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We obtain multiple positive solutions of singular p-Laplacian problems using variational
methods. The techniques are applicable to other types of singular problems as well.

1. Introduction

We consider the singular quasilinear elliptic boundary value problem

−∆pu= a(x)u−γ + λ f (x,u) in Ω,

u > 0 in Ω,

u= 0 on ∂Ω,

(1.1)

where Ω is a bounded C2 domain inRn,n≥ 1, ∆pu= div(|∇u|p−2∇u) is the p-Laplacian,
1 < p <∞, a≥ 0 is a nontrivial measurable function, γ > 0 is a constant, λ > 0 is a param-
eter, and f is a Carathéodory function on Ω× [0,∞) satisfying

sup
(x,t)∈Ω×[0,T]

∣∣ f (x, t)
∣∣ <∞ ∀T > 0. (1.2)

The semilinear case p = 2 with γ < 1 and f = 0 has been studied extensively in both
bounded and unbounded domains (see [5, 6, 7, 10, 11, 12, 14, 20] and their references).
In particular, Lair and Shaker [11] showed the existence of a unique (weak) solution when
Ω is bounded and a ∈ L2(Ω). Their result was extended to the sublinear case f (t) = tβ,
0 < β ≤ 1 by Shi and Yao [15] and Wiegner [18]. In the superlinear case 1 < β < 2∗ − 1
and for small λ, Coclite and Palmieri [4] obtained a solution when a = 1 and Sun et al.
[16] obtained two solutions using the Ekeland’s variational principle for more general a’s.
Zhang [19] extended their multiplicity result to more general superlinear terms f (t)≥ 0
using critical point theory on closed convex sets. The ODE case n = 1 was studied by
Agarwal and O’Regan [1] using fixed point theory and by Agarwal et al. [2] using varia-
tional methods. The purpose of the present paper is to treat the general quasilinear case
p ∈ (1,∞), γ ∈ (0,∞), and f is allowed to change sign. We use a simple cutoff argument
and only the basic critical point theory. Our results seem to be new even for p = 2.
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First we assume
(H1) ∃ϕ≥ 0 in C1

0(Ω) and q > n such that aϕ−γ ∈ Lq(Ω).
This does not require γ < 1 as usually assumed in the literature. For example, when Ω is
the unit ball, a(x) = (1− |x|2)σ , σ ≥ 0, and γ < σ + 1/n, we can take ϕ(x) = 1− |x|2 and
q < 1/(γ− σ) (resp., q with no additional restrictions) if γ > σ (resp., γ ≤ σ).

Theorem 1.1. If (H1) and (1.2) hold and f ≥ 0, then ∃λ0 > 0 such that problem (1.1) has
a solution∀λ∈ (0,λ0).

Corollary 1.2. Problem (1.1) with f = 0 has a solution if (H1) holds.

Next we allow f to change sign, but strengthen (H1) to
(H2) a∈ L∞(Ω) with a0 := infΩ a > 0 and γ < 1/n.

This implies that aϕ−γ ∈ Lq(Ω) for any ϕ whose interior normal derivative ∂ϕ/∂ν > 0 on
∂Ω and q < 1/γ.

Theorem 1.3. If (H2) and (1.2) hold, then ∃λ0 > 0 such that problem (1.1) has a solution
∀λ∈ (0,λ0).

Finally we assume that f is C1 in t, satisfies

∣∣ ft(x, t)
∣∣≤ C

(
tr−2 + 1

)
(1.3)

for some 2≤ r < p∗, and p-superlinear:

0 < θF(x, t)≤ t f (x, t), t large (1.4)

for some θ > p. Here p∗ = np/(n− p) (resp., ∞) if p < n (resp., p ≥ n) is the critical
Sobolev exponent and C denotes a generic positive constant.

Theorem 1.4. If p ≥ 2, (H1), (1.3), and (1.4) hold, and f ≥ 0, then ∃λ0 > 0 such that
problem (1.1) has two solutions∀λ∈ (0,λ0).

Theorem 1.5. If p ≥ 2 and (H2), (1.3), and (1.4) hold, then ∃λ0 > 0 such that problem
(1.1) has two solutions∀λ∈ (0,λ0).

2. Preliminaries on the p-Laplacian

Consider the problem

−∆pu= g(x) in Ω,

u= 0 on ∂Ω.
(2.1)

Proposition 2.1. If g ∈ Lq(Ω) for some q > n, then (2.1) has a unique weak solution u∈
C1

0(Ω). If, in addition, g ≥ 0 is nontrivial, then

u > 0 in Ω, ∂u/∂ν > 0 on ∂Ω. (2.2)
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Proof. The existence of a unique solution u∈W
1,p
0 (Ω) is well-known. The problem

−∆v = g(x) in Ω,

v = 0 on ∂Ω
(2.3)

has a unique solution v ∈W2,q(Ω)↩C1,α(Ω), α= 1−n/q. Then u satisfies

div
(|∇u|p−2∇u−G(x)

)= 0 in Ω,

u= 0 on ∂Ω,
(2.4)

where G = ∇v ∈ Cα(Ω), and u is bounded by Guedda and Véron [8] since q > n/p if
p ≤ n, so u∈ C1

