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Unimprovable efficient sufficient conditions are established for the unique solvability
of the periodic problem u"(t) = £(u)(t) + q(t) for 0 < t < w, u”(0) = u’(w) (i=0,1),
where w >0, £: C([0,w]) — L([0,w]) is a linear bounded operator, and q € L([0,w]).

1. Introduction

Consider the equation
u’(t) =€u)(t)+q(t) for0<t=<w (1.1)
with the periodic boundary conditions
uD0) = u(w) (i=0,1), (1.2)

where w >0, €: C([0,w]) — L([0,w]) is a linear bounded operator and q € L([0,w]).

By a solution of the problem (1.1), (1.2) we understand a function u € C"([O,w]),
which satisfies (1.1) almost everywhere on [0, w] and satisfies the conditions (1.2).

The periodic boundary value problem for functional differential equations has been
studied by many authors (see, for instance, [1, 2, 3, 4, 5, 6, 8, 9] and the references
therein). Results obtained in this paper on the one hand generalise the well-known re-
sults of Lasota and Opial (see [7, Theorem 6, page 88]) for linear ordinary differential
equations, and on the other hand describe some properties which belong only to func-
tional differential equations. In the paper [8], it was proved that the problem (1.1), (1.2)
has a unique solution if the inequality

© d
j le(1)(s)|ds < & (1.3)
0 w
with d = 16 is fulfilled. Moreover, there was also shown that the condition (1.3) is non-
improvable. This paper attempts to find a specific subset of the set of linear monotone

operators, in which the condition (1.3) guarantees the unique solvability of the problem
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(1.1), (1.2) even for d > 16 (see Corollary 2.3). It turned out that if A satisfies some con-
ditions dependent only on the constants d and w, then Ko ,)(A) (see Definition 1.2) is
such a subset of the set of linear monotone operators.

The following notation is used throughout.

N is the set of all natural numbers.

R is the set of all real numbers, R, = [0,+0o].

C([a,b]) is the Banach space of continuous functions u : [a,b] — R with the norm
lullc = max{|u(t)|:a <t < b}.

C'([a,b]) is the set of functions u : [a,b] — R which are absolutely continuous together
with their first derivatives.

L([a,b]) is the Banach space of Lebesgue integrable functions p : [a,b] — R with the

norm || plly = J; |p(s)|ds.
If x € R, then [x]; = (|x| +x)/2, [x]- = (|x]| —x)/2.

Definition 1.1. We will say that an operator € : C([a,b]) — L([a,b]) is nonnegative (non-
positive), if for any nonnegative x € C([a,b]) the inequality

() =0 (6(x)(t)<0) fora<t<b (1.4)

is satisfied.
We will say that an operator € is monotone if it is nonnegative or nonpositive.

Definition 1.2. Let A C [a,b] be a nonempty set. We will say that a linear operator € :
C([a,b]) — L([a,b]) belongs to the set Kj,4](A) if for any x € C([a,b]), satisfying

x(t)=0 forteA, (1.5)
the equality
£(x)(t)=0 fora<t<b (1.6)

holds.
We will say that K45 (A) is the set of operators concentrated on the set A C [a,b].

2. Main results

Define, for any nonempty set A < R, the continuous (see Lemma 3.1) functions:
pa(t) =inf {[t —s|:s€ A}, 0a(t) = pa(t) +pa <t+ %) fort € R. (2.1)

TueoreM 2.1. Let A C [0,w], A # @ and a linear monotone operator € € Ko,,)(A) be such
that the conditions

J:L’(l)(s)ds% 0, (2.2)
(1—4@)2) J: le(1)(s) | ds < 8 (2.3)

w w
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are satisfied,where

8=min{aA(t):0sts %} (2.4)

Then the problem (1.1), (1.2) has a unique solution.

