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This paper establishes necessary and sufficient condition for the regularity of a charac-
teristic top boundary point of an arbitrary open subset of RN+1 (N ≥ 2) for the diffusion
(or heat) equation. The result implies asymptotic probability law for the standard N-
dimensional Brownian motion.

1. Introduction and main result

Consider the domain

Ωδ =
{

(x, t)∈RN+1 : |x| < h(t), −δ < t < 0
}

, (1.1)

where δ > 0, N ≥ 2, x = (x1, . . . ,xN )∈RN , t ∈R, h∈ C[−δ,0], h > 0 for t < 0 and h(t) ↓ 0
as t ↑ 0.

For u∈ C2,1
x,t (Ωδ), we define the diffusion (or heat) operator

Du= ut −∆u= ut −
N∑
i=1

uxixi , (x, t)∈Ωδ. (1.2)

A function u∈ C2,1
x,t (Ωδ) is called parabolic in Ωδ if Du= 0 for (x, t)∈Ωδ . Let f : ∂Ω→

R be a bounded function. First boundary value problem (FBVP) may be formulated as
follows.

Find a function u which is parabolic in Ωδ and satisfies the conditions

f∗ ≤ u∗ ≤ u∗ ≤ f ∗ for z ∈ ∂Ωδ , (1.3)

where f∗, u∗ (or f ∗, u∗) are lower (or upper) limit functions of f and u, respectively.
Assume that u is the generalized solution of the FBVP constructed by Perron’s su-

persolutions or subsolutions method (see [1, 6]). It is well known that, in general, the
generalized solution does not satisfy (1.3). We say that a point (x0, t0)∈ ∂Ωδ is regular if,
for any bounded function f : ∂Ω→R, the generalized solution of the FBVP constructed
by Perron’s method satisfies (1.3) at the point (x0, t0). If (1.3) is violated for some f , then
(x0, t0) is called irregular point.
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The principal result of this paper is the characterization of the regularity and irregu-
larity of the origin (�) in terms of the asymptotic behavior of h as t ↑ 0.

We write h(t)= 2(t logρ(t))1/2, and assume that ρ ∈ C[−δ,0], ρ(t) > 0 for −δ ≤ t < 0;
ρ(t) ↓ 0 as t ↑ 0 and

logρ(t)= o
(

log
(|t|)) as t ↑ 0 (1.4)

(see Remark 1.2 concerning this condition). The main result of this paper reads as follows.

Theorem 1.1. The origin (�) is regular or irregular according as

∫ 0− ρ(t)
∣∣ logρ(t)

∣∣N/2
t

dt (1.5)

diverges or converges.

For example, (1.5) diverges for each of the following functions

ρ(t)= ∣∣ log|t|∣∣−1
, ρ(t)= {∣∣ log|t|∣∣ log(N+2)/2∣∣ log|t|∣∣}−1

,

ρ(t)=
{∣∣ log|t|∣∣ log(N+2)/2∣∣ log|t|∣∣ n∏

k=3

logk |t|
}−1

, n= 3,4, . . . ,
(1.6)

where we use the following notation:

log2 |t| = log
∣∣ log|t|∣∣, logn |t| = loglogn−1 |t|, n≥ 3. (1.7)

From another side, (1.5) converges for each function

ρ(t)= ∣∣ log|t|∣∣−(1+ε)
, ρ(t)= {∣∣ log|t|∣∣ log(N+2)/2+ε ∣∣ log|t|∣∣}−1

,

ρ(t)= {∣∣ log|t|∣∣ log(N+2)/2∣∣ log|t|∣∣ log1+ε
3 |t|}−1

,

ρ(t)= {∣∣ log|t|∣∣ log(N+2)/2∣∣ log|t|∣∣ log3 |t| log1+ε
4 |t|}−1

,

(1.8)

and so forth, where ε > 0 is sufficiently small number.
If we take N = 1, then Theorem 1.1 coincides with the result of Petrovsky’s celebrated

paper [6]. From the proof of Theorem 1.1, it follows that if (1.5) converges (in particular,
for any example from (1.8)), then the function u(x, t) which is parabolic in Ωδ , vanishes
on the lateral boundary of Ωδ and is positive on its bottom, cannot be continuous at the
point �, and its upper limit at � must be positive.

It should be mentioned that Wiener-type necessary and sufficient condition for
boundary regularity is proved in [2]. However, it seems impossible to derive Theorem 1.1
from Wiener condition.

As in [6], a particular motivation for the consideration of the domain Ωδ is the prob-
lem about the local asymptotic behavior of the Brownian motion trajectories for the
diffusion processes. We briefly describe the probabilistic counterpart of Theorem 1.1 in
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the context of the multidimensional Brownian motion. Consider the standard N-dimen-
sional Brownian motion

�= [ξ(t)= (x1(t),x2(t), . . . ,xN (t)
)

: t ≥ 0,P•
]
, (1.9)

in which the coordinates of the sample path are independent standard 1-dimensional
Brownian motions and P•(B) is the probability of B as a function of the starting point ξ(0)
of the N-dimensional Brownian path (see [3]). Consider the radial part r(t) = (x2

1(t) +
x2

2(t) + ··· + x2
N (t))1/2 : t ≥ 0 of the standard N-dimensional Brownian path. Blumen-

thal’s 01 law implies that P0[r(t) < h(t), t ↓ 0] = 0 or 1; h is said to belong to the upper
class if this probability is 1 and to the lower class otherwise. The probabilistic analog of
Theorem 1.1 states that if h∈↑ and if t−1/2h∈↓ for small t > 0, then h belongs to the upper
class or to the lower class according as

