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We prove the existence and multiplicity of solutions to a two-point boundary value prob-
lem associated to a weakly coupled system of asymmetric second-order equations. Ap-
plying a classical change of variables, we transform the initial problem into an equivalent
problem whose solutions can be characterized by their nodal properties. The proof is de-
veloped in the framework of the shooting methods and it is based on some estimates on
the rotation numbers associated to each component of the solutions to the equivalent
system.

1. Introduction

This paper represents a first step in the direction of extending to systems some of the
well-known results established over the last two decades on nonlinear equations with
an asymmetric nonlinearity. Recall that we call a nonlinearity asymmetric if the limits
f ′(+∞) and f ′(−∞) are different. The large literature on this type of nonlinear boundary
value problem can be roughly summarized in the following statement: in an asymmetric
nonlinear boundary value problem with a large positive loading, the greater the asymmetry,
the larger the number of multiple solutions.

This principle applies in both the ordinary differential equation and partial differential
equation setting, and has significant implications for vibrations in bridges and ships. To
illustrate the principle, we consider the scalar problem

u′′ + bu+ = sin(x), u(0)= u(π)= 0, (1.1)

where we recall that u+ :=max{u,0}, u− :=max{−u,0}. A combination of the results of
[8, 27] shows that if n2 < b < (n+ 1)2, the problem (1.1) has exactly 2n solutions. Thus
the greater the difference between f ′(+∞) (namely b) and f ′(−∞) (namely 0), the larger
the number of solutions (namely 2n). We sometimes say that the nonlinearity crosses the
first n eigenvalues.

Problem (1.1) has been widely studied in the literature. In addition to the papers
[8, 27], other contributions in the scalar case have been provided by Hart et al. [22],
Ruf [30, 31] and, more recently, by Sadyrbaev [33]. In these works, the nonlinearity is
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required to cross asymptotically fixed eigenvalues λk = k2. Garcı́a-Huidobro in [20] and
Rynne in [32] generalize the classical multiplicity results achieved for second-order ODEs
by studyingmth-order problems. The list of results available in literature as far as nonlin-
earities crossing eigenvalues in the PDE’s setting are concerned is very rich. In this direc-
tion, we refer to [6] by Castro and Gadam dealing with multiplicity of radial solutions.
Other results can be found in [34].

Recently, however, especially in problems of vibrations in suspension bridges, it has
become clear that there is a need to study, not just the single equation, but also coupled
systems with nonlinearities that behave like u+. This paper is the first to deal with the
general program of creating a theory for asymptotically homogeneous systems analogous
to the theory for the single equation [1, 2, 12, 13, 14, 15, 16, 17, 25, 28].

So as a first step in this direction, we consider the system[
u′′1 (t)
u′′2 (t)

]
+

[
b1 ε
ε b2

][
u+

1 (t)
u+

2 (t)

]
=
[

sin(t)
sin(t)

]
,

u1(0)= u2(0)= 0= u1(π)= u2(π),

(1.2)

where ε is suitably small and the positive numbers b1, b2 satisfy

h2 < b1 < (h+ 1)2, k2 < b2 < (k+ 1)2 for some h,k ∈N. (1.3)

The ultimate goal is considerably more ambitious. Instead of a near-diagonal operator,
we would hope at first to be able to replace the operator in (1.2) with a general n× n
matrix, and make a connection between the eigenvalues of that matrix, the eigenvalues of
the differential operator, and the multiplicity of the solutions. This paper is to be regarded
as a first step in this program.

Following the scalar classical approach, we introduce the following change of variables:

vi(t)= ui(t)− sin t
bi− 1

, i= 1,2, (1.4)

leading the given problem (1.2) into the Dirichlet problem of the form

v′′1 (t) + b1

[(
sin t
b1− 1

+ v1(t)
)+

− sin t
b1− 1

]
+ ε
(

sin t
b2− 1

+ v2(t)
)+

= 0,

v′′2 (t) + b2

[(
sin t
b2− 1

+ v2(t)
)+

− sin t
b2− 1

]
+ ε
(

sin t
b1− 1

+ v1(t)
)+

= 0,

v1(0)= v2(0)= 0= v1(π)= v2(π).

(1.5)

This paper is devoted to the study of problem (1.5), whose solutions are characterized
by their nodal properties. In particular, if we define τ := {(s1,s2) ∈ R2 : si = +1 or si =
−1∀i= 1,2}, then the following theorem holds.

Theorem 1.1. Assume that conditions (1.3) are satisfied. Then, there exists ε0 > 0 such that
for every ε ∈ (0,ε0], for every (n1,n2) ∈ N2 \ {(1,1)} with n1 ≤ h, n2 ≤ k, and for every
(s1,s2)∈ τ with si =−1 whenever ni = 1, problem (1.5) has at least one solution v = (v1,v2)



F. Dalbono and P. J. McKenna 131

with sgn(v′i (0)) = si such that vi has exactly ni − 1(simple) zeros in (0,π) for every i ∈
{1,2}.

As an immediate corollary of Theorem 1.1, we obtain the required multiplicity result
for the Dirichlet problem (1.2).

Corollary 1.2. Assume that conditions (1.3) hold. Then there exists ε0 > 0 such that for
every ε ∈ (0,ε0], problem (1.2) has at least 2(2hk−h− k) + 3 solutions.

To prove this corollary, we note that if we apply Theorem 1.1 to every (n1,n2)∈N2 \
{(1,1)}with 1 < n1 ≤ h and 1 < n2 ≤ k, we are able to achieve the existence of at least 4(h−
1)(k− 1) solutions to problem (1.5). On the other hand, if we consider the case ni = 1 for
a fixed i ∈ {1,2}, then Theorem 1.1 guarantees the existence of at least 2(h− 1 + k− 1)
solutions. Three further solutions to problem (1.5) are represented by the vectors

v1(t)=− b1

b1− 1
sin t, v2(t)=− b2

b2− 1
sin t;

v1(t)= 0, v2(t)=−
(

b2

b2− 1
− ε

b1− 1

)
sin t;

v1(t)=−
(

b1

b1− 1
− ε

b2− 1

)
sin t, v2(t)= 0,

(1.6)

provided that we choose ε≤min{b1,b2}− 1.
By adding up all these solutions, we complete the proof the corollary.
If we restrict ourselves to the uncoupled case by setting ε = 0, we know from the clas-

sical scalar results in the literature that problem (1.5) admits 4hk solutions. Observe that
the uncoupled case has a greater number of solutions since in the corresponding setting
also the vectors having a component which is identically zero can solve problem (1.5).

The next references we wish to quote rely on multiplicity results for systems of second-
order ODEs. Interesting contributions in the periodic setting can be found in [19] by
Fonda and Ortega providing multiplicity of forced periodic solutions to planar systems
with nonlinearities crossing the two first eigenvalues of the differential operator and in
the very recent work [18] by Fonda which is concerned with multiplicity results for pla-
nar Hamiltonian systems having periodic forcing terms. The paper [18] treats the case in
which further interactions with the eigenvalues of the differential operator occur. We con-
clude the list of references by quoting [35] providing oscillating solutions, whose compo-
nents have independent nodal properties, for a class of superlinear conservative ordinary
differential systems and [3, 4, 5, 7, 11, 24] dealing with existence and multiplicity of so-
lutions for different classes of weakly coupled systems in the framework of topological
methods. In the literature, weakly coupled systems are usually studied by constructing a
suitable homotopy which, by means of a continuation theorem, carries the initial prob-
lem into an autonomous one. In this way, the multiplicity results follow directly from the
computation of the degree associated to suitable scalar equations.

