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We study the existence of a class of nonlinear elliptic equation with Neumann boundary
condition, and obtain infinitely many nodal solutions. The study of such a problem is
based on the variational methods and critical point theory. We prove the conclusion by
using the symmetric mountain-pass theorem under the Cerami condition.

1. Introduction

Consider the Neumann boundary value problem:

−�u+αu= f (x,u), x ∈Ω,

∂u

∂ν
= 0, x ∈ ∂Ω,

(1.1)

where Ω ⊂ RN (N ≥ 1) is a bounded domain with smooth boundary ∂Ω and α > 0 is a
constant. Denote by σ(−�) := {λi | 0 = λ1 < λ2 ≤ ··· ≤ λk ≤ . . .} the eigenvalues of the
eigenvalue problem:

−�u= λu, x ∈Ω,

∂u

∂ν
= 0, x ∈ ∂Ω.

(1.2)

Let F(x,s)= ∫ s0 f (x, t)dt, G(x,s)= f (x,s)s− 2F(x,s). Assume
( f1) f ∈ C(Ω×R), f (0) = 0, and for some 2 < p < 2∗ = 2N/(N − 2) (for N = 1,2,

take 2∗ =∞), c > 0 such that

∣∣ f (x,u)
∣∣≤ c

(
1 + |u|p−1), (x,u)∈Ω×R. (1.3)

( f2) There exists L≥ 0, such that f (x,s) +Ls is increasing in s.
( f3) lim|s|→∞( f (x,s)s)/|s|2 = +∞ uniformly for a.e. x ∈Ω.
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( f4) There exist θ ≥ 1, s∈ [0,1] such that

θG(x, t)≥G(x,st), (x,u)∈Ω×R. (1.4)

( f5) f (x,−t)=− f (x, t), (x,u)∈Ω×R.
Because of ( f3), (1.1) is called a superlinear problem. In [6, Theorem 9.38], the author
obtained infinitely many solutions of (1.1) under ( f1)–( f5) and

(AR) ∃µ > 2, R > 0 such that

x ∈Ω, |s| ≥ R=⇒ 0 < µF(x,s)≤ f (x,s)s. (1.5)

Obviously, ( f3) can be deduced from (AR). Under (AR), the (PS) sequence of corre-
sponding energy functional is bounded, which plays an important role for the applica-
tion of variational methods. However, there are indeed many superlinear functions not
satisfying (AR), for example, take θ = 1, the function

f (x, t)= 2t log
(
1 + |t|) (1.6)

while it is easy to see that the above function satisfies ( f1)–( f5). Condition ( f4) is from
[2] and (1.6) is from [4].

In view of the variational point, solutions of (1.1) are critical points of corresponding
functional defined on the Hilbert space E :=W1,2(Ω). Let X := {u ∈ C1(Ω) | ∂u/∂ν =
0, x ∈ ∂Ω} a Banach space. We consider the functional

J(u)= 1
2

∫
Ω

(|∇u|2 +αu2)dx−
∫
Ω
F(x,u)dx, (1.7)

where E is equipped with the norm

‖u‖ =
(∫

Ω
|∇u|2 +α

∫
Ω
u2
)1/2

. (1.8)

By ( f1), J is of C1 and

〈
J ′(u),v

〉=
∫
Ω

(∇u∇v+αuv)dx−
∫
Ω
f (x,u)vdx, u,v ∈ E. (1.9)

Now, we can state our main result.

Theorem 1.1. Under assumptions ( f1)–( f5), (1.1) has infinitely many nodal solutions.

Remark 1.2. [8, Theorem 3.2] obtained infinitely many solutions under ( f1)–( f5) and
( f3)′ lim|u|→∞ inf( f (x,u)u)/|u|µ ≥ c > 0 uniformly for x ∈Ω, where µ > 2.
( f4)′ f (x,u)/u is increasing in |u|.

It turns out that ( f3)′ and ( f4)′ are stronger than ( f3) and ( f4), respectively, furthermore,
the function (1.6) does not satisfy ( f3)′, then Theorem 1.1 applied to Dirichlet boundary
value problem improves [8, Theorem 3.2].

Remark 1.3. [1, Theorem 7.3] also got infinitely many nodal solutions for (1.1) under
assumption that the functional is of C2.
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2. Preliminaries

Let E be a Hilbert space and X ⊂ E, a Banach space densely embedded in E. Assume
that E has a closed convex cone PE and that P =: PE

⋂
X has interior points in X , that is,

P =◦
P
⋃
∂P, with

◦
P the interior and ∂P the boundary of P in X . Let J ∈ C1(E,R), denote

K = {u∈ E : J ′(u)= 0}, Jc = {u∈ E : J(u)≤ c}, Kc = {u∈ K : J(u)= c}, c ∈R.