∫
0+
t−N/2−1hN (t)exp

(
−h2

2t

)
dt (1.10)

converges or diverges. When N = 1, this is well-known Kolmogorov-Petrovsky test. Note
that the integral (1.10) reduces to (1.5) (with coefficient 2N/2) if we replace h2(t) with
−2t logρ(−t). By adapting the examples (1.6) and (1.8), we easily derive that for any
positive integer n > 1, the function

h(t)=
(

2t
[

log2
1
t

+
N + 2

2
log3

1
t

+ log4
1
t

+ ···+ logn−1
1
t

+ (1 + ε) logn
1
t

])1/2

(1.11)

belongs to the upper or to the lower class according as ε > 0 or ε ≤ 0.
Obviously, one can replace the integral (1.10) with the simpler one for the function

h1(t)= t−1/2h(t):

∫
0+
t−1hN1 (t)exp

(
−h2

1

2

)
dt. (1.12)

It should be mentioned that the described probabilistic counterpart of Theorem 1.1
is well known (see survey article [5, page 181]) and there are various known proofs of
the N-dimensional Kolmogorov-Petrovsky test in the probabilistic literature (see [3]).
Recently in [4], a martingale proof of the N-dimensional Kolmogorov-Petrovsky test for
Wiener processes is given.

Remark 1.2. It should be mentioned that we do not need the condition (1.4) for the
proof of the irregularity assertion of Theorem 1.1 and it may be replaced with the weaker
assumption that t log(ρ(t))→ 0 as t ↓ 0. The latter is needed just to make � the top bound-
ary point of Ωδ . For the regularity assertion of Theorem 1.1, the assumption (1.4) makes
almost no loss of generality. First of all, this condition is satisfied for all examples from
(1.6) and (1.8). Secondly, note that the class of functions satisfying (1.4) contains the class
of functions satisfying the following inequality:

ρ(t)≥ ρMC =
∣∣ log(Ct)

∣∣−M (1.13)
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for all small |t| and for some C < 0, M > 1. Since the integral (1.5) is divergent, the func-
tion ρ(t) may not satisfy (1.13) with reversed inequality and for all small |t| because (1.5)
is convergent for each function ρMC (t). Accordingly, the condition (1.13), together with
divergence of (1.5), excludes only pathological functions with the property that in any
small interval −ε < t < 0 they intersect infinitely many times all the functions ρMC , with
C < 0, M > 1. We handle this kind of pathological functions in Section 3 within the proof
of the irregularity assertion. Finally, we have to mention that the assumption (1.4) (or
even (1.13)) makes no loss of generality in the probabilistic context. Indeed, since (1.10)
is divergent, any function h(t)= (−2t logρMC (−t))1/2 with C < 0 and M > 1 belongs to the
lower class. Hence, to get improved lower functions, it is enough to stay in the class of
functions h(t)= (−2t logρ(−t))1/2 with ρ satisfying (1.13) (or (1.4)).

We present some preliminaries in Section 2. The proof of the cheap irregularity part of
Theorem 1.1 is presented in Section 3, while a regularity assertion is proved in Section 4.

2. Preliminary results

Let Ω⊂RN+1 (N ≥ 2) denote any bounded open subset and ∂Ω its topological boundary.
For a given point z0 = (x0, t0) and a positive number ε, define the cylinder

Q
(
z0,ε

)= {z = (x, t) :
∣∣x− x0

∣∣ < ε, t0− ε < t < t0
}
. (2.1)

For the definition of the parabolic boundary �Ω, lateral boundary �Ω, and basic facts
about Perron’s solution, super- and subsolutions of the FBVP, we refer to the paper in [1].
It is a standard fact in the classical potential theory that the boundary point z0 ∈�Ω is
regular if there exists a so-called “regularity barrier” u with the following properties:

(a) u is superparabolic in U =Q(z0,ε)∩Ω for some ε > 0;
(b) u is continuous and nonnegative in U , vanishing only at z0.

It is also a well-known fact in the classical potential theory that in order to prove the
irregularity of the boundary point z0 ∈�Ω, it is essential to construct a so-called irregu-
larity barrier u with the following properties:

(a) u is subparabolic in U =Q(z0,ε)∩Ω for some ε > 0;
(b) u is continuous on the boundary of U , possibly except at z0, where it has a re-

movable singularity;
(c) u is continuous in U\{z0} and

limsup
z→z0, z∈U

u > limsup
z→z0, z∈∂U

u. (2.2)

Obviously, we have

�Ωδ = ∂Ωδ , �Ωδ =
{
z : |x| = h(t), −δ < t ≤ 0

}
. (2.3)

Assume that all the boundary points z ∈�Ω\{�} are regular points. For example, this is
the case if ρ(t) is differentiable for t < 0. Then concerning the regularity or irregularity of
�, we have the following.
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Lemma 2.1. The origin (�) is regular for Ωδ if and only if there exists a regularity barrier u
for � regarded as a boundary point of Ωδ for sufficiently small δ.

The proof is similar to the proof of Lemma 2.1 of [1].

Lemma 2.2. The origin (�) is irregular for Ωδ if and only if there exists an irregularity
barrier u for � regarded as a boundary point of Ωδ for sufficiently small δ.

Proof. The proof of the “if” part is standard (see [6]). Take a boundary function f = u
at the points near � (at � define it by continuity) and f = c at the rest of the boundary
with c > sup|u|. Let u =HΩδ

f be Perron’s solution. Applying the maximum principle to
u− u in domains Ωδ ∩{t < ε < 0} and passing to limit as ε ↑ 0, we derive that u ≥ u in
Ωδ . In view of property (c) of the irregularity barrier, we have discontinuity of u at �.
To prove the “only if” part, take f = −t and let u = HΩδ

f be Perron’s solution. Since all

the boundary points z0 ∈�Ωδ , z0 
= � are regular points, u is continuous in Ωδ\� and in
view of the maximum principle, it is positive in Ωδ . Therefore, u must be discontinuous
at �. Otherwise, it is a regularity barrier and we have a contradiction with Lemma 2.1.
The lemma is proved. �

The next lemma immediately follows from Lemmas 2.1 and 2.2.