Example 2.2. The example below shows that condition (2.3) in Theorem 2.1 is optimal
and it cannot be replaced by the condition

(1—4(g>2> Jw le(1)(s) | ds < 20 1, (2.3,)

0 w
no matter how small ¢ €]0,1] would be. Let w = 1, & €]0,1/16], §; €]0,1/4 — 2&¢[ and
yi> vi (i =1,2) be the numbers given by the equalities

C1-24

; 3+26
=+ (Do, ="+

A (=g (i=1,2). (2.5)

Let, moreover, the functions x € (Nf’([yl,yz]), ye 6’([1}1,1/2]) be such that

1 1
X =x =1, x’ =—, x' =——0,
() = x(p2) (u1) " (u2) s 250)
X'(t) <0 foru <t=<uyy,
1 1
) =y(rn)=-1, () = ——=, "(n) =—,
}’( 1) )/( 2) }’( 1) y1+81 Y ( 2) ur (2.5,)
y'(t)=0 forv; <t=<w,.
Define a function
rt
— for0<t=<
i “
x(t) foru; <t<p
(t) = 1220 o <t<v (2.6)
uplt) = V-t U=1t=m .
(1) forvi<t<mn
=1 forv, <t<1.
L Y1

Obviously, uy € 6’([0,(0]). Now let A = {y;,7,}, the function 7 : [0,w] — A and the op-
erator £ : C([0,w]) — L([0,w]) be given by the equalities:

e2)(1) = |uy (1) |2(x(1). (2.7)

vy ifugy(t) <0,

o {ul if ug (1) = 0

It is clear from the definition of the functions 7 and ¢4 that the nonnegative operator £
is concentrated on the set A and the condition (2.4) is satisfied with § = §; + 2¢&g. In view
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of (2.51), (2.53), and (2.7) we obtain

w 72 () 2[41 + 01 1—4¢
(s = [y 9ds— [ K (s)ds =2 ~ 16 8
JO V1 4 U1 Hl([’ll+6l) (1—480)2—4812
When ¢ is small enough, the last equality it implies the existence of & such that
@ 16+¢
0< | emods- e (2.9)

Thus, because §; < &, all the assumptions of Theorem 2.1 are satisfied except (2.3), and
instead of (2.3) the condition (2.3,) is fulfilled with w = 1. On the other hand, from the
definition of the function ug and from (2.7), it follows that £(u)(t) = |ugy (¢£)|ue(z(t)) =
lug (t)] signuyg (¢), that is, ug is a nontrivial solution of the homogeneous problem u" () =
e(u)(t), uD(0) = u®(1) (i = 1,2) which contradicts the conclusion of Theorem 2.1.

COROLLARY 2.3. Let the set A C [0,w], number d = 16, and a linear monotone operator
¢ € Kjo,0](A) be such that the conditions (2.2)

J le1)(s) |ds < & (2.10)
0 w
are satisfied and

aA(t)Z%JI—? forOsts%. (2.11)

Then the problem (1.1), (1.2) has a unique solution.

CoROLLARY 2.4. Let o € [0,w], B € [a,w], and a linear monotone operator € € Kjg,,](A)
be such that the conditions (2.2) and (2.3) are satisfied, where

A=[apl, 6= [%—(ﬁ—a)] (2.11)
or
A=[0,alU[Bwl, 6= [%—(,8—05)]7. (2.11)

Then the problem (1.1), (1.2) has a unique solution.

Consider the equation with deviating arguments
u”(t) = p(Hu(z(t)) +q(t) for0<t<w, (2.12)
where p € L([0,w]) and 7: [0,w] — [0,w] is a measurable function.

COROLLARY 2.5. Let there exist 0 € {—1,1} such that

op(t) =0 for0<t=<w, (2.13)

Jw p(s)ds £ 0. (2.14)
0



Moreover, let § € [0,w/2] and the function p be such that

(o2 ias=

and let at least one of the following items be fulfilled:
(a) the set A C [0,w] is such that the condition (2.4) holds and

pt)=0 ifr(t)¢A

on [0,w];
(b) the constants « € [0,w], B € [a, w] are such that

() € [, ] for0<t=<w,

Then the problem (2.12), (1.2) has a unique solution.

Now consider the ordinary differential equation
u”(t)=ptu(t)+q(t) for0<t=<w,

where p,q € L([0,w]).