The techniques used in the present paper do not require to follow the standard ap-
proach described above. Our proof is based on an application of the well-known
Poincaré-Miranda theorem, ensuring the existence of solutions with prescribed nodal
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properties whenever some estimates on the rotation numbers of each component of the
solutions to suitable Cauchy problems hold (see Theorem 2.2 for more details).

We point out that the methods adopted allow us to extend our results to the case of
systems with a general number N of second-order ODEs, since the Poincaré-Miranda
theorem generalizes the intermediate values theorem to N-dimensional vector fields.

The paper is organized as follows. In Section 2 we recall the statement of the Poincaré-
Miranda theorem in the two-dimensional case and we present the general multiplic-
ity theorem on which the proof of our main theorem is based. The concluding part of
Section 2 is devoted to establish a relation between the initial data and the behaviour of
the solutions to specific Cauchy problems associated to the system in (1.5). To this aim,
we present some suitable versions of the elastic lemma.

In Section 3 we determine restrictions on the possible initial data of prescribed Cauchy
problems. The bounds obtained will be crucial in order to prove some results concerning
the simplicity of the zeros and to obtain the estimates on the rotation numbers needed to
apply the multiplicity theorem stated in Section 2.

2. A shooting approach and the elastic lemmas

The first part of this section is devoted to present a multiplicity result (cf. Theorem 2.2
below) for a two-dimensional Dirichlet problem of second-order differential equations
of the form

v′′(t)= F(t,v(t)
)
,

v(0)= v(π)= (0,0),
(2.1)

where F : [0,π]×R2 →R2 is a continuous function, locally Lipschitz with respect to the
second variable.

We first recall the statement of the Poincaré-Miranda theorem in the two-
dimensional case (cf., e.g., [26, 29]).

Theorem 2.1 (Poincaré-Miranda theorem). Let g : [a,b]× [c,d]→R2 be continuous and
such that g1(a, y)g1(b, y) < 0 for every y ∈ [c,d] and g2(x,c)g2(x,d) < 0 for every x ∈ [a,b].
Then, there exists (x, y)∈ (a,b)× (c,d) with g(x, y)= (0,0).

Secondly, we introduce the notion of rotation number.
For every continuous curve z = (x, y) : [0,π]→R2 \ {0}, consider a lifting z̃ : [0,π]→

R×R+
0 to the polar coordinate covering space, given by z̃(t) = (ϑz(t),ρz(t)), where x =

ρz sinϑz, y = ρz cosϑz. Note that ϑz and ρz are continuous functions and, moreover, ϑz(t)−
ϑz(0) is independent on the lifting of z which has been considered. Hence, for each
t ∈ [0,π], we can define the rotation number

Rot(t;z) := ϑz(t)− ϑz(0)
π

. (2.2)

Let f : [0,π]×R→R be a continuous function, locally Lipschitz with respect to the sec-
ond variable and let the curve z∗(t)= (x(t),x′(t)) represent a solution x(·) of

x′′(t) + f
(
t,x(t)

)= 0, (2.3)
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defined on [0,π] and such that x(t)2 + x′(t)2 > 0 for every t ∈ [0,π], then we can intro-
duce the rotation number of z∗, whose expression can be written in the following form:

Rot(t;z∗)= 1
π

∫ t
0

x′(s)2 + f
(
s,x(s)

)
x(s)

x′(s)2 + x(s)2
ds. (2.4)

We are now in position to state the required multiplicity result. In particular, suitable esti-
mates on the rotation numbers of each component of the solutions of prescribed Cauchy
problems related to problem (2.1) will guarantee the existence of solutions to (2.1) char-
acterized, component by component, by their nodal properties.

Theorem 2.2. Consider a continuous function F : [0,π]×R2 → R2, locally Lipschitz with
respect to the second variable. Assume that there exist ν,υ ∈ {>,<} and four positive numbers
r1, r2, R1, R2 with ri < Ri for each i ∈ {1,2} such that all the solutions v = (v1,v2) of the
problem

v′′(t)= F(t,v(t)
)
, v(0)= (0,0),

v′1(0)ν0, v′2(0)υ0, ri ≤
∣∣v′i (0)

∣∣≤ Ri ∀i∈ {1,2}, (2.5)

satisfy vi(t)2 + v′i (t)2 > 0 for every t ∈ [0,π] and for every i∈ {1,2}.
Moreover, assume that there are n1,n2 ∈N such that

Rot
(
π;
(
v1,v′1

))
> n1 for each solution v of (2.5) with

∣∣v′1(0)
∣∣= r1,

Rot
(
π;
(
v1,v′1

))
< n1 for each solution v of (2.5) with

∣∣v′1(0)
∣∣= R1;

(2.6)

Rot
(
π; (v2,v′2)

)
> n2 for each solution v of (2.5) with

∣∣v′2(0)
∣∣= r2,

Rot
(
π;
(
v2,v′2

))
< n2 for each solution v of (2.5) with

∣∣v′2(0)
∣∣= R2.

(2.7)

Then, there is at least one solution v of the Dirichlet problem (2.1) with v′1(0)ν0 and v′2(0)υ0
such that vi has exactly ni− 1 zeros in (0,π) for each i∈ {1,2}.

We refer to [10, Theorem 3.1] for a scalar version of Theorem 2.2. Note that in the
scalar case it is possible to deal with more general nonlinearities.

Proof. We consider four positive real numbers r1, r2, R1, R2 satisfying the given assump-
tions. Moreover, we define the constants c> := 1 and c< := −1. Let n1,n2 ∈N and ν,υ ∈
{>,<} be as in the statement of the theorem.

Fixed z0 ∈� := [cνr1,cνR1]× [cυr2,cυR2], we denote by v(·;z0) = (v1(·;z0),v2(·;z0))
the unique solution of the initial value problem

v′′(t)= F(t,v(t)
)

v(0)= (0,0), v′(0)= z0. (2.8)

According to this notation, we define the function g : �→R2 by setting

gi
(
z0
)= Rot

(
π;
(
vi
(·;z0

)
,v′i
(·;z0

)))−ni. (2.9)
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The Lipschitz assumption on the nonlinearity guarantees the continuity of the function
g. Moreover, from conditions (2.6) and (2.7) we, respectively, get

g1
(
cνr1, y0

)
g1
(
cνR1, y0

)
< 0 ∀y0 ∈

[
cυr2,cυR2

]
,

g2
(
x0,cυr2)g2

(
x0,cυR2

)
< 0 ∀x0 ∈

[
cνr1,cνR1

]
.

(2.10)

By applying the Poincaré-Miranda theorem, we infer the existence of a vector z0 ∈�
such that g(z0) = (0,0). Recalling the definition of the rotation number, we can finally
conclude that there exists a solution v of the Dirichlet problem (2.1) with v′(0) = z0,
v′1(0)ν0, and v′2(0)υ0 such that vi has exactly ni − 1 zeros in (0,π) for each i ∈ {1,2}.

�

Remark 2.3. Theorem 2.2 holds true if we invert both the inequalities in (2.6) and/or
both the inequalities in (2.7).

As a particular case, we will apply Theorem 2.2 to the given system

v′′1 (t) + b1

[(
sin t
b1− 1

+ v1(t)
)+

− sin t
b1− 1

]
+ ε
(

sin t
b2− 1

+ v2(t)
)+

= 0,

v′′2 (t) + b2

[(
sin t
b2− 1

+ v2(t)
)+

− sin t
b2− 1

]
+ ε
(

sin t
b1− 1

+ v1(t)
)+

= 0,

(2.11)

admitting a unique solution v = (v1,v2) such that (v(0),v′(0))= z0 for a fixed z0 ∈R4.
The next part of this section is devoted to present some versions of the well-known

“elastic lemma.” By following a classical procedure (cf., e.g., [21]), it is possible to estimate
the C1-norm of every solution of system (2.11) having bounded initial conditions.