Lemma 2.3. Let Ω be a given open set in RN+1 and � ∈�Ω, Ω− 
= ∅, where Ω− = {z ∈
Ω : t < 0}. If Ω− ⊂Ωδ , then from the regularity of � for Ωδ , it follows that � is regular for
Ω. Otherwise speaking, from the irregularity of � for Ω or Ω−, it follows that � is irregular
for Ωδ .

Obviously, “if” parts of both Lemmas 2.1 and 2.2 are true without assuming that the
boundary points z ∈�Ω\{�} are regular points.

3. Proof of the irregularity

First, we prove the irregularity assertion of Theorem 1.1 by assuming that ρ(t) is differ-
entiable for t < 0 and

tρ′(t)
ρ(t)

=O(1) as t ↑ 0. (3.1)

Under these conditions, we construct an irregularity barrier u, exactly as it was done in
[6] for the case N = 1. Consider the function

v(x, t)=−ρ(t)exp
(
− |x|

2

4t

)
+ 1, (3.2)

which is positive in Ωδ and vanishes on �Ωδ . Since 0≤ v ≤ 1 in Ωδ , we have

lim
t↑0

v(0, t)= limsup
z→0, z∈Ωδ

v = 1. (3.3)
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Hence, v satisfies all the conditions of the irregularity barrier besides subparabolicity. We
have

Dv =
(
− ρ′(t)− Nρ(t)

2t

)
exp

(
− |x|

2

4t

)
. (3.4)

Since ρ(t) ↓ 0 as t ↑ 0, Dv > 0 and accordingly, it is a superparabolic function. We consider
a function w with the following properties

Dw =−Dv, w(x, t) < 0 in Ωδ (3.5)
∣∣w(0, t)

∣∣≤ 1
2

for − δ < t < 0. (3.6)

Clearly, the function u(x, t)=w(x, t) + v(x, t) would be a required irregularity barrier. As
a function w, we choose a particular solution of the equation from (3.5):

w(x, t)=− 1
(4π)N/2

∫
Ωδ\Ωt

exp
(−|x− y|2/4(t− τ)

)
(t− τ)N/2

Dv(y,τ)dydτ. (3.7)

Since Dv > 0 in Ωδ , w is negative and we only need to check that for sufficiently small δ,
(3.6) is satisfied. From (3.1) it follows that

|Dv| < C1

∣∣∣∣ρ(t)
t

∣∣∣∣exp
(
− |x|

2

4t

)
, (3.8)

where C1 = C+N/2 and C is a constant due to (3.1). Hence,

∣∣w(0, t)
∣∣ < C1

(4π)N/2

∫ t

−δ
ρ(τ)

|τ|(t− τ)N/2

∫
B((4τ logρ(τ))1/2)

exp
(
− |y|2t

4(t− τ)τ

)
dydτ, (3.9)

where B(R)= {y ∈RN : |y| < R}. Changing the variable in the second integral, we have

∣∣w(0, t)
∣∣ < C1

(4π)N/2

∫ t

−δ
ρ(τ)

|τ|(t− τ)N/2

(
τ

t

)N/2∫
B((4t logρ(τ))1/2)

exp
(
− |y|2

4(t− τ)

)
dydτ.

(3.10)

We split
∫ t
−δ into two parts as

∫ t
2t +

∫ 2t
−δ and estimate the first part as follows:

∣∣∣∣
∫ t

2t

ρ(τ)
τ(t− τ)N/2

(
τ

t

)N/2∫
B((4t logρ(τ))1/2)

exp
(
− |y|2

4(t− τ)

)
dydτ

∣∣∣∣
< 2N

∣∣∣∣
∫ t

2t

ρ(τ)
τ

(
τ

t

)N/2∫
RN

exp
(−|y|2)dydτ

∣∣∣∣
< 2N (2π)N/2

∫ t

2t

ρ(τ)
|τ| dτ.

(3.11)
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From the convergence of the integral (1.5), it follows that the right-hand side of (3.11)
converges to zero as t ↑ 0. We also have

∣∣∣∣
∫ 2t

−δ
ρ(τ)

τ(t− τ)N/2

(
τ

t

)N/2∫
B((4t logρ(τ))1/2)

exp
(
− |y|2

4(t− τ)

)
dydτ

∣∣∣∣
< ωN

∣∣∣∣
∫ 2t

−δ
ρ(τ)
τ

(
τ

t

)N/2( 2
−τ

)N/2(
4t logρ(τ)

)N/2
dτ
∣∣∣∣

= 23N/2ωN

∫ 2t

−δ
ρ(τ)

∣∣ logρ(τ)
∣∣N/2

|τ| dτ,

(3.12)

where ωN is the volume of the unit ball inRN . Hence, from the convergence of the integral
(1.5), it follows that |w(0, t)| < 1/2 for −δ < t < 0 if δ is sufficiently small.

Now we need to remove the additional assumptions imposed on ρ. To remove the
differentiability assumption, consider a function ρ1(t) such that ρ1 is C1 for t < 0, ρ1 ↓ 0 as
t ↑ 0 and ρ(t) < ρ1(t) < 2ρ(t) for−δ ≤ t < 0. Then we consider a domain Ω1

δ by replacing ρ
with ρ1 in Ωδ . Since the integral (1.5) converges for ρ, it also converges for ρ1. Therefore,
� is irregular point regarded as a boundary point of Ω1

δ . Since Ω1
δ ⊂Ωδ from Lemma 2.3,

it follows that � is irregular point regarded as a boundary point of Ωδ .
We now prove that the assumption (3.1) imposed on ρ may be also removed. In fact,

exactly this question was considered in [6]. However, there is a point which is not clearly
justified in [6] and for that reason, we present a slightly modified proof of this assertion.

