1.5)-(1.6) has n symmetric positive solutions uk satisfying rk ≤ ‖uk‖ ≤ Rk, k =
1,2, . . . ,n.
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