Lemma 2.4. Suppose that bi > 1 for every i ∈ {1,2} and consider c,d ∈ [0,π] with c < d.
Then, for every R1 > 0 there exist R2 = R2(R1,b1,b2) > R1 and η̂ = η̂(R1,b1,b2) > 0 such
that for every ε ∈ (0, η̂] and for every solution v of (2.11) with

min
t∈[c,d]

∣∣(v(t),v′(t)
)∣∣≤ R1, (2.12)

it follows that

∣∣(v(t),v′(t)
)∣∣≤ R2 ∀t ∈ [c,d]. (2.13)

Proof. Fix R1 > 0 and an arbitrarily small µ > 0. Then, there exists a positive constant η̂
satisfying

[
2R1 + 2η̂

(
1

b1− 1
+

1
b2− 1

)]
e2π(max{b1,b2}+η̂) ≤ 2R1e2πmax{b1,b2} +µ. (2.14)

For every ε ≤ η̂ we take a solution v = (v1,v2) of (2.11) such that |(v(t0),v′(t0))| ≤ R1,
with t0∈[c,d] fixed. Then, the explicit expression of R2 is given byR2 :=2R1e2πmax{b1,b2}+µ.
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The nonlinear terms in system (2.11) can be easily estimated. More precisely, for each
i, j ∈ {1,2} with i �= j and for every t ∈ [0,π] the following inequality holds:

∣∣∣∣bi[( sin t
bi− 1

+ vi(t)
)+

− sin t
bi− 1

]
+ ε
(

sin t
bj − 1

+ vj(t)
)+∣∣∣∣≤ bi∣∣vi(t)∣∣+ ε

(
sin t
bj − 1

+
∣∣vj(t)∣∣).

(2.15)

Hence, we obtain that for every t ∈ [t0,d],

r(t) := ∣∣(v(t),v′(t)
)∣∣= √v1(t)2 + v2(t)2 + v′1(t)2 + v′2(t)2

≤ 2R1 + ε‖sin t‖1

(
1

b1− 1
+

1
b2− 1

)
+
∫ t
t0

(∣∣v′1(s)
∣∣+

∣∣v′2(s)
∣∣+

(
b1 + ε

)∣∣v1(s)
∣∣+

(
b2 + ε

)∣∣v2(s)
∣∣)ds.

(2.16)

It immediately follows that for every t ∈ [t0,d],

r(t)≤ 2R1 + 2ε
(

1
b1− 1

+
1

b2− 1

)
+ 2
(

max
{
b1,b2

}
+ ε
)∫ t

t0
r(s)ds. (2.17)

By applying Gronwall’s lemma and recalling the definition of R2 and the inequality (2.14)
satisfied by η̂, we can conclude that

r(t)≤
[

2R1 + 2ε
(

1
b1− 1

+
1

b2− 1

)]
e2(max{b1,b2}+ε)(d−t0) ≤ R2 ∀t ∈ [t0,d]. (2.18)

Arguing as above in the left interval of t0 given by [c, t0], we can extend inequality (2.18)
to the whole interval [c,d], achieving the thesis. �

A dual situation with respect to Lemma 2.4 occurs on each component of a solution
to system (2.11) under suitable assumptions. It can be expressed by the following lemma.

Lemma 2.5. Fix i, j ∈ {1,2} with i �= j and suppose that bl > 1 for every l ∈ {1,2}. Assume
that there exist three positive constants η, ρ1, L such that for every ε ∈ (0,η] and for every
solution v = (v1,v2) of system (2.11),

max
t∈[0,π]

∣∣(vi(t),v′i (t)
)∣∣ > ρ1, vj(t)≤ L ∀t ∈ [0,π]. (2.19)

Then, there exist ρ2 = ρ2(ρ1,bi)∈ (0,ρ1) and η∗i = η∗i (b1,b2,L,ρ1,η)∈ (0,η] such that for
every ε ∈ (0,η∗i ] and for every solution v = (v1,v2) of (2.11) it holds that

∣∣(vi(t),v′i (t)
)∣∣ > ρ2 ∀t ∈ [0,π]. (2.20)

Proof. Consider three constants η,ρ1,L > 0 satisfying the assumptions of this lemma.
Moreover, we choose an arbitrarily small constant µ = µ(ρ1) > 0 such that µ < ρ1/2. We
are now in position to write the explicit expressions of the positive constants ρ2 and η∗i ,
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which are given, respectively, by

ρ2 :=
√

2
2

(
ρ1− 2µ

)
e−
√

2πbi , η∗i :=min
{

µ(bj − 1)

2 +πL(bj − 1)
e−
√

2πbi ,η
}
. (2.21)

We take ε ∈ (0,η∗i ] and consider a solution v = (v1,v2) of (2.11).
The thesis is easily achieved by following the same steps of [9, Lemma 2.4.2]. More

precisely, arguing by contradiction and taking into account the first inequality in (2.19),
we can find an interval I = [c,d], where |(vi(t),v′i (t))| = ρ2 and |(vi(t0),v′i (t0))| = ρ1 for
some t, t0 ∈ [c,d].

We are now interested in estimating |(vi,v′i )| along the whole interval [c,d].
To this aim we recall that the function vi solves the equation

v′′i (t) + bi

[(
sin t
bi− 1

+ vi(t)
)+

− sin t
bi− 1

]
+ ε
(

sin t
bj − 1

+ vj(t)
)+

= 0, (2.22)

whose nonlinear term satisfies the following inequality:

∣∣∣∣bi[( sin t
bi− 1

+ vi(t)
)+

− sin t
bi− 1

]
+ ε
(

sin t
bj − 1

+ vj(t)
)+∣∣∣∣≤ bi∣∣vi(t)∣∣+ ε

(
sin t
bj − 1

+L
)
.

(2.23)

We are now ready to apply the classic elastic lemma (cf. [21, Lemma 2.1] and [9, Lemma
2.4.1]). Since mint∈[c,d] |(vi(t),v′i (t))| ≤ ρ2, we infer that

∣∣(vi(t),v′i (t)
)∣∣≤ (√2ρ2 + ε

∥∥∥∥ sin t
bj − 1

+L
∥∥∥∥

1

)
e
√

2bi(d−c) ∀t ∈ [c,d]. (2.24)

Taking into account the definition of ρ2, we obtain that

∣∣(vi(t),v′i (t)
)∣∣≤√2e

√
2πbiρ2 + ε

(
2

bj − 1
+Lπ

)
e
√

2πbi ≤ (ρ1− 2µ
)

+µ < ρ1 ∀t ∈ [c,d];

(2.25)

a contradiction with the fact that |(vi(t0),v′i (t0))| = ρ1 for t0 ∈ [c,d]. �

We have written Lemma 2.5 in components since we are interested in proving that all
the zeros of every component of the solutions to system (2.11) are simple (cf.
Proposition 3.11), provided that we choose a sufficiently small ε and suitable initial con-
ditions.

We also remark that, in general, it is not possible to prove the existence of two pos-
itive constants ρ2, η∗i such that for every ε ∈ (0,η∗i ] and for every solution to prob-
lem (2.11) the relation |(vi(0),v′i (0))| �= 0 implies |(vi(t),v′i (t))| > ρ2 for every t ∈ [0,π].
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Indeed, the choice of η∗i in Lemma 2.5 depends on the particular ρ1 satisfying (2.19)
which has been considered. For this reason, to get the simplicity of the zeros of each com-
ponent of the solutions to system (2.11), we need to consider solutions v having v′i (0)
bounded in modulus from below for each i ∈ {1,2}. Proposition 3.10 will provide the
required lower estimates on |v′i (0)| for every solution v to the system (2.11) with ε small
enough.