Consider a one-parameter family of curves

ρC(t)= ∣∣ log(Ct)
∣∣−3

, C < 0, C−1 < t < 0. (3.13)

Obviously, for each point (ρ(t), t) on the quarter plane, there exists a unique value

C = C(t)= t−1 exp
(− ρ−1/3(t)

)
, (3.14)

such that ρC(t) passes through the point (ρ(t), t). One cannot say anything about the
behavior of C(t) as t ↑ 0. But it is clear that tC(t) ↓ 0 as t ↑ 0. It is also clear that if C1 <
C2 < 0, then ρC1 (t) > ρC2 (t) for C−1

1 < t < 0. It may be easily checked that for any C < 0,
the function ρC(t) satisfies all the conditions which we used to prove the irregularity of
�. Accordingly, � is irregular point regarded as a boundary point of Ωδ with ρ replaced
by ρC. By using Lemma 2.3, we conclude that if for some C < 0 and t0 < 0,

ρ(t)≤ ρC(t) for t0 ≤ t ≤ 0, (3.15)

then � must be irregular regarded as a boundary point of Ωδ . Hence, we need only to
consider the function ρ with the property that for arbitrary C < 0 and t0 < 0, the inequal-
ity (3.15) is never satisfied. Since ρC(C−1 + 0) = +∞, it follows that within the interval
(−δ,0), our function ρ(t) must intersect all the functions ρC(t) with C ≤ −δ−1. There-
fore, at least for some sequence {tn}, we have C(tn) → −∞ as tn ↑ 0. In [6], Petrovsky
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introduced the set M formed by all values of t (0 > t > −δ) with the following property
(which is called “condition C” in [6]): the curve ρC(t) which passes through the point
(ρ(t), t) cannot intersect the curve ρ = ρ(t) for any smaller value of t > −δ. Denote by
M the closure of M. It is claimed in [6] that “C(t) monotonically decreases as t ↑ 0 and
t ∈M; moreover, C(t) takes equal values at the end points of every interval forming the
complement of M.”

We construct a function ρ which shows that this assertion is, in general, not true. Con-

sider two arbitrary negative and strictly monotone sequences {C(n)
1 }, {C(n)

2 }, n= 0,1,2, . . .
such that C0

1 = C0
2 >−δ−1 and

C(n)
1 ↓ −∞, C(n)

2 ↑ 0 as n ↑ ∞. (3.16)

We form by induction a new sequence {Cn} via sequences {C(n)
1 } and {C(n)

2 }:

C0 = C2 = C(0)
1 , C1 = C(1)

1 , C3 = C(1)
2 ,

C4n = C4n−3, C4n+1 = C(n+1)
1 , C4n+2 = C4n−1,

C4n+3 = C(n+1)
2 , n= 1,2, . . . .

(3.17)

The sequence {Cn} has arbitrarily large oscillations between −∞ and 0 as n ↑ ∞. Our
purpose is to construct a function ρ(t), −δ < t < 0 in such a way that the related function
C = C(t) will satisfy

C
(
an
)= Cn, n= 0,1,2, . . . (3.18)

at some points an. We now construct the sequence {an} by induction:

a0 =−δ, 0 > an+1 > max
(
an;

Cn

Cn+1
an;

1
(n+ 1)Cn+1

)
, n= 0,1,2, . . . . (3.19)

Having {an}, we define the values of the function ρ at the end-points of intervals (an,
an+1), n= 0,1,2, . . ., as

ρ
(
an
)= ∣∣ log

(
Cnan

)∣∣−3
, n= 0,1,2, . . . . (3.20)

From (3.19) it follows that ρ(an) ↓ 0 as n ↑ ∞. Having the values {ρ(an)}, we construct
monotonically decreasing function ρ(t) as follows: ρ is C1 for −δ ≤ t < 0 and if Cn+1 < Cn

(resp., Cn+1 > Cn) then within the interval [an;an+1], ρ(t) intersects each function x =
ρC(t) with Cn+1 ≤ C ≤ Cn (resp., with Cn ≤ C ≤ Cn+1) just once, and moreover at the
intersection point, we have

ρ′(t)≥ (resp., ≤)ρ′C(t). (3.21)

Obviously, it is possible to make this construction. Clearly, the related function C = C(t)
satisfies (3.18). It has infinitely large oscillations near 0 and for arbitrary C satisfying
−∞≤ C ≤ 0, there exists a sequence tn ↑ 0 as n ↑ ∞ such that C(tn)→ C. One can easily



Ugur G. Abdulla 189

see that according to the definition of the set M given in [6], we have

M =
+∞⋃
n=0

{(
a4n,a4n+1

]∪ (a4n+2,a4n+3
]}
. (3.22)

In view of our definition, we have C4n+1 < C4n, C4n+3 > C4n+2, n= 0,1,2, . . . . Accordingly,
C(t) is neither monotonically increasing nor monotonically decreasing function as t ↑ 0
and t ∈M.

We now give a modified definition of the set M. It is easier to define the set M in terms
of the function C(t):

M = {t ∈ [−δ,0) : C1(t)= C(t)
}

, (3.23)

where C1(t)=min−δ≤τ≤t C(t). Denote by (M)c the complement of M. Since (M)c is open
set, we have

(
M
)c =⋃

n

(
t2n−1, t2n

)
. (3.24)

From the definition, it follows that C(t) monotonically decreases for t ∈M and, more-
over, we have

C
(
t2n−1

)= C
(
t2n
)
. (3.25)

Indeed, we take t′, t′′ ∈M with t′ < t′′. Since C1(t′)= C(t′) and C1(t′′)= C(t′′), it follows
that C(t′′) ≤ C(t′). For t′, t′′ ∈M, the same conclusion follows in view of continuity of
C(t). To prove (3.25), first note that since t2n−1, t2n ∈M, we have C1(t2n−1) = C(t2n−1)
and C1(t2n)= C(t2n). If (3.25) is not satisfied, then we have C1(t2n−1) > C1(t2n). Since C1

is continuous function, there exists ε ∈ (0, t2n − t2n−1) such that C1(t2n − ε) < C1(t2n−1).
Let C1(t2n − ε) = C(θ). Obviously, θ ∈ (t2n−1, t2n − ε] and C1(θ) = C(θ). But this is the
contradiction with the fact that (t2n−1, t2n)∈ (M)c. Hence, (3.25) is proved.