Definition 2.1. We say that J satisfies Cerami condition (C), if for all c ∈R
(i) Any bounded sequence {un} ⊂ E satisfying J(un)→ c, J ′(un)→ 0 possesses a con-

vergent subsequence.
(ii) There exist σ ,R,β > 0 such that for any u ∈ J−1([c − σ ,c + σ]) with ‖u‖ ≥ R,

‖J ′(u)‖‖u‖ ≥ β.

Definition 2.2 (see [3]). Let M ⊂ X be an invariant set under σ . We say M is an admissible

invariant set for J , if (a) M is the closure of an open set in X , that is, M = ◦
M
⋃
∂M; (b)

if un = σ(tn,v) for some v �∈M and un → u in E as tn →∞ for some u ∈ K , then un → u
in X ; (c) if un ∈ K

⋂
M such that un → u in E, then un → u in X ; (d) for any u∈ ∂M\K ,

σ(t,u)∈ ◦
M for t > 0.

In [5], we proved J ∈ C1(E,R) satisfier the deformation Lemma 2.3 under (PS) condi-
tion and assumption (Φ): K(J)⊂ X , J ′(u)= u−A(u) for u∈ E, A : X → X is continuous.
It turns out that the same lemma still holds if J satisfies (C), that is.

Lemma 2.3. Assume J ∈ C1(E,R) satisfies (Φ) and (C) condition. Let M ⊂ X be an admissi-

ble invariant set to the pseudo-gradient flow σ of J . Define K1
c = Kc

⋂ ◦
M, K2

c = Kc
⋂

(X\M)
for some c. Assume Kc

⋂
∂M =∅, there exits δ > 0 such that (K1

c )4δ
⋂

(K2
c )4δ =∅, where

(Ki
c)4δ = {u∈ E : dE(u,Ki

c) < 4δ} for i= 1,2. Then there is ε0 > 0, such that for any 0 < ε <
ε0 and any compact subset A⊂ (Jc+ε

⋂
X)
⋃
M, there is η ∈ C([0,1]×X ,X) such that

(i) η(t,u)= u, if t = 0 or u �∈ J−1([c− 3ε0,c+ 3ε0])\(K2
c )δ ;

(ii) η(1, A\(K2
c )3δ)⊂ Jc−ε

⋃
M, and η(1,A)⊂ Jc−ε

⋃
M if K2

c =∅;
(iii) η(t,·) is a homeomorphism of X for t ∈ [0,1];
(iv) J(η(·,u)) is nonincreasing for any u∈ X ;
(v) η(t,M)⊂M for any t ∈ [0,1];

(vi) η(t,·) is odd, if J is even and M is symmetric about the origin.
Indeed, σ > ε0 > 0 can be chosen small, where σ is from (ii) of (C), such that ‖J ′(u)‖2/(1 +
2‖J ′(u)‖)≥ 6ε0/δ,∀u∈ J−1([c− 3ε0,c+ 3ε0])\(Kc)δ .

In [3, 5], a version of symmetric mountain-pass theorem holds under (PS). (C) is
weaker than (PS), but by above deformation Lemma 2.3, a version of “symmetric
mountain-pass theorem” still follows.

Theorem 2.4. Assume J ∈ C1(E,R) is even, J(0)= 0 satisfies (Φ) and (C)c condition for c >
0. Assume that P is an admissible invariant set for J , Kc

⋂
∂P =∅ for all c > 0, E =⊕∞

j=1Ej ,

where Ej are finite dimensional subspaces of X , and for each k, let Yk =
⊕k

j=1Ej and Zk =⊕∞
j=k Ej . Assume for each k there exist ρk > γk > 0, such that limk→∞ak <∞, where ak =

maxYk
⋂
∂Bρk

(0) J(x), bk = infZk
⋂
∂Bγk

(0) J(x)→∞ as k→∞. Then J has a sequence of critical
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points un ∈ X\(P
⋃

(−P)) such that J(un)→∞ as n→∞, provided Zk
⋂
∂Bγk (0)

⋂
P =∅

for large k.

3. Proof of Theorem 1.1

Proposition 3.1. Under ( f1)–( f3) and ( f4), J satisfies the (C) condition.

Proof. For all c ∈ R, since Sobolev embedding H1(Ω)→ L2(Ω) is compact, the proof of
(i) in (C) is trivial.