3. The main result

The first part of this section is devoted to establish a relation between the ith initial slope
v′i (0) and the number of zeros in (0,π] of vi, v = (v1,v2) being a solution to system (2.11)
satisfying the initial conditions

v1(0)= v2(0)= 0. (3.1)

This relation will provide the estimates on the rotation numbers required by Theorem 2.2
in order to get the multiplicity results.

Using techniques similar to the one adopted in the classical work [8], we can state a first
proposition providing a relation between the negative value of the ith initial slope v′i (0)
and the absence of zeros of vi, when v = (v1,v2) solves problem (2.11). More precisely, the
following holds.

Proposition 3.1. Fix i∈ {1,2} and assume that bi > 1. Then, for every ε > 0 and for every
solution v = (v1,v2) to system (2.11) satisfying (3.1)

v′i (0) <− bi
bi− i =⇒ vi has no zeros in (0,π]. (3.2)

Proof. We fix i, j ∈ {1,2} with i �= j and define v̂i(t) :=−bi sin t/(bi− 1). Consider a solu-
tion v = (v1,v2) to problem (2.11) and (3.1) satisfying v′i (0) < −bi/(bi − 1) = v̂′i (0). This
means that there exists a right neighbourhood of 0 in which vi < v̂i, since vi(0)= v̂i(0)= 0.

We argue by contradiction, assuming that there exists at least a zero of vi in (0,π] and
denote by c the first zero of vi in (0,π]. In particular, vi(c) = 0 ≥ v̂i(c). Hence, we can
deduce the existence of b ∈ (0,c] such that

vi(t) < v̂i(t) ∀t ∈ (0,b), vi(b)= v̂i(b). (3.3)

Since v̂i(t)≤−sin t/(bi− 1) for every t ∈ [0,b], the function vi solves the following equa-
tion:

v′′i (t)− bi
bi− 1

sin t+ ε
(

sin t
bj − 1

+ vj(t)
)+

= 0 ∀t ∈ [0,b]. (3.4)

It immediately follows that

v′i (t)− v̂′i (t)=
(
v′i (0) +

bi
bi− 1

)
− ε

∫ t
0

(
sins
bj − 1

+ vj(s)
)+

ds < 0 ∀t ∈ [0,b], (3.5)

whence vi(b) < v̂i(b), a contradiction. �
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Before exhibiting further estimates on the number of zeros of vi, we need some pre-
liminary lemmas.

First, note that a nontrivial component vi of a solution v of the system (2.11) is strictly
concave at a positive bump, since from (2.11) we get

v′′i (t)=−bivi(t)− ε
(

sin t
bj − 1

+ vj(t)
)+

if i �= j ∈ {1,2}, vi(t)≥− sin t
bi− 1

. (3.6)

The following lemma allows to estimate the length of the positive bumps of vi.

Lemma 3.2. Fix i ∈ {1,2} and assume that bi > 1. For every ε ≥ 0 and for every solution
v = (v1,v2) to system (2.11), denote by α,β ∈ R two consecutive zeros of vi such that vi > 0
for every t ∈ (α,β). Then,

β−α≤ π√
bi
. (3.7)

Proof. Fix i ∈ {1,2} and take a solution v = (v1,v2) to system (2.11). Consider α,β ∈ R
such that α < β and

vi(t) > 0 ∀t ∈ (α,β), vi(α)= 0= vi(β). (3.8)

By following a standard procedure (cf. [8]), we define ξ(t) := sin(π(t−α)/(β−α)). By
definition, ξ(t) > 0 for every t ∈ (α,β), ξ(α)= 0= ξ(β). Since v = (v1,v2) is a solution to
system (2.11), we know that

v′′i (t)=−bivi(t)− ε
(

sin t
bj − 1

+ vj(t)
)+

, ξ′′(t)=−
(

π

β−α
)2

ξ(t) ∀t ∈ [α,β]. (3.9)

Thus, we obtain that
∫ β
α (v′′i (s)ξ(s)− vi(s)ξ′′(s))ds= 0, from which follows

(
π2

(β−α)2
− bi

)∫ β
α
vi(s)ξ(s)ds= ε

∫ β
α
ξ(s)

(
sins
bj − 1

+ vj(s)
)+

ds≥ 0. (3.10)

We can finally conclude that β−α≤ π/√bi. �

A lemma analogous to Lemma 3.2 can be stated to establish a lower bound on the
distance between two zeros of vi when vi is negative between the two zeros. More precisely,
the following holds.

Lemma 3.3. Fix i ∈ {1,2} and assume that bi > 1. For every ε ≥ 0 and for every solution
v = (v1,v2) to system (2.11), denote by α∗,β∗ ∈ R two zeros of vi such that vi(t) < 0 for
every t ∈ (α∗,β∗). Then,

β∗ −α∗ ≥ π√
bi
. (3.11)
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Proof. The proof of this lemma is similar to the one of Lemma 3.2. We argue exactly
as before, by introducing ξ∗(t) := sin(π(t−α∗)/(β∗ −α∗)) and integrating the function
v′′i ξ∗ − viξ′′∗ . The only difference consists in the sign of vi on (α∗,β∗) and in the presence
of one more negative addendum in the expression of v′′i . Indeed, from system (2.11) we
immediately obtain that v′′i (t) = −bivi(t)− bi(sin t/(bi − 1) + vi(t))− − ε(sin t/(bj − 1) +
vj(t))+ when j ∈ {1,2}, j �= i. �

The statements of the previous lemmas include also the case in which ε = 0, since
Lemma 3.3 will be applied in a scalar context (cf. Lemma 3.7 and the corresponding
proof).

Henceforth, we concentrate our attention on the solutions v = (v1,v2) to problem
(2.11) and (3.1) verifying

∣∣v′i (0)
∣∣≤ 2π2 bi

bi− 1
+ σ ∀i∈ {1,2}, (3.12)

for a fixed σ > 0. We observe that imposing this condition will not affect the number of
solutions to the Dirichlet problem (1.5). Indeed, in Remark 3.6 we will ensure that every
solution to problem (1.5) satisfies condition (3.12). We also point out that the choice
of the constant in (3.12) depends on the fact that vi is characterized by particular nodal
properties whenever v = (v1,v2) solves (2.11), (3.1) and verifies |v′i (0)| = 2π2(bi/(bi −
1)) + σ (we refer to Proposition 3.5 for more details).

Let us first show that the C1-norm of the solutions to problem (2.11) and (3.1) satis-
fying (3.12) is bounded, provided that we choose a sufficiently small constant ε.

Proposition 3.4. Assume that bi > 1 for every i ∈ {1,2} and fix σ > 0. Then, there exist
two positive constantsM =M(b1,b2,σ) and ε∗ = ε∗(b1,b2,σ) such that for every ε∈ (0,ε∗]
and for every solution v = (v1,v2) to problem (2.11) satisfying (3.1) and (3.12) it follows that

∣∣vi(t)∣∣≤ ∣∣(v(t),v′(t)
)∣∣≤M ∀t ∈ [0,π], ∀i∈ {1,2}. (3.13)

Proof. Conditions (3.1) and (3.12) ensure that

min
t∈[0,π]

∣∣(v(t),v′(t)
)∣∣≤ ∣∣(v′1(0),v′2(0)

)∣∣≤ 2π2
(

b1

b1− 1
+

b2

b2− 1

)
+ 2σ. (3.14)

Thus, Lemma 2.4 guarantees the existence of M = M(b1,b2,σ) > 0 and of ε∗ =
ε∗(b1,b2,σ) > 0 such that for every ε ∈ (0,ε∗] and for every solution v = (v1,v2) to prob-
lem (2.11) satisfying (3.1) and (3.12) it follows that |vi(t)| ≤ |(v(t),v′(t))| ≤M for every
t ∈ [0,π] and i∈ {1,2}. This completes the proof. �

In the same context of the above proposition, we are able to provide a relation between
the ith initial slope v′i (0) of a solution v to system (2.11) and the exact number of zeros of
vi in (0,π]. More precisely, the following proposition holds.
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Proposition 3.5. Assume that bl > 1 for every l ∈ {1,2}. Fix σ > 0 and i ∈ {1,2}. Then,
there exists ε̂i = ε̂i(b1,b2,σ) > 0 such that for every ε ∈ (0, ε̂i] and for every solution v =
(v1,v2) to system (2.11) satisfying (3.1) and (3.12),

v′i (0)= 2π2 bi
bi− 1

+ σ =⇒ vi has one and only one simple zero in (0,π]. (3.15)

We point out that if the assumptions of Proposition 3.5 hold, then vi has one zero
in (0,π]. From Lemma 3.2, this zero is less than or equal to π/

√
bi and, consequently, it

cannot coincide with π.