If we apply the modified definition of M to the example constructed above, then one
can easily see that

M =
+∞⋃
n=0

[
a4n,a4n+1

]
,

(
M
)c = +∞⋃

n=0

(
a4n+1,a4(n+1)

)
,

C
(
a4n+1

)= C(n+1)
1 = C

(
a4(n+1)

)= C4(n+1)−3 = C4n+1 ↓ −∞ as n ↑ ∞.

(3.26)

Now we define the new function ρ1(t) as follows:
(a) ρ1(t)= ρ(t) for t ∈M;
(b) ρ1(t)= | log(C(t2n−1)t)|−3 for t2n−1 < t < t2n.

Equivalent definition might be given simply by taking ρ1(t)= | log(C1(t)t)|−3,−δ ≤ t < 0.
Otherwise speaking, the function C(t) defined for ρ1(t) via (3.14) coincides with C1(t).
Obviously, ρ1 is continuous function satisfying ρ1(t)≥ ρ(t) and possibly ρ1(t) 
= ρ(t) on a
numerate number of intervals (t2n−1, t2n). This new function may be nondifferentiable at
the points t = t2n−1, t2n. Therefore, we consider another function ρ2(t) with the following
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properties:
(a) ρ2 is C1 for t < 0;
(b) ρ2(t)≥ ρ1(t);
(c) ρ2(t) satisfies everywhere weak condition C: the curve x = ρC(t) which passes

through the point (ρ2(t), t) may not satisfy the condition ρC(t) < ρ2(t) for any
smaller value of t >−δ;

(d) for arbitrary ε with −δ < ε < 0, we have

∣∣∣∣
∫ ε
−δ

1
t

(
ρ1(t)

∣∣ logρ1(t)
∣∣N/2− ρ2(t)

∣∣ logρ2(t)
∣∣N/2)dt

∣∣∣∣ < 1. (3.27)

Obviously, this function may be constructed. Again, it is easier to express this construc-
tion in terms of the related function C(t). Having a function C1(t), we consider a function
C2(t) which is C1 for t < 0, monotonically decreasing, C2(t)≤ C1(t) for all−δ ≤ t ≤ 0 and
tC2(t)→ 0 as t ↑ 0. Then we consider a function ρ2(t) as

ρ2(t)= ∣∣ log
(
C2(t)t

)∣∣−3
, −δ < t < 0. (3.28)

Monotonicity of C2(t) is equivalent to the property (c) of ρ2. Finally, (d) will be achieved
by choosing C2(t) close to C1(t). The rest of the proof coincides with Petrovsky’s proof
from [6]. First, it is easy to show that ρ2(t) satisfies (3.1). We have

∣∣∣∣ tρ
′
C(t)

ρC(t)

∣∣∣∣=
∣∣∣∣ 3

log(Ct)

∣∣∣∣, (3.29)

and the right-hand side is arbitrarily small for sufficiently small Ct. From the property
(c) of the function ρ2(t), it follows that

∣∣ρ′2(t)
∣∣≤ ∣∣ρ′C(t)

∣∣=
∣∣∣∣ 3

t log4(Ct)

∣∣∣∣, (3.30)

provided that C = C2(t) or equivalently (3.28) is satisfied. Hence, we have

∣∣∣∣ tρ
′
2(t)

ρ2(t)

∣∣∣∣=
∣∣∣∣ 3

log
(
C2t

)∣∣∣∣. (3.31)

Since tC2 → 0 as t ↑ 0, the right-hand side is arbitrarily small for small |t|.
Consider a domain Ω2

δ by replacing ρ with ρ2 in Ωδ . Since ρ2(t)≥ ρ1(t), we have Ω2
δ ⊂

Ωδ . From Lemma 2.3, it follows that if � is an irregular point regarded as a boundary
point of Ω2

δ , then it is also irregular point regarded as a boundary point of Ωδ .
It remains only to show that the convergence of the integral (1.5) with ρ implies the

convergence of the integral (1.5) with ρ = ρ2. In view of the property (d) of ρ2, it is enough
to show the convergence of the integral (1.5) with ρ = ρ1. Having a modified definition
of the set M, the elegant proof given in [6] applies with almost no change. The proof of
the irregularity assertion is completed.
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4. Proof of the regularity

First, we prove the regularity assertion of Theorem 1.1 by assuming that ρ(t) is differen-
tiable for t < 0, ρ(t) satisfies (3.1), and

ρ(t)=O
(∣∣ log|t|∣∣−1

)
, as t ↑ 0. (4.1)

As in [6], the proof of the regularity of � is based on the construction of the one-
parameter family of superparabolic functions uh(x, t), −δ < h < 0 with the following
properties:

(a) |1−uh(x,−δ)| ≤ 1/2 and |1−uh(x,−δ)| → 0 uniformly in x as h→ 0;
(b) uh(x,h)→ 0 uniformly in x as h→ 0;
(c) uh(x, t)≥ 0 in Ωδ\Ωh.