0(Ω) by Lieberman [13]. The rest now follows from Vázquez [17]. �

3. Proofs of Theorems 1.1 and 1.3

Proof of Theorem 1.1. Since a∈ Lq(Ω) by (H1), the problem

−∆pv = a(x) in Ω,

v = 0 on ∂Ω
(3.1)

has a unique positive solution v ∈ C1
0(Ω) with ∂v/∂ν > 0 on ∂Ω by Proposition 2.1. Then

infΩ(v/ϕ) > 0 and hence av−γ ∈ Lq(Ω). Fix 0 < ε ≤ 1 so small that u := ε1/(p−1)v ≤ 1. Then

−∆pu− a(x)u−γ − λ f (x,u)≤−(1− ε)a(x)≤ 0, (3.2)

so u is a subsolution of (1.1).
Since au−γ ∈ Lq(Ω), the problem

−∆pu= a(x)u(x)−γ + 1 in Ω,

u= 0 on ∂Ω
(3.3)

has a unique solution u∈ C1
0(Ω) by Proposition 2.1, and u≥ u since

−∆pu≥ a(x)≥ εa(x)=−∆pu. (3.4)

Then

−∆pu− a(x)u−γ − λ f (x,u)≥ 1− λ sup
x∈Ω,t≤maxΩ u

f (x, t), (3.5)

so ∃λ0 > 0 such that u is a supersolution of (1.1)∀λ∈ (0,λ0) by (1.2).
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Let

gλ,u(x, t)=




a(x)u(x)−γ + λ f
(
x,u(x)

)
, t > u(x)

a(x)t−γ + λ f (x, t), u(x)≤ t ≤ u(x)

a(x)u(x)−γ + λ f
(
x,u(x)

)
, t < u(x),

Gλ,u(x, t)=
∫ t

0
gλ,u(x,s)ds,

Φλ,u(u)=
∫
Ω
|∇u|p− pGλ,u(x,u), u∈W

1,p
0 (Ω).

(3.6)

Since

0≤ gλ,u(x, t)≤ a(x)u(x)−γ + λ sup
x∈Ω,t≤maxΩ u

f (x, t), ∀(x, t)∈Ω×R, (3.7)

and au−γ ∈ Lq(Ω), Φλ,u is bounded from below and has a global minimizer u0, which
then is a solution of (1.1) in the order interval [u,u]. �

Proof of Theorem 1.3. The problem

−∆pv = a0 in Ω,

v = 0 on ∂Ω
(3.8)

has a unique positive solution v ∈ C1
0(Ω) with ∂v/∂ν > 0 on ∂Ω. Fix 0 < ε < 1 so small that

u := ε1/(p−1) v ≤ 1. Then

−∆pu− a(x)u−γ − λ f (x,u)≤−(1− ε)a0 + λ sup
x∈Ω,t≤maxΩ u

∣∣ f (x, t)
∣∣, (3.9)

so ∃λ0 > 0 such that u is a subsolution of (1.1) ∀λ ∈ (0,λ0). The rest of the proof now
proceeds as above. �

4. Proofs of Theorems 1.4 and 1.5

Proof of Theorem 1.4. Define a Carathéodory function on Ω×R by

gλ(x, t)=


a(x)t−γ + λ f (x, t), t ≥ u(x)

a(x)u(x)−γ + λ f
(
x,u(x)

)
, t < u(x)

(4.1)

and consider the problem

−∆pu= gλ(x,u) in Ω,

u= 0 on ∂Ω.
(4.2)

Every solution of (4.2) is ≥ u and hence also a solution of (1.1). By (1.3),

0≤ gλ(x, t)≤ a(x)u(x)−γ + λC
((
t+)r−1

+ 1
)

, ∀(x, t)∈Ω×R (4.3)
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so solutions of (4.2) are the critical points of the C1 functional

Φλ(u)=
∫
Ω
|∇u|p− pGλ(x,u), u∈W

1,p
0 (Ω), (4.4)

where Gλ(x, t)=
∫ t

0
gλ(x,s)ds.

Since u0 solves

−∆pu= gλ,u
(
x,u0(x)

)
in Ω,

u= 0 on ∂Ω
(4.5)

and gλ,u(·,u0(·))∈ Lq(Ω) by (3.7), u0 ∈ C1
0(Ω) by Proposition 2.1. Note that, with a pos-

sibly smaller λ0, 2u is also a supersolution of (1.1) ∀λ∈ (0,λ0). We assume that u0 is the
global minimizer of the corresponding functional Φλ,2u also, for otherwise we are done.
Since

u0 ≤ u < 2u in Ω, ∂u0/∂ν≤ ∂u/∂ν < ∂(2u)/∂ν on ∂Ω, (4.6)

Φλ,2u = Φλ in a C1
0(Ω)-neighborhood of u0, so u0 is a local minimizer of Φλ|C1

0 (Ω), and
hence also of Φλ by Brezis and Nirenberg [3] for p = 2 and by Guo and Zhang [9] for
p > 2. The mountain pass lemma now gives a second critical point as (1.4) implies that
Φλ satisfies the (PS) condition and Φλ(tu)→−∞ as t→∞. �

Proof of Theorem 1.5 is similar and therefore omitted.
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