Proof. Fix σ > 0 and i, j ∈ {1,2} with i �= j. By applying Proposition 3.4, we immediately
infer the existence of two positive constants M =M(b1,b2,σ) and ε∗ = ε∗(b1,b2,σ) such
that for every ε ∈ (0,ε∗] and for every solution v = (v1,v2) to problem (2.11) satisfying
(3.1) and (3.12) it follows that∣∣vj(t)∣∣≤ ∣∣(v(t),v′(t)

)∣∣≤M ∀t ∈ [0,π]. (3.16)

We define ε̂i = ε̂i(b1,b2,σ) by setting

ε̂i :=min
{
ε∗,σ

√
bi
(
bj − 1

)
π
(
Mbj −M + 1

)}. (3.17)

For every ε ∈ (0, ε̂i] we consider a solution v = (v1,v2) to problem (2.11) and (3.1) such
that v′i (0)= 2π2(bi/(bi− 1)) + σ . Denote by τ the first zero of vi in (0,π]. Since vi is strictly
concave at a positive bump, we know that vi > 0 in (0,τ) and that v′i (τ) < 0.

We claim that

v′i (τ)≤−2
bi

bi− 1
. (3.18)

We suppose by contradiction that v′i (τ) > −2(bi/(bi − 1)). Consider now γ ∈ (0,τ) such
that vi(γ) := maxt∈(0,τ) vi(t). As a consequence of the strict concavity of the positive
bumps, we can deduce that

v′i (t)≥ v′i (τ) >−2
bi

bi− 1
∀t ∈ [γ,τ]. (3.19)

This implies that

0= vi(τ)= vi(γ) +
∫ τ
γ
v′i (s)ds > vi(γ)− 2

bi
bi− 1

(τ − γ). (3.20)

Our aim consists in getting the contradiction by providing suitable upper bounds on
v′i (0). According to (3.6), we obtain

2π2 bi
bi− 1

+ σ = v′i (0)= bi
∫ γ

0
vi(s)ds+ ε

∫ γ
0

(
sins
bj − 1

+ vj(s)
)+

ds. (3.21)
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Taking into account the definition of γ, the inequality (3.20), and Lemma 3.2, we are able
to estimate from above the first addendum

bi

∫ γ
0
vi(s)ds≤ bivi(γ)γ < bi2

bi
bi− 1

(τ − γ)γ ≤ 2π2 bi
bi− 1

. (3.22)

According to the definition of ε̂i given in (3.17) and to the estimates provided by (3.16)
and by Lemma 3.2, we finally infer that

v′i (0) < 2π2 bi
bi− 1

+ ε
π√
bi

(
1

bj − 1
+M

)
≤ 2π2 bi

bi− 1
+ σ , (3.23)

contradicting (3.21). Hence, the claim is proved and (3.18) holds.
Moreover, for every t ≥ τ we get

v′i (t)= v′i (τ) +
bi

bi− 1
(cosτ − cos t)− bi

∫ t
τ

(
sins
bi− 1

+ vi(s)
)+

ds− ε
∫ t
τ

(
sins
bj − 1

+ vj(s)
)+

ds.

(3.24)

From (3.18) we obtain v′i (τ)≤−2(bi/(bi− 1)) < (bi/(bi− 1))(cos t− cosτ). Hence, v′i (t) <
0 for every t ≥ τ. This implies that there does not exist any other zero of vi in the interval
(τ,π]. The thesis follows. �

Remark 3.6. It is possible to prove that if bl > 1 for every l ∈ {1,2}, then for every σ > 0
there exists ε = ε(σ ,b1,b2) > 0 such that for every ε ∈ (0,ε] and for every solution v =
(v1,v2) to the Dirichlet problem (1.5),

− bi
bi− 1

≤ v′i (0)≤ 2π2bi
bi− 1

+ σ ∀i∈ {1,2}. (3.25)

The validity of the lower estimate on v′i (0) follows immediately from an application of
Proposition 3.1.

The estimate from above can be easily obtained by refining the arguments used to
prove Proposition 3.5 and by taking into account that both v1 and v2 satisfy the Dirichlet
boundary conditions. For this reason we have chosen to restrict ourselves to the study of
solutions to problem (2.11) and (3.1) whose ith initial slope is bounded in modulus by
the constant 2π2bi/(bi − 1) + σ for a fixed σ > 0 and for every i ∈ {1,2} (as assumed in
condition (3.12)).

Propositions 3.1 and 3.5 provide an upper bound on the rotation number of vi cal-
culated in π when |v′i (0)| = 2π2bi/(bi − 1) + σ . In order to get the required multiplicity
result by an application of Theorem 2.2, we will exhibit a lower bound on the rotation
number of vi for a suitable ith initial slope.

To this aim, we will compare the behaviour of the ith component of the solutions
v = (v1,v2) to (2.11) and (3.1) with the solutions u to the scalar problem

u′′(t) + bi

[(
sin t
bi− 1

+u(t)
)+

− sin t
bi− 1

]
= 0. (3.26)

As a first step, we recall some properties of u.
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Lemma 3.7. Fix i∈ {1,2} and assume that bi > 1. Consider the constants k < 0, ε ≥ 0, and
a∈ (0,π). Denote by ξ the solution of the linear Cauchy problem

ξ′′(t) + biξ(t)= 0,

ξ(a)= 0, ξ′(a)= k,
(3.27)

and denote by u the solution of the scalar Cauchy problem

u′′(t) + bi

[(
sin t
bi− 1

+u(t)
)+

− sin t
bi− 1

]
= 0,

u(a)= 0, u′(a)= k.
(3.28)

If there exists γ ∈ (a,a + π/
√
bi) such that γ < π and ξ(γ) = −sinγ/(bi − 1) and ξ′(γ) <

−cosγ/(bi− 1), then

ξ(t)= u(t) ∀t ∈ [a,γ], ξ(t) > u(t) ∀t ∈
(
γ,a+

π√
bi

]
. (3.29)

Proof. Fix i ∈ {1,2}. Consider the solutions ξ and u to problems (3.27) and (3.28), re-
spectively. We define b := a+π/

√
bi. Clearly, ξ(b)= 0 and ξ is negative in (a,b). Moreover,

Lemma 3.3 guarantees that u(b) < 0= ξ(b), since b− a= π/√bi.
By the initial conditions, we have ξ(a) + sina/(bi − 1) = u(a) + sina/(bi − 1) = sina/

(bi − 1) > 0, since a ∈ (0,π). We denote by c the first zero (greater than a) of ψ(t) :=
ξ(t) + sin t/(bi− 1). It is easy to show that c represents also the first zero of ψ̃(t) := u(t) +
sin t/(bi− 1). Indeed, ξ ≡ u in [a,c], being ξ and u solutions of the linear Cauchy problem
(3.27) in the interval [a,c]. Moreover, by the definition of γ, c ≤ γ.