The existence of uh with these properties implies the existence of the regularity barrier for
� regarded as a boundary point of Ωδ . Indeed, first we can choose a function ρ∗(t) such
that ρ∗(t) < ρ(t) for −δ ≤ t < 0, and moreover ρ∗ satisfies all the restrictions imposed on
ρ. One can easily show that it is possible to choose such a function. Then we consider a
domain Ω∗

δ by replacing ρ with ρ∗ in Ωδ . Let u∗ be Perron’s solution of FBVP in Ω∗
δ with

boundary function

f (x, t)=



1
2

if t =−δ,

0 if t >−δ.
(4.2)

For the domain Ω∗
δ , there exists a one-parameter family of supersolutions u∗h with the

same properties as uh. Obviously, u∗h is an upper barrier for u∗. Accordingly, u∗ vanishes
continuously at �. From the strong maximum principle it follows that u∗ is positive in
Ω∗

δ . Since Ωδ ⊂Ω∗
δ , it follows that u∗ is the regularity barrier for � regarded as a bound-

ary point of Ωδ .
We construct uh. Consider a function v from (3.2) and let w be some solution of the

equation

Dw = Nρ(t)
2t

exp
(
− |x|

2

4t

)
. (4.3)

From (3.4), it follows that v+w is a superparabolic function. As a function w, we consider
the following particular solution of (4.3):

w(x, t)= 1
(4π)N/2

∫
Ωδ\Ωt

exp
(−|x−y|2/4(t−τ)

)
(t− τ)N/2

Nρ(τ)
2τ

exp
(
− |y|

2

4τ

)
dydτ, (x, t)∈Ωδ.

(4.4)

We have w ≤ 0. We estimate w(0, t) for small values of |t|. We have

w(0, t)= N

2(4π)N/2

∫ t

−δ
ρ(τ)

τ(t− τ)N/2

∫
B((4τ logρ(τ))1/2)

exp
(
− |y|2t

4(t− τ)τ

)
dydτ. (4.5)
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Changing the variable in the second integral, we have

w(0, t)= N

2(4π)N/2

∫ t

−δ
ρ(τ)

τ(t− τ)N/2

(
τ

t

)N/2∫
B((4t logρ(τ))1/2)

exp
(
− |y|2

4(t− τ)

)
dydτ. (4.6)

We split (−δ, t) into two parts (−δ, tµ(t)) and (tµ(t), t), where µ(t) is a positive function
satisfying µ(t)→ +∞, tµ(t)→ 0 as t ↑ 0. For a while, we keep the function µ(t) free on our
account. Its choice will be clear during the proof. Consider the integral

I =
∫ tµ(t)

−δ
ρ(τ)

τ(t− τ)N/2

(
τ

t

)N/2∫
B((4t logρ(τ))1/2)

exp
(
− |y|2

4(t− τ)

)
dydτ. (4.7)

Since µ(t)→ +∞, we have −δ ≤ τ ≤ tµ(t)� 2t and |t− τ| >−(1/2)τ, if |t| is sufficiently
small. Hence,

∣∣∣∣− |y|2
4(t− τ)

∣∣∣∣ <
∣∣∣∣4t logρ(τ)

2τ

∣∣∣∣≤
∣∣∣∣2logρ(τ)

µ(t)

∣∣∣∣. (4.8)

To make the right-hand side small, we assume here that µ(t) ≥ k| logρ(t)|, where k is a
sufficiently large positive number. Then we have

∣∣∣∣− |y|2
4(t− τ)

∣∣∣∣ < 2
k

logρ(τ)
logρ(t)

<
2
k
. (4.9)

Thus, for any ε > 0, we can choose k so large that

exp
(
− |y|2

4(t− τ)

)
> 1− ε, (4.10)

which implies that

(1− ε)ωN

∫ tµ(t)

−δ
ρ(τ)
|τ|

(
τ

t

)N/2(4t logρ(τ)
t− τ

)N/2
dτ

≤ |I| ≤ ωN

∫ tµ(t)

−δ
ρ(τ)
|τ|

(
τ

t

)N/2(4t logρ(τ)
t− τ

)N/2
dτ

(4.11)

or

(1− ε)ωN4N/2
∫ tµ(t)

−δ
ρ(τ)

∣∣ logρ(τ)
∣∣N/2

|τ|
( |τ|
t− τ

)N/2
dτ

≤ |I| ≤ ωN4N/2
∫ tµ(t)

−δ
ρ(τ)

∣∣ logρ(τ)
∣∣N/2

|τ|
( |τ|
t− τ

)N/2
dτ.

(4.12)
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Since −δ ≤ τ ≤ tµ(t)≤ kt logρ(t), we have

1
1− k logρ(t)

≤ t

t− τ
≤ 0, (4.13)

which implies that

lim
t→0

|τ|
t− τ

= 1. (4.14)

Hence, we have the following asymptotic relation:

I

ωN4N/2
∫ tµ(t)
−δ

(
ρ(τ)

∣∣ logρ(τ)
∣∣N/2/τ)dτ −→ 1 as t ↑ 0. (4.15)

Since the integral (1.5) is divergent, we easily get the following asymptotic relation:

w(0, t)(
NωN/2πN/2

)∫ t
−δ
(
ρ(τ)

∣∣ logρ(τ)
∣∣N/2/τ)dτ −→ 1 as t ↑ 0, (4.16)

provided that the following two integrals remain bounded as t ↑ 0:

I1 =
∫ t

tµ(t)

ρ(τ)
τ(t− τ)N/2

(
τ

t

)N/2∫
B((4t logρ(τ))1/2)

exp
(
− |y|2

4(t− τ)

)
dydτ,

I2 =
∫ t

tµ(t)

ρ(τ)
∣∣ logρ(τ)

∣∣N/2
|τ| dτ.

(4.17)

We split I2 into the sum of two integrals along the intervals (tµ(t),Mt) and (Mt, t), where
M > 1 is some number which we keep free on our account. For sufficiently small |t|, we
have

∫ t

Mt

ρ(τ)
∣∣ logρ(τ)

∣∣N/2
|τ| dτ <

∫ t

Mt

dτ

|τ| = logM,

∫Mt

tµ(t)

ρ(τ)
∣∣ logρ(τ)

∣∣N/2
|τ| dτ <

∫Mt

tµ(t)

ρ1/2(τ)
|τ| = I3,

(4.18)

and we still need to prove that I1 and I3 remain bounded as t ↑ 0. This will be proved
below when we prove the boundedness of the integrals I4 and I5.