About (ii) of (C). If not, there exist c ∈R and {un} ⊂H1(Ω) satisfying, as n→∞

J
(
un
)−→ c,

∥∥un∥∥−→∞,
∥∥J ′(un)∥∥∥∥un∥∥−→ 0, (3.1)

then we have

lim
n→∞

∫
Ω

(
1
2
f
(
x,un

)
un−F

(
x,un

))
dx = lim

n→∞

(
J
(
un
)− 1

2

〈
J ′
(
un
)
,un
〉)= c. (3.2)

Denote vn = un/‖un‖, then ‖vn‖ = 1, that is, {vn} is bounded in H1(Ω), thus for some
v ∈H1(Ω), we get

vn⇀ v in H1(Ω),

vn −→ v in L2(Ω),

vn −→ v a.e. in Ω.

(3.3)

If v = 0, as the similar proof in [2], define a sequence {tn} ∈R:

J
(
tnun

)= max
t∈[0,1]

J
(
tun
)
. (3.4)

If for some n∈N, there is a number of tn satisfying (3.4), we choose one of them. For all
m> 0, let v̄n = 2

√
mvn, it follows that

lim
n→∞

∫
Ω
F
(
x, v̄n

)
dx = lim

n→∞

∫
Ω
F
(
x,2
√
mvn

)
dx = 0. (3.5)

Then for n large enough

J
(
tnun

)≥ J
(
v̄n
)= 2m−

∫
Ω
F
(
x, v̄n

)
dx ≥m, (3.6)

that is, limn→∞ J(tnun)= +∞. Since J(0)= 0 and J(un)→ c, then 0 < tn < 1. Thus

∫
Ω

(∣∣∇(tnun)∣∣2
+α
(
tnun

)2
)
−
∫
Ω
f
(
x, tnun

)
tnun

= 〈J ′(tnun), tnun〉= tn
d

dt

∣∣∣∣
t=tn

J
(
tun
)= 0.

(3.7)
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We see that ∫
Ω

(
1
2
f
(
s, tnun

)
tnun−F

(
x, tnun

))
dx

= 1
2

∫
Ω

(∣∣∇(tnun)∣∣2
+α
(
tnun

)2
)
−
∫
Ω
F
(
x, tnun

)
= J

(
tnun

)−→ +∞, n−→∞.

(3.8)

From above, we infer that∫
Ω

(
1
2
f
(
s,un

)
un−F

(
x,un

))
dx

= 1
2

∫
Ω
G
(
x,un

)
dx ≥ 1

2θ

∫
Ω
G
(
x, tnun

)
dx

= 1
θ

∫
Ω

(
1
2
f
(
s, tnun

)
tnun−F

(
x, tnun

))
dx −→ +∞, n−→∞,

(3.9)

which contradicts (3.2).
If v �≡ 0, by (3.1)∫

Ω

(∣∣∇un∣∣2
+αu2

n

)
−
∫
Ω
f
(
x,un

)
un =

〈
J ′
(
un
)
,un
〉= o(1), (3.10)

that is,

1− o(1)=
∫
Ω

f
(
x,un

)
un∥∥un∥∥2 dx =

(∫
v �=0

+
∫
v=0

)
f
(
x,un

)
un∣∣un∣∣2

∣∣vn∣∣2
dx. (3.11)

For x ∈Ω′ := {x ∈Ω : v(x) �= 0}, we get |un(x)| → +∞. Then by ( f3)

f
(
x,un(x)

)
un(x)∣∣un(x)
∣∣2

∣∣vn(x)
∣∣2
dx −→ +∞, n−→∞. (3.12)

By using Fatou lemma, since |Ω′| > 0 (| · | is the Lebesgue measure in RN ),

∫
v �=0

f
(
x,un

)
un∣∣un∣∣2

∣∣vn∣∣2
dx −→ +∞, n−→∞. (3.13)

On the other hand, by ( f3), there exists γ > −∞, such that f (x,s)s/|s|2 ≥ γ for (x,s) ∈
Ω×R. Moreover, ∫

v=0

∣∣vn∣∣2
dx −→ 0, n−→∞. (3.14)

Now, there exists Λ >−∞ such that
∫
v=0

f
(
x,un

)
un∣∣un∣∣2

∣∣vn∣∣2
dx ≥ γ

∫
v=0

∣∣vn∣∣2
dx ≥Λ >−∞, (3.15)

together with (3.11) and (3.13), it is a contradiction.
This proves that J satisfies (C). �
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Proposition 3.2. Under ( f4)′, then for |t| ≥ |s| and ts≥ 0, G(x, t)≥ G(x,s), that is, ( f4)
holds for θ = 1.

Proof. for 0≤ s≤ t,

G(x, t)−G(x,s)= 2
[

1
2

(
f (x, t)t− f (x,s)s

)− (F(x, t)−F(x,s)
)]

= 2
[∫ t

0

f (x, t)
t

τdτ −
∫ s

0

f (x,s)
s

τdτ −
∫ t

s

f (x,τ)
τ

τdτ
]

= 2
[∫ t

s

(
f (x, t)
t

− f (x,τ)
τ

)
τdτ +

∫ s

0

(
f (x, t)
t

− f (x,s)
s

)
τdτ

]
≥ 0.