We now claim that c = γ.
In order to prove this assertion, suppose by contradiction that c < γ. Observe that ψ

solves the problem

ψ′′(t)=−biψ(t) + sin t, ψ(c)= 0= ψ(γ). (3.30)

Furthermore, consider φ(t) := sin(
√
bi(t− c)). By definition, φ(t) > 0 for every t ∈ (c,c+

π/
√
bi) and φ(c) = 0. In particular, ψ′′(t)φ(t)− ψ(t)φ′′(t) = sin tφ(t) > 0 for every t ∈

(c,γ). Hence, we obtain

0 <
∫ γ
c

(
ψ′′(s)φ(s)−φ(s)ψ′′(s)

)
ds=

∫ γ
c

(
ψ′(s)φ(s)−ψ(s)φ′(s)

)′ds= ψ′(γ)φ(γ). (3.31)

Since, by assumption,ψ′(γ) < 0, we deduce that φ(γ) < 0, a contradiction. We have proved
that c = γ.

In particular, ψ′(c) = ψ̃′(c) < 0 and, consequently, there exists d ∈ (c,b) such that ψ
and ψ̃ are both negative in (c,d). This implies that

ξ′(t)−u′(t)=−bi
∫ t
c

(
ξ(s) +

sins
bi− 1

)
ds=−bi

∫ t
c
ψ(s)ds > 0 ∀t ∈ (c,d]. (3.32)

From the equality u(c)= ξ(c), we immediately obtain that ξ(t) > u(t) for every t ∈ (c,d].
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It remains to extend the inequality ξ > u to the whole interval (c,b].
We suppose by contradiction that there exists β ∈ (d,b] such that

u(β)= ξ(β), ξ(t) > u(t) ∀t ∈ (c,β). (3.33)

Note that u− ξ solves the equation (u− ξ)′′(t)=−bi(u− ξ)(t)− bi(sin t/(bi− 1) +u(t))−.
With arguments similar to the ones used in the proof of Lemma 3.3, one can prove that

β− c > π√
bi

, (3.34)

a contradiction with the fact that β− c ≤ b− c = a+π/
√
bi− c < π/

√
bi. �

It is well known that the solutions to problem (3.28) are characterized by their nodal
properties. In particular, the following lemma is satisfied.

Lemma 3.8. Fix i ∈ {1,2} and assume that bi satisfies the condition n2 < bi < (n+ 1)2 for
some n∈N. Consider k ∈R \ {0} such that |k| < 1/(bi− 1) and denote by u the solution to
problem (3.28) where a= 0. Then,

u(t)= k√
bi

sin
(√
bit
)
>− sin t

bi− 1
∀t ∈

(
0,max

{
π− π

2
√
bi

,
nπ√
bi

}]
. (3.35)

Moreover,

u has exactly n (simple) zeros in (0,π],
∣∣u(π)

∣∣≥ |k|√
bi

∣∣∣sin
(√
biπ

)∣∣∣. (3.36)

Notice that the n zeros of u in (0,π] are the points th = hπ/
√
bi, where 1≤ h≤ n.

Proof. Consider k ∈R \ {0} such that |k| < 1/(bi− 1) and define Bn :=max{π−π/(2
√
bi),

nπ/
√
bi}. Fixed a= 0 in (3.28), we denote by u the solution of the Cauchy problem (3.28)

defined on [0,π].
As a first step, we claim that

sin t
bi− 1

>
|k|√
bi

∣∣∣sin
(√
bit
)∣∣∣≥− k√

bi
sin
(√
bit
)

∀t ∈ (0,Bn
]
. (3.37)

We first show that inequality (3.37) is satisfied in the interval (0,π/(2
√
bi)], that is,

f (t) :=− |k|√
bi

sin
(√
bit
)

+
sin t
bi− 1

> 0 ∀t ∈
(

0,
π

2
√
bi

]
. (3.38)

By deriving f , we obtain

f ′(t)=−|k|cos
(√
bit
)

+
cos t
bi− 1

>
1

bi− 1

(
− cos

(√
bit
)

+ cos t
)

∀t ∈
(

0,
π

2
√
bi

)
.

(3.39)

Since (d/ds)cosst = −t sinst < 0 when t ∈ (0,π/(2
√
bi)) and s ∈ [1,

√
bi], we can easily

conclude that f ′(t) > 0 for every t ∈ (0,π/(2
√
bi)). From the equality f (0)= 0, we achieve

(3.38).
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Moreover taking into account inequality (3.38), we get

sin t
bi− 1

≥ 1
bi− 1

sin
(

π

2
√
bi

)
>
|k|√
bi

sin
π

2
≥ |k|√

bi

∣∣∣sin
(√
bit
)∣∣∣ ∀t ∈

[
π

2
√
bi

,π− π

2
√
bi

]
,

(3.40)

which combined with (3.38) extends the validity of (3.37) to the whole interval (0,π −
π/(2

√
bi)].

According to (3.38), we also obtain that

sin t
bi− 1

>
|k|√
bi

∣∣∣sin
(√
bi(π− t)

)∣∣∣= |k|√
bi

sin
(√
bi(π− t)

)
∀t ∈

[
π− π

2
√
bi

,π
)
. (3.41)

To prove the claim, it remains to show that

sin
(√
bi(π− t)

)
≥
∣∣∣sin

(√
bit
)∣∣∣ ∀t ∈

[
π− π

2
√
bi

,
nπ√
bi

]
(3.42)

when π−π/(2
√
bi) < nπ/

√
bi (or, equivalently, when

√
bi < n+ 1/2).

Since by assumption
√
bi > n, it easily follows that

0≤−
√
bit+nπ <

√
bi(π− t)≤ π

2
∀t ∈

[
π− π

2
√
bi

,
nπ√
bi

]
. (3.43)

Since the function t �→ sin t is nonnegative and strictly increasing in [0,π/2], we can finally
deduce that inequality (3.42) holds. Indeed,

sin
(√
bi(π− t)

)
> sin

(
−
√
bit+nπ

)
=
∣∣∣sin

(√
bit
)∣∣∣ ∀t ∈

[
π− π

2
√
bi

,
nπ√
bi

]
. (3.44)

This completes the proof of the claim.
We have so proved that inequality (3.37) holds. Since u is a solution of (3.28), it is easy

to deduce that u(t)= (k/
√
bi)sin(

√
bit) for every t ∈ [0,Bn].

Moreover since, by assumptions, Bn < π < (n+ 1)π/
√
bi, we can conclude that u has

exactly n zeros in (0,Bn]. It remains to prove that u has no other zeros in (Bn,π].
If sin t/(bi − 1) + (k/

√
bi)sin(

√
bit) ≥ 0 for every t ∈ (Bn,π], then u(t) = (k/

√
bi)

sin(
√
bit) for every t ∈ [0,π] and it has no zeros in (Bn,π]. Furthermore, u(π)= (k/

√
bi)

sin(
√
biπ).

Otherwise, assume the existence of γ ∈ (Bn,π) ⊂ (nπ/
√
bi, (n + 1)π/

√
bi) such that

sinγ/(bi − 1) + (k/
√
bi)sin(

√
biγ) = 0 and cosγ/(bi − 1) + k cos(

√
biγ) < 0. First observe

that

u

(
nπ√
bi

)
= k√

bi
sin(nπ),= 0, u′

(
nπ√
bi

)
= k cos(nπ) < 0. (3.45)
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The assumptions of Lemma 3.7 are satisfied. Hence, by applying this lemma we can con-
clude that

0 >
k√
bi

sin
(√
bit
)
= u(t) ∀t ∈

(
nπ√
bi

,γ
]

, 0 >
k√
bi

sin
(√
bit
)
> u(t) ∀t ∈ (γ,π].