COROLLARY 2.6. Let

p(t) <0 for0<t<w.
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(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

Moreover, let 6 € [0,w/2] and the function p be such that the conditions (2.14), (2.15) hold,

and let at least one of the following items be fulfilled:

(a) the set A C [0,w] is such that mesA # 0, the condition (2.4) holds and

p(t)=0 fort&A;
(b) the constants a € [0,w], € [a, w] are such that

p(t)=0 forte[0,a[U]B,w],

(2.21)

(2.22)

and § € [0,w/2] satisfies (2.18). Then the problem (2.19), (1.2) has a unique solution.

Remark 2.7. As for the case where p(t) = 0 for 0 < ¢ < w, the
condition for the unique solvability of (2.19), (1.2) is p(¢) #0
page 72]).

necessary and sufficient
(see [2, Proposition 1.1,
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3. Auxiliary propositions

LemMa 3.1. The function ps : R — R defined by the equalities (2.1), is continuous and
pi(t) =pa(t) fort€R, (3.1)

where A is the closure of the set A.

Proof. Since A € A, it is clear that
pi(t) < pa(t) forteR (3.2)

Let £y € R be an arbitrary point, sp € A, and the sequence s, € A (n € N) be such that
lim, .o 5, = so. Then pa(ty) < lim, .o [tg — su| = [ty — 5o, that is,

pi(t) = pa(t) forteR (3.3)

From the last relation and (3.2) we get the equality (3.1).
For arbitrary s € A, t;,t, € R, we have

pA(t,‘)S |ti—S|S |t2—t1|+|t3_,‘—5| (i=1,2). (3.4)
Consequently pa(t;) — [t — t1| < pa(t3—;) (i = 1,2). Thus the function py4 is continuous.
O
LEMMA 3.2. Let A < [0,w] be a nonempty set, Ay = {t+w:t€ A}, B=AUA,, and
. w
mln{UA(t):OStS E} =4. (3.5)
Then
. 3w
mm{oB(t):oSts 7} _. (3.6)
Proof. Leta =inf A, S =supA, and let #, € [0,3w/2] be such that
. 3w
os(to) =m1n{03(t):0sts 7} (3.7)
Assume that t; € [0,3w/2] is such that t; ¢ B, t; + w/2 ¢ B. Then
s=min{p3(t1),p3(t1+w/2)} >0, (3.8)

and either

og(t —€) <op(t1) and pp(ti—¢) =0 or pB<t1+%—s):0 (3.9)

or

og(ti+¢) <op(t1) and pp(ti+¢e) =0 or pB(t1+g+s> 0. (3.10)

2
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In view of this fact, without loss of generality we can assume that
_ w _
to€B or t0+5 € B. (3.11)
From (3.5) and the condition A € [0,w], we have

minSLaA(t):Osts 37“’} iy (3.12)

First suppose that 0 < t; < 8 — w/2. From this inequality by the inclusion 8 € A, we get

inf{ to+w7i—s :seB}=inf{ t0+w7i—s ZSEA} (3.12;)
for i =0,1. Then og(ty) = 04(ty) and in view of (3.12)
op(ty) = 6. (3.13)
Let now
B-5<t=p (3.14)
Obviously, either
<t0+9>—ﬁ5a+w—<to+9), (3.14y)
2 2
or
(t0+%)—ﬁ>a+w—(to+%>. (3.14,)

If (3.14,) is satisfied, then, in view of (3.14) and f8 € A, the equalities (3.12;) (i = 0,1)
hold. Therefore o5(ty) = 0a(ty) and, in view of (3.12), the inequality (3.13) is fulfilled. Let
now (3.14,) be satisfied. If & + w > ty + w/2, then, in view of (3.14), we have t, + w/2 ¢ B.
Consequently, from (3.12) and (3.14;) by virtue of (3.11) and the inclusions a, € A,
we get

aB(to):pB<to+%)=oc+%—to ZpA((x+%>28. (3.15)

Ifa+w <ty + w/2, then to+ w/2 € A, and

inf{ :sEB}=inf{

that is, pg(to + w/2) = pa(ty — w/2) and in view of (3.12), (3.14) we get

w
to+——5

to—g—s :seA}, (3.16)

o (to) = pa(to) +pa (to - %) = UA(fo - %) = 4. (3.17)