We now estimate w inside Ωδ for small |t| and x 
= 0. As before, we split the time
integral into the sum of three integrals along the intervals (−δ, tµ(t)), (tµ(t),Mt) and
(Mt, t). Since

|x− y|2
4(t− τ)

+
|y|2
4τ

= |x|
2

4t
+
|τx− ty|2
4tτ(t− τ)

, (4.19)
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we have

I4 = N

2(4π)N/2

∫ t

Mt

ρ(τ)
τ(t− τ)N/2

∫
B((4τ logρ(τ))1/2)

exp
(
− |τx− ty|2

4tτ(t− τ)

)
dydτ exp

(
− |x|

2

4t

)

= N exp
(−|x|2/4t)

2(4π)N/2

∫ t

Mt

ρ(τ)
τ(t−τ)N/2

∫
B((4τ logρ(τ))1/2)

exp

(
−
∣∣(τ/t)1/2x−(t/τ)1/2y

∣∣2

4(t− τ)

)
dydτ.

(4.20)

Introducing the new variable (t/τ)1/2y instead of y, we have

I4= N exp
(−|x|2/4t)

2(4π)N/2

∫ t

Mt

ρ(τ)
τ(t−τ)N/2

(
τ

t

)N/2∫
B((4t logρ(τ))1/2)

exp

(
−
∣∣(τ/t)1/2x−y

∣∣2

4(t−τ)

)
dydτ.

(4.21)

We also have

1
(t− τ)N/2

∫
B((4t logρ(τ))1/2)

exp

(
−
∣∣(τ/t)1/2x− y

∣∣2

4(t− τ)

)
dy

≤ 2N
∫
RN

exp
(−|z|2)dz = (4π)N/2.

(4.22)

Hence,

∣∣I4
∣∣≤ 1

2
N exp

(
− |x|

2

4t

)∫ t

Mt

ρ(τ)
|τ|

(
τ

t

)N/2
dτ

≤ NMN/2

2ρ(t)

∫ t

Mt

ρ(τ)
|τ| dτ ≤

1
2
NMN/2 logM

ρ(Mt)
ρ(t)

.

(4.23)

From (3.1), it follows that

log
ρ(Mt)
ρ(t)

=−
∫ t

Mt

ρ′(τ)
ρ(τ)

dτ ≤−C
∫ t

Mt

dτ

τ
= logMC, (4.24)

where C is a constant due to (3.1). Therefore, we have

∣∣I4
∣∣≤ 1

2
NMN/2+C logM. (4.25)

We now estimate the integral

I5 = N

2(4π)N/2

∫Mt

tµ(t)

ρ(τ)
τ(t− τ)N/2

∫
B((4τ logρ(τ))1/2)

exp
(
− |x− y|2

4(t− τ)
− |y|

2

4τ

)
dydτ

= N

2(4π)N/2

∫Mt

tµ(t)

ρ(τ)
τ(t− τ)N/2

∫
B((4τ logρ(τ))1/2)

exp
(
− t|y|2 + τ|x|2− 2τ〈x, y〉

4τ(t− τ)

)
dydτ,

(4.26)
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where 〈x, y〉 = ∑N
i=1 xi yi. Assuming that M > 2, from τ ≤ Mt, it follows that t − τ >

(1/2)|τ|. Therefore, we have

− t|y|2 + τ|x|2− 2τ〈x, y〉
4τ(t− τ)

<
〈x, y〉

2(t− τ)
<
|x||y|
|τ| <

4
(
t log

(
ρ(t)

)
τ log

(
ρ(τ)

))1/2

|τ|

≤ 4
(
t logρ(t)
τ logρ(τ)

)1/2∣∣ logρ(τ)
∣∣.

(4.27)

To estimate (t logρ(t)/τ logρ(τ))1/2, we first observe that

d
(
τ logρ(τ)

)
dτ

= logρ(τ) +
τρ′(τ)
ρ(τ)

. (4.28)

Since the second term is bounded function, it follows that the right-hand side is negative
for small |τ| and accordingly, τ logρ(τ) is decreasing function. From τ ≤Mt, it follows
that

t logρ(t)
τ logρ(τ)

≤ 1
M

logρ(t)
logρ(Mt)

. (4.29)

We have already proved that ρ(Mt)≤MCρ(t). Therefore, we have

1≥ logρ(Mt)
logρ(t)

≥ C logM + logρ(t)
logρ(t)

−→ 1 as t ↑ 0. (4.30)

Hence,

lim
t↑0

1
M

logρ(t)
logρ(Mt)

= 1
M

, (4.31)

and for arbitrary small ε > 0, we have

t logρ(t)
τ logρ(τ)

≤ 1
M− ε , for tµ(t) < τ <Mt, (4.32)

if |t| is sufficiently small. Finally, we have

− t|y|2 + τ|x|2− 2τ〈x, y〉
4τ(t− τ)

<− 4
(M− ε)1/2

logρ(τ) for tµ(t) < τ <Mt. (4.33)

It follows that

∣∣I5
∣∣ < NωN

2(4π)N/2

∫Mt

tµ(t)

ρ1−4(M−ε)−1/2
(τ)

|τ|(− (1/2)τ
)N/2 (4τ logρ(τ)

)N/2
dτ

= NωN

2(π/2)N/2

∫Mt

tµ(t)

ρ1−4(M−ε)−1/2
(τ)
∣∣ logρ(τ)

∣∣N/2
|τ| dτ.