(3.46)

In particular, also in this case u has no zeros in (Bn,π] and

∣∣u(π)
∣∣=−u(π) >− k√

bi
sin
(√
biπ

)
= |k|√

bi

∣∣∣sin
(√
biπ

)∣∣∣. (3.47)

The thesis of the lemma is achieved. �

We now establish a relation between the behaviour of the solutions of (3.28) and the
behaviour of the ith component of the solutions to system (2.11).

Lemma 3.9. Suppose that bl > 1 for every l ∈ {1,2} and fix i∈ {1,2}. Consider k ∈R and
σ > 0. Denote by u the solution of (3.28) where a= 0. Then, for every µ > 0 there exists εi > 0
such that for every ε ∈ (0,εi] and for every solution v = (v1,v2) of (2.11) with v′i (0) = k
satisfying (3.1) and (3.12), it follows that∣∣(vi(t)−u(t),v′i (t)−u′(t)

)∣∣≤ µ ∀t ∈ [0,π]. (3.48)

Proof. Fix σ > 0 and i, j ∈ {1,2} with i �= j. By applying Proposition 3.4, we immedi-
ately infer the existence of two positive constants M =M(b1,b2,σ) and ε∗ = ε∗(b1,b2,σ)
such that for every ε ∈ (0,ε∗] and for every solution v = (v1,v2) to problem (2.11) sat-
isfying (3.1) and (3.12), it follows that |vj(t)| ≤M for every t ∈ [0,π]. We define εi =
εi(b1,b2,σ ,µ) by setting

εi :=min

{
ε∗,

µ
(
bj − 1

)
2 +πM

(
bj − 1

)e−
√

2biπ

}
. (3.49)

For every ε ∈ (0,εi] we consider a solution v = (v1,v2) to problem (2.11) with v′i (0) = k
satisfying (3.1) and (3.12). Denoting by u the solution to (3.28) with a= 0, we obtain that
for every t ∈ [0,π],

v′′i (t)−u′′(t)= bi
[
−
(

sin t
bi− 1

+ vi(t)
)+

+
(

sin t
bi− 1

+u(t)
)+
]
− ε
(

sin t
bj − 1

+ vj(t)
)+

.

(3.50)

Hence, we conclude that for every t ∈ [0,π],

∣∣v′′i (t)−u′′(t)∣∣≤ bi∣∣vi(t)−u(t)
∣∣+ ε

(
sin t
bj − 1

+M
)
. (3.51)

From the classic elastic lemma (cf. [21, Lemma 2.1] and [9, Lemma 2.4.1]), it follows that

∣∣(vi(t)−u(t),v′i (t)−u′(t)
)∣∣≤ ε∥∥∥∥ sin t

bj − 1
+M

∥∥∥∥
1
e
√

2biπ ∀t ∈ [0,π]. (3.52)
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Taking into account the definition of εi given in (3.49), we finally infer

∣∣(vi(t)−u(t),v′i (t)−u′(t)
)∣∣≤ ε( 2

bj − 1
+Mπ

)
e
√

2biπ ≤ µ ∀t ∈ [0,π], (3.53)

which completes the proof. �

By applying the previous lemmas, we are able to exhibit a lower bound on the number
of zeros of the ith component of the solutions of suitable Cauchy problems associated to
system (2.11).

Proposition 3.10. Fix i, j ∈ {1,2} with i �= j and σ > 0. Assume that bj > 1 and bi satisfies
the condition n2 < bi < (n + 1)2 for some n ∈ N. Then, for every ν ∈ (0,1/(bi − 1)) there
exists εi > 0 such that for every ε ∈ (0,εi] and for every solution v = (v1,v2) to system (2.11)
satisfying (3.1) and (3.12),

1
bi− 1

− ν <
∣∣v′i (0)

∣∣ < 1
bi− 1

=⇒ vi has at least n zeros in (0,π). (3.54)

We point out that no information on the simplicity of the zeros is contained in (3.54).

Proof. Fix i, j ∈ {1,2} with i �= j. We take ν ∈ (0,1/(bi − 1)) and |k| ∈ (1/(bi − 1)− ν,
1/(bi− 1)). To simplify the notation, we set sh := ((2h+ 1)/2)(π/

√
bi) for every h∈ {0, . . . ,

n− 1} and sn := π. By definition, sh−1 < sh for every h ∈ {1, . . . ,n}. Lemma 3.8 ensures
that the solution u to problem (3.28) where we choose a= 0 satisfies u(sh−1)u(sh) < 0 for
every h∈ {1, . . . ,n}. Furthermore,

u(sh)= k√
bi

sin
(

2h+ 1
2

π
)
= k√

bi
(−1)h ∀h∈ {0, . . . ,n− 1}, (3.55)

whence it follows that

∣∣u(sh)
∣∣≥ |k|√

bi

∣∣∣sin
(√
biπ

)∣∣∣ > 0 ∀h∈ {0, . . . ,n}. (3.56)

We now choose µ = µ(ν,bi) ∈ (0,(|k|/√bi)|sin(
√
biπ)|) and we introduce εi = εi(b1,

b2,σ ,ν) by setting εi := εi, with εi defined by (3.49). For every ε ∈ (0,εi] we consider a
solution v = (v1,v2) to system (2.11) with v′i (0) = k satisfying (3.1) and (3.12). From
Lemma 3.9, we deduce ∣∣vi(t)−u(t)

∣∣≤ µ ∀t ∈ [0,π]. (3.57)

Taking into account (3.56) and (3.57), we obtain that for every h∈ {1, . . . ,n},

u
(
sh
)
vi
(
sh
)= u(sh)(vi(sh)−u(sh))+u

(
sh
)2

≥ ∣∣u(sh)∣∣(−∣∣vi(sh)−u(sh)∣∣+
∣∣u(sh)∣∣)

≥ ∣∣u(sh)∣∣(−µ+
|k|√
bi

∣∣∣sin
(√
biπ

)∣∣∣) > 0.

(3.58)
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In particular, vi(sh−1)vi(sh) < 0 for every h∈ {1, . . . ,n}. Being the sequence of sh increas-
ing, we can finally conclude that vi has at least n zeros in (s0,π), whence the thesis fol-
lows. �

In order to apply Theorem 2.2 and to improve the result of Proposition 3.10, we now
prove that all the zeros of each component of the solution to problem (2.11) and (3.1) are
simple provided that every initial slope satisfies (3.12) and the further condition

∣∣v′i (0)
∣∣ > 1

bi− 1
− ν > 0 (3.59)

for some ν∈ (0,1/(bi− 1)), and provided that ε is sufficiently small. The presence of the
nonlinear terms in (2.11) containing the positive constant ε makes this assertion not true
in general. Indeed, in general, a nontrivial component vi of a solution v to system (2.11)
is not strictly convex at a negative bump. The lack of convexity could lead to the existence
of a nonsimple zero S of vi, when vi is negative in a left neighbourhood of S.

The choice to restrict ourselves to the case where inequalities (3.12) and (3.59) hold
is due to the fact that these inequalities guarantee the validity of conditions (2.19) in
Lemma 2.5, whose application leads to the following proposition.