Consequently the inequality (3.13) is fulfilled as well.
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Further, let B <ty <fp+w/2 <a+w. Then tp —a < a+w —ty, and also tp —f < a+
@ — tp. On account of (3.12) and B € A we have

JB(t0)=a+%—ﬂ2pA<a+%) =oa(a) = 6. (3.18)

Thus the inequality (3.13) is fulfilled.
Let now

ﬁst05a+wsto+%. (3.19)

From (3.19) it follows that

inf{ t0+%—5 :SEB}:inf{ to+%—s :seAl}
=inf{ to—%—s :seA}zinf{ to—%—s 2563},
(3.20)
and therefore,
w w
og(to) = pa (l‘o— E) +pg(to) = UB<to - E)' (3.21)

The inequalities (3.19) imply t) — w/2 < a + w and, according to the case considered
above, we have 0p(t) — w/2) = §. Consequently, (3.21) results in (3.13).

Finally, if a + w < ty, the validity of (3.13) can be proved analogously to the previous
cases. Then we have

30

op(t) =0 for0<t< > (3.22)

On the other hand, since A C B, it is clear that
on(t) <ox(t) for0 <t (3.23)
The last two relations and (3.5) yields the equality (3.6). O

LemMA 3.3. Leto € {—1,1}, D C [a,b], D # &, &1 € K{45(D), and let 6€, be nonnegative.
Then, for an arbitrary v € C([a,b]),

min {v(s) :s € D} | &, (1)(¢)]

<0l (v)(t) <max{v(s):s€ D} &, (1)(t)| fora<t<b. (3.24)
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Proof. Leta =infD, 3 =supD,

v(a) for t € [a,af
v(t) forte D

vo(t) = 1 v(u(t)) —v(¥(t)) i
W(t—vw)) +v((t)) forte [a,p]\D
v(p) for t €]p,b],

where

p(t)=min{s€D:t<s}, »(t)=max{s€D:t>s} fora<t<p.

It is clear that vo € C([a,b]) and

min {v(s) :s € D} < vy(t) <max{v(s):s€ D} fora<t<b,
vo(t) =v(t) forte D.

(3.25)

(3.26)

(3.27)

Since ¢; € K{4)(D) and the operator o¢; is nonnegative, it follows from (3.27) that (3.24)

is true.

]

LEmMA 3.4. Leta € [0,w], D C [a,a+ w], ¢ € [a,a+ w], and § € [0,w/2] be such that

w
op(t)=8 fora<t<a+ >

A.=Dnla,c] + 9, B.=Dn[ca+tw]+ D.

Then the estimate

(c—a)a+w—c) 8w

((c—tl)(tl—a)(a+w—t2)(t2—c)>l/2S W? — 46°

forallty € A, t, € B, is satisfied.

Proof. Putb =a+wand
atc c+b
o) ()

Then, from the condition (3.28) it is clear
01 +0;y=4.
Obviously, either
max (01,02) = 6
or

max (0'1,0'2) < 0.

(3.28)
(3.29)

(3.30)

(3.31)

(3.32)

(3.32y)

(3.323)
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First note that from (3.29) and (3.31) the equalities

max {(c—t)(th—a):t1 €A} = (c— 1) (t; —a),

max{(b—t)(t—c):b B} =(b-1t;)(t,—¢), (3.33)

follow, where t; = (a+c¢)/2 — 01, t; = (c + b)/2 — ;. Hence, on account of well-known
inequality

2
dvd, < @, (3.34)

we have

((C—tl)(fl—a)(b—tz)(tz—c))m
(c=a)(b—o)

(3.35)
<(C_a_ 0.12 >1/2(b_c_ 022 )1/2<l<8_ 0_12 - 0_22 >
=2 c—a 4 b—c “2\4 ¢—a b-c
forall t; € A, 1, € B,. In the case, where inequality (3.32;) is fulfilled, we have
2 2 2 2 2
w_ o0 _ % w  (max(a,0,)) w? — 46
4 c-a b-c 4 © <o (3.36)