(4.34)
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At this point we make precise choice of the number M. Since for arbitrary ε > 0,

ρε(τ)
∣∣ logρ(τ)

∣∣N/2 −→ 0, as τ −→ 0, (4.35)

we can reduce the boundedness of |I5| to the boundedness of |I3| if we choose M such
that

1− 4
(M− ε)1/2

>
1
2

or M > 64 + ε. (4.36)

As in [6], we fix the value M = 65. Hence, for sufficiently small |t|, we have

∣∣I5
∣∣ < NωN

2(π/2)N/2

∫ 65t

tµ(t)

ρ1/2(τ)
|τ| dτ. (4.37)

Applying (4.1), we have

∫ 65t

tµ(t)

ρ1/2(τ)
|τ| dτ < C

∫ 65t

tµ(t)

dτ

|τ|∣∣ log|τ|∣∣1/2

= 2C
(∣∣ log|65t|∣∣1/2−∣∣ log

∣∣tµ(t)
∣∣∣∣1/2

)

= 2C
(

logµ(t)− log65
)

∣∣ log|65t|∣∣1/2
+
∣∣ log

∣∣tµ(t)
∣∣∣∣1/2 ,

(4.38)

where C is a constant due to (4.1). Accordingly,

lim
t↑0

∫ 65t

tµ(t)

ρ1/2(τ)
|τ| dτ = 0, (4.39)

provided that

lim
t↑0

logµ(t)∣∣ log|65t|∣∣1/2 = 0. (4.40)

We finally estimate the integral

I6 = N

2(4π)N/2

∫ tµ(t)

−δ
ρ(τ)

τ(t− τ)N/2

∫
B((4τ logρ(τ))1/2)

exp
(
− |x− y|2

4(t− τ)
− |y|

2

4τ

)
dydτ

= N

2(4π)N/2

∫ tµ(t)

−δ
ρ(τ)

τ(t−τ)N/2

∫
B((4τ logρ(τ))1/2)

exp
(
− |y|2t

4(t−τ)τ

)
exp

(
−|x|

2−2〈x, y〉
4(t− τ)

)
dydτ.

(4.41)

We are going to prove that this integral is close to the corresponding integral for w(0, t):

N

2(4π)N/2

∫ tµ(t)

−δ
ρ(τ)

τ(t− τ)N/2

∫
B((4τ logρ(τ))1/2)

exp
(
− |y|2t

4(t− τ)τ

)
dydτ. (4.42)
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For that purpose, we have to show that the term exp(−(|x|2− 2〈x, y〉)/4(t− τ)) is close
to 1 for small |t|. If |x| ≥ |y|, then we have

∣∣∣∣ |x|2− 2〈x, y〉
4(t− τ)

∣∣∣∣ < 3|x||x|
2|τ| < 6

∣∣∣∣ t logρ(t)
τ

∣∣∣∣≤ 6
∣∣∣∣ t logρ(t)

tµ(t)

∣∣∣∣≤ 6
k

, (4.43)

and the right-hand side is small if k is sufficiently large. If |x| ≤ |y|, then we have

∣∣∣∣ |x|2− 2〈x, y〉
4(t− τ)

∣∣∣∣ < 3|x||y|
2|τ| <

∣∣∣∣∣3
(
4t logρ(t)

)1/2(
4τ logρ(τ)

)1/2

2τ

∣∣∣∣∣
≤ 6

(
t logρ(t) logρ(τ)

tµ(t)

)1/2

≤ 6
(

log2 ρ(t)
µ(t)

)1/2

.

(4.44)

We see here that in order to make the right-hand side small, the restriction µ(t) ≥
k| logρ(t)| is not enough. We are forced to assume that µ(t) ≥ k log2 ρ(t), where k is the
sufficiently large positive number. Under this condition, we have

∣∣∣∣ |x|2− 2〈x, y〉
4(t− τ)

∣∣∣∣ < 6
k1/2

for |x| ≤ |y|. (4.45)

Hence, in both cases |(|x|2− 2〈x, y〉)/4(t− τ)| is sufficiently small for small |t|, provided
that the constant k is chosen large enough. At this point, we make precise choice of the
function µ(t). We take µ(t)= k log2 ρ(t) and check that (4.40) is satisfied. We have

∣∣ logµ(t)
∣∣∣∣ log|65t|∣∣1/2 ≤

logk+ 2log
∣∣ logρ(t)

∣∣∣∣ log|65t|∣∣1/2 . (4.46)

Applying l’Hopital’s rule and (3.1), we derive that

lim
t→0

log2∣∣ logρ(t)
∣∣∣∣ log|65t|∣∣ = lim

t→0

2 log
∣∣ logρ(t)

∣∣∣∣ logρ(t)
∣∣ tρ′(t)

ρ(t)
= 0. (4.47)

Therefore, (4.40) is satisfied. Hence, we proved that

w(x, t)
w(0, t)

−→ 1 as t ↑ 0 uniformly for all x with (x, t)∈Ωδ. (4.48)
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Consider a function

uh(x, t)= v(x, t) +w(x, t)
supΩδ\Ωh

∣∣w(x, t)
∣∣ + 1. (4.49)

As in [6], we can check that uh satisfies the conditions (a), (b), and (c) formulated at the
beginning of the proof. Accordingly, � is a regular point regarded as a boundary point
of Ωδ .

(a) We have |v| < 1 in Ωδ , w(x,−δ)= 0 and w(0, t)→−∞ as t ↑ 0. This implies that

uh(x,−δ)−→ 1 as h ↓ 0 uniformly for x. (4.50)

(b) We have

w(0, t)(
NωN/2πN/2

)∫ t
−δ
(
ρ(τ)

∣∣ logρ(τ)
∣∣N/2/τ)dτ −→ 1 as t ↑ 0,

∫ t

−δ
ρ(τ)

∣∣ logρ(τ)
∣∣N/2

τ
dτ −→−∞ as t ↑ 0,

w(x, t)
w(0, t)

−→ 1 as t ↑ 0 uniformly for all x with (x, t)∈Ωδ.

(4.51)

From these three conditions, it follows that

uh(x,h)−→ 0 as h ↑ 0 uniformly in x. (4.52)

(c) uh(x, t)≥ 0 in Ωδ\Ωh since v ≥ 0 in Ωδ\Ωh.
We now show that the regularity assertion of Theorem 1.1 is true without additional

restrictions imposed on ρ. The differentiability assumption may be removed exactly as
we did in Section 3. Assumption (4.1) may be removed exactly like Petrovsky did in [6].
Indeed, first of all