Proposition 3.11. Assume that bi > 1 for every i ∈ {1,2}. Fix ν ∈ (0,min{1/(b1 − 1),1
/(b2− 1)}) and σ > 0. Then, there exist three positive constants δ1 = δ1(b1,ν), δ2 = δ2(b2,ν),
and ε∗ > 0 such that for every ε ∈ (0,ε∗] and for every solution v = (v1,v2) to problem (2.11)
satisfying (3.1), (3.12), and (3.59) for every i∈ {1,2} it follows that

vi(t)2 + v′i (t)
2 > δi ∀t ∈ [0,π],∀i∈ {1,2}. (3.60)

Proof. To prove the proposition we need to verify that the assumptions of Lemma 2.5 are
satisfied. We fix ν∈ (0,min{1/(b1− 1),1/(b2− 1)}) and σ > 0. Every solution v = (v1,v2)
to problem (2.11) verifying (3.1) and (3.59) for each i= 1,2 satisfies

max
t∈[0,π]

∣∣(vi(t),v′i (t)
)∣∣≥ ∣∣v′i (0)

∣∣ > 1
bi− 1

− ν ∀i∈ {1,2}. (3.61)

Moreover, Proposition 3.4 provides the existence of two positive constants M =M(b1,b2,
σ) and ε∗ = ε∗(b1,b2,σ) such that for every ε ∈ (0,ε∗] and for every solution v = (v1,v2)
to problem (2.11) satisfying (3.12) and (3.1) it follows that

∣∣vj(t)∣∣≤ ∣∣(v(t),v′(t)
)∣∣≤M ∀t ∈ [0,π],∀ j ∈ {1,2}. (3.62)

According to (3.61) and to (3.62), we observe that conditions (2.19) of Lemma 2.5 hold.
Hence, by applying Lemma 2.5 the thesis follows. �

Remark 3.12. The statement of Proposition 3.10 can be improved. Indeed, suppose that
all the assumptions of the proposition hold. Then, it is possible to prove that for every
ν∈ (0,min{1/(b1− 1),1/(b2− 1)}) there exists ε∗i > 0 such that for every ε ∈ (0,ε∗i ] and
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for every solution v = (v1,v2) to system (2.11) satisfying (3.1) and (3.12),

1
bi− 1

− ν <
∣∣v′i (0)

∣∣ < 1
bi− 1

=⇒ vi has exactly n zeros in (0,π], vi(π) �= 0. (3.63)

To prove this result, we first denote by δ a positive constant satisfying the following in-
equality:

Rot
(
π; (ξ;ξ′)

)
+ δ < n+ 1 (3.64)

for every solution ξ of problem (3.27) with any k ∈R \ {0}. To simplify the notation, in
what follows we set Rot(π; (ξ,ξ′)) := Rot(3.27)(π;k/|k|).

We now claim that there exists a positive constant εi = εi(δ) > 0 such that for every
ε ∈ (0,εi] and for every solution v = (v1,v2) to system (2.11) satisfying (3.1), (3.12), and
(3.59),

Rot
(
π; (vi,v′i )

)
< Rot(3.27)

(
π;

v′i (0)∣∣v′i (0)
∣∣
)

+ δ. (3.65)

Note that Rot(π; (vi,v′i )) is well-defined by Proposition 3.11 if we choose εi ∈ (0,min{ε∗,
ε∗}), where ε∗ and ε∗ are given in Propositions 3.4 and 3.11, respectively. We only sketch
the proof of the claim, since its procedure is standard (we refer to the proof of [10, Lemma
3.4] for more details). Arguing by contradiction, we suppose that for every m∈N there
are εm ∈ (0,[δi(bj − 1)]/{mM[1 +M(bj − 1)]}] and a solution vm of (2.11) satisfying
(3.1), (3.12), and (3.59) such that

Rot
(
π;
(
vmi ,

(
vmi
)′))≥ Rot(3.27)

(
π;

(
vmi
)′

(0)∣∣(vmi
)′

(0)
∣∣
)

+ δ. (3.66)

For each m∈N, we take αm ∈ {0,π} satisfying cosαm = (vmi )′(0)/|(vmi )′(0)|. It is not re-
strictive to assume that limm→+∞αm = α for some α∈ {0,π}. Hence, from the continuity
of Rot(3.27)(π;·), we can conclude that

liminf
m→+∞ Rot

(
π;
(
vmi ,

(
vmi
)′))≥ Rot(3.27)(π; cosα) + δ. (3.67)

On the other hand, we consider the polar coordinates (ϑm(t),ρm(t)) to represent (vmi ,
(vmi )′). The inequality

bi

[(
sin t
bi− 1

+ vmi (t)
)+

− sin t
bi− 1

]
vmi ≤ bivmi (t)2 ∀t ∈ [0,π] (3.68)

and the estimates provided by Propositions 3.4 and 3.11 ensure the validity of

ϑ′m(t)≤ (vmi )′(t)2 + bivmi (t)2

(vmi )′(t)2 + vmi (t)2
+ εm

M

δi

(
1

bj − 1
+M

)
≤ cos2 ϑm(t) + bi sin2 ϑm(t) +

1
m
.

(3.69)
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A result on differential inequalities [23] and a well-known theorem on continuous de-
pendence of the solutions lead to

limsup
m→+∞

Rot
(
π;
(
vmi ,

(
vmi )′

))= limsup
m→+∞

ϑm(π)−αm
π

≤ Rot(3.27)(π; cosα), (3.70)

which contradicts (3.67). Thus, the claim is proved.
By recalling inequalities (3.64) and (3.65), we can finally deduce the existence of a

positive constant εi such that for every ε ∈ (0,εi] and for every solution v = (v1,v2) to
system (2.11) satisfying (3.1), (3.12), and (3.59),

Rot
(
π;
(
vi,v′i

))
< n+ 1. (3.71)

Hence, the assertion (3.63) comes from an application of Proposition 3.10.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. We take (n1,n2) ∈ N2 \ {(1,1)} with n1 ≤ h, n2 ≤ k and consider
(s1,s2) ∈ τ with si = −1 whenever ni = 1. Fix σ > 0 and ν ∈ (0,min{1/(b1 − 1),1/(b2 −
1)}). Furthermore, we define ε0 :=min{ε̂1, ε̂2,ε1,ε2,ε∗} where ε̂i, εi, and ε∗ follow from
the application of Propositions 3.5, 3.10, and 3.11, respectively. For every ε ∈ (0,ε0], we
consider v = (v1,v2) such that

v solves (2.11) and (3.1),

sgn
(
v′i (0)

)= si, 1
bi− 1

− ν

2
≤ ∣∣v′i (0)

∣∣≤ 2π2 bi
bi− 1

+ σ ∀i∈ {1,2}. (3.72)

We first note that for each i∈ {1,2}, Proposition 3.10 implies that Rot(π; (vi,v′i )) > ni for
every function v satisfying (3.72) and the additional condition |v′i (0)| = 1/(bi− 1)− ν/2.

Moreover, if ni �= 1, then Proposition 3.5 guarantees that Rot(π; (vi,v′i )) < 2≤ ni for ev-
ery function v satisfying (3.72) and the additional condition |v′i (0)| = 2π2(bi/
(bi− 1)) + σ .

On the other hand, if ni = 1 and si = −1, then Proposition 3.1 guarantees that Rot
(π; (vi,v′i )) < 1 = ni for every function v satisfying (3.72) and the additional condition
|v′i (0)| = 2π2(bi/(bi− 1)) + σ .

In particular, all the assumptions of Theorem 2.2 are satisfied. Thus, there is at least
one solution v of problem (1.5) with sgn(v′i (0))= si such that vi has exactly ni− 1 zeros
in (0,π) for each i∈ {1,2}. This completes the proof. �

4. Some remaining open questions

As we suggested in the introduction, this paper represents a beginning in this area. There
are many open questions.

(1) In the uncoupled two-by-two system, one has a total of 4hk solution pairs. For
technical reasons, our proof only gives a smaller number. Is this result exact or can one
find the missing solutions?

(2) Can one obtain the corresponding results for n×n systems?
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(3) Can one obtain corresponding results if the second-order differential operator is
replaced with a fourth-order differential operator with corresponding boundary condi-
tions?

(4) Can one replace the near-diagonal matrix with something more general and use
information on the eigenvalues of the matrix?

(5) Can one find similar results for the corresponding partial differential equation
setting, or at least the case of the radially symmetric Laplacian on the ball?
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