This, together with (3.35), yields the estimate (3.30). Suppose now that the condition
(3.32,) is fulfilled. Then in view of Lemma 3.1, we can choose o, € D such that

atc ctb

a+c c+b
po(5) =5 e () =8 (3:37)
which together with (3.31) yields
2 2
Y0 By (B-a)- (o), (3.38)

where 7(t) = (a« — a)/(t — a) + (b — )?/(b — t). It is not difficult to verify that the func-
tion 7 achieves its minimum at the point ty = ((« — a)b+ (b — f)a)/(w — (f — «)). Thus,

w—(B-a)-n(c) < (w—(ﬁ—oc))/%. (3.39)
Put

0 = min (01,07). (3.40)
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Then it follows from (3.37) that either

+
a< % -0 (3.407)
or
_I_
a> % +o, (3.40,)
and either
+b
B> CT ‘o (3.405)
or
+b
B< ero ;o (3.404)

Consider now the case where « satisfies the inequality (3.40,) and assume that 3 satis-
fies the inequality (3.404). Then from (3.37), (3.40,), and (3.40,) we get

+ + +b +b
R GO G L B C 5 R

These equalities in view of (3.31) and (3.40) yield
0D<a_+c_a> = (01 —0)+ (0, — 0) = max(01,0,) — 0, (3.42)

but in view of (3.32;) this contradicts the condition (3.28). Consequently, 3 satisfies
the inequality (3.403). Then from (3.31), (3.37), by (3.40;) and (3.403), we get 0, =
(a+c)/2—a, 00 = —(c+b)/2, thatis,

w

ﬁ—a=01+02+2

(3.42))
Now suppose that (3.40,) holds. It can be proved in a similar manner as above that, in
this case, the inequality (3.404) is satisfied. Therefore, from (3.31), (3.37), (3.40,), and
(3.404) we obtain

B—a= %— (o1 +02). (3.42,)

Then, on account of (3.32), in both (3.421) and (3.42,) cases we have

/3—(x_w2—4(01+02)2 w? — 482
(@=(B-a)= —= ™ <= (3.43)

Consequently from (3.35), (3.38), (3.39), and (3.43) we obtain the estimate (3.30), also
in case where the inequality (3.32,) holds. O
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4. Proof of the main results

Proof of Theorem 2.1. Consider the homogeneous problem

V() =eW)(t) for0<t<uw, (4.1)
v(0) =v(w) (i=0,1). (4.2)

It is known from the general theory of boundary value problems for functional differen-
tial equations that if € is a monotone operator, then problem (1.1), (1.2) has the Fredholm
property (see [3, Theorem 1.1, page 345]). Thus, the problem (1.1), (1.2) is uniquely solv-
able iff the homogeneous problem (4.1), (4.2) has only the trivial solution.

Assume that, on the contrary, the problem (4.1), (4.2) has a nontrivial solution v.
If v = const, then, in view of (4.1) we obtain a contradiction with the condition (2.2).
Consequently, v # const. Then, in view of the conditions (4.2), there exist subsets I; and
I, from [0, w] which have positive measure and

v'(t)>0 fortel, v'(t)<0 forte . (4.3)

Assume that v is either nonnegative or nonpositive on the entire set A. Without loss of
generality we can suppose v(t) = 0 for t € A. Then, from Lemma 3.3 witha =0, b = w,
D = A, and ¢; = € we obtain

gl()(t) =0 for0<t<w. (4.4)

In view of (4.1), the inequality (4.4) contradicts one of the inequalities in (4.3). Therefore,
the function v changes its sign on the set A, that is, there exist t],#; € A such that

v(t]) =min{v(t):t € A}, v(t;) = max{v(t) : t € A}, (4.5)

and v(t]) <0, v(#;) > 0. Without loss of generality we can assume that ¢; < t;. Then, in
view of the last inequalities, there exists a €]t},# [ such that v(a) = 0.

Letusset C,([a,a+ w]) = {x € C([a,a+ w]) : x(a) = x(a+ w)}, and let the continuous
operators y : L([0,w]) — L([a,a+ w]), & : Cy([a,a+ w]) — L([a,a+ w]) and the function
vo € C([a,a + w]) be given by the equalities

B x(t) fora<t<w
)/(x)(t)—‘lx(t_w) forw<t<a+ow, (4.6)

() =y(v(®), G @) =y{y '(x))(t) fora<t<a+w.