(3.16)

In like manner, for t ≤ s≤ 0, G(x, t)−G(x,s)≥ 0. �

On E := H1(Ω), let us define PE = {u ∈ E : u(x) ≥ 0, a.e. in Ω}, which is a closed
convex cone. Let X = C1

ν(Ω), which is a Banach space and embedded densely in E. Set

P = PE
⋂
X , then P is a closed convex cone in X . Furthermore, P =◦

P
⋃
∂P under the

topology of X , that is, there exist interior points in X . We may define a partial order

relation: u,v ∈ X , u > v⇔ u− v ∈ P\{0}, u� v⇔ u− v ∈◦
P.

As the proof of those propositions in [5, Section 5], it turns out that condition Φ is
satisfied and P is an admissible invariant set for J under ( f1), ( f2), and (C) condition.

Proof of Theorem 1.1. Let Ei = ker(−�−λi),Yk =
⊕k

i=1Ei and Zk =
⊕∞

i=k Ei. It shows
that J is continuously differentiable by ( f1) and satisfies the (C)c condition for every c ∈ R
by Proposition 3.1.

(1) As the proof of [7, Theorem 3.7(3)], there exists γk > 0 such that for u∈ Zk, ‖u‖ =
γk, we have

bk := inf
Zk
⋂
∂Bγk

(0)
J(u)−→∞, k −→∞. (3.17)

(2) Since dimYk < +∞ and all norms are equivalent on the finite dimensional space,
there exists Ck > 0, for all u∈ Yk, we get

1
2

∫
Ω

(|∇u|2 +αu2)= 1
2
‖u‖2 ≤ Ck|u|22 ≡ Ck

∫
Ω
|u|2dx. (3.18)

Next, by ( f3), there exists Rk > 0 such that F(x,s) ≥ 2Ck|s|2 for |s| ≥ Rk. Take Mk :=
max{0, inf |s|≤Rk F(x,s)}, then for all (x,s)∈Ω×R, we obtain

F(x,s)≥ 2Ck|s|2−Mk. (3.19)

It follows from (3.18) and (3.19) that, for all u∈ Yk

J(u)= 1
2

∫
Ω

(|∇u|2 +αu2)−
∫
Ω
F(x,u)

≤−Ck|u|22 +Mk|Ω| ≤ −1
2
‖u‖2 +Mk|Ω|,

(3.20)
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which implies that for ρk large enough (ρk > γk),

ak := max
Yk
⋂
∂Bρk

(0)
J(u)≤ 0. (3.21)

Moreover, for k ≥ 2, Zk
⋂
P = {0}. This can be seen by noting that for all u ∈ P\{0},∫

Ωuφ1(x)dx > 0, while for u ∈ Zk,
∫
Ωuφ1(x)dx = 0, where φ1 is the first eigenfunction

corresponding to λ1, which implies Zk
⋂
∂Bγk (0)

⋂
P =∅.

By Theorem 2.4, J has a sequence of critical points un ∈ X\(P
⋃

(−P)) such that
J(un)→∞ as n→∞, that is, (1.1) has infinitely many nodal solutions. �

Example 3.3. By Theorem 1.1, the following equation with α > 0

−�u+αu= 2u log
(
1 + |u|), x ∈Ω,

∂u

∂ν
= 0, x ∈ ∂Ω

(3.22)

has infinitely many nodal solutions, while the result cannot be obtained by either [6,
Theorem 9.12] or [8, Theorem 3.2].

References

[1] T. Bartsch, Critical point theory on partially ordered Hilbert spaces, J. Funct. Anal. 186 (2001),
no. 1, 117–152.

[2] L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-
Lazer-type problem set on RN , Proc. Roy. Soc. Edinburgh Sect. A 129 (1999), no. 4, 787–809.

[3] S. Li and Z.-Q. Wang, Ljusternik-Schnirelman theory in partially ordered Hilbert spaces, Trans.
Amer. Math. Soc. 354 (2002), no. 8, 3207–3227.

[4] S. Liu, Existence of solutions to a superlinear p-Laplacian equation, Electron. J. Differential Equa-
tions 2001 (2001), no. 66, 1–6.

[5] A. Qian and S. Li, Multiple nodal solutions for elliptic equations, Nonlinear Anal. 57 (2004),
no. 4, 615–632.

[6] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential
Equations, CBMS Regional Conference Series in Mathematics, vol. 65, Published for the
Conference Board of the Mathematical Sciences, Washington, DC; by the American Math-
ematical Society, Rhode Island, 1986.

[7] M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and Their Appli-
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