Let, moreover, t) = tj+twand D=AU {t{+w:t € A} N [a,a+ w]. Then (4.1), (4.2) with
regard for (4.6) and the definitions of g, t{, t, imply that vy € C'([a,a+ w]), t1,t, € D,

vy (t) =81 (v)(t) fora<t<a+w, (4.7)

vo(a) =0, vo(a+w) =0, (4.8)

vo(t) = max {v(t) : t € D}, vo(t2) = min {v(t) : t € D}, (4.9)
vo(ty) >0, v (ty) <0, (4.10)
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and there exists ¢ €]y, 1, [ such that
vo(c) = 0. (4.11)
It is not difficult to verify that the condition € € Kjo,,1(A) implies
¢ € K[a,a+w] (D) (4-12)
Since D C AU {t+w:t € A}, it follows from condition (2.4) and Lemma 3.2 that
w
op(t) =0 fora<t<a+ 5 (4.13)

Thus, from the general theory of ordinary differential equations (see [6, Theorem 1.1,
page 2348]), in view of (4.7), (4.8), (4.9), and (4.11), we obtain the representations

Vo(tl) = - JC |G1(t1,$) |€1(V0)(S)d$, (4.131)
|Vo(t2) | = Ja ’ |G2(t2,5) |€1(V0)(S)d$, (4.132)

where G;(G,) is Green’s function of the problem

Z’(t)=0 fora<t<c(c<t<a+w),

4.14

z(a)=0, z(c)=0 (z(c)=0, z(a+w)=0). (4.14)
If £ is a nonnegative operator, then from (4.6) it is clear that ¢, is also nonnegative. Then,
from (4.13;) and (4.13;), by Lemma 3.3 and relations (4.9), (4.10), and (4.12), we get the
strict estimates

vw(t)  (t—a)(c—t) (€
O T < ema 60 -
4.15
|V0(t2)| (l‘zfc)(a+w7t2) at+w
0< Vo(tl) < atw-—c Jc 61(1)(s)ds,

respectively. By multiplying these estimates and applying the numerical inequality (3.34),
we obtain

1/2 atw
. 1((t1 —a)(c—tl)(tz—C)(a+w—t2)) J’ 16,(1)(s) | ds. (4.16)

2 (c—a)(a+w—rc)

Reasoning analogously, we can show that the estimate (4.16) is valid also in case where
the operator € is nonpositive.

From the definitions of t1, 2, ¢, and (4.13), it follows that all the conditions of Lemma
3.4 are satisfied. In view of the estimate (3.30) and the definition of the operator ¢;, the
inequality (4.16) contradicts the condition (2.3). O



260  On a periodic BVP for second-order linear FDE

Proof of Corollary 2.3. Let § = w/2(1 — 16/d)"2. Then, on account of (2.10) and (2.11),
we obtain that the conditions (2.3) and (2.4) of Theorem 2.1 are fulfilled. Consequently,
all the assumptions of Theorem 2.1 are satisfied. O

Proof of Corollary 2.4. Tt is not difficult to verify that if A = [«,f] (A = [0,a] U [B,w]),
then

oa(t) = [9—ﬁ+a] (aA(t)z [9—ﬁ+a] ) foro<t<?. (4.17)
2 . 2 B 2

Consequently, in view of the condition (2.11;), (2.11;), all the assumptions of
Theorem 2.1 are satisfied. |

Proof of Corollary 2.5. Let €(u)(t) = p(t)u(7(t)). On account of (2.13), (2.14), and (2.15)
we see that the operator ¢ is monotone and the conditions (2.2) and (2.3) are satisfied.
(a) Itis not difficult to verify that from the condition (2.16) it follows that £ € Kjo,,1(A).
Consequently, all the assumptions of Theorem 2.1 are satisfied.
(b) Let A = [, 8]. Then in view of the condition (2.17) the inclusion € € Kjg,,](A) is
satisfied. The inequality (4.17) obtained in the proof of Corollary 2.4, by virtue of (2.18),
implies the inequality (2.4). Consequently, all the assumptions of Theorem 2.1 are satis-

fied. O
Proof of Corollary 2.6. The validity of this assertion follows immediately from Corollary
2.5(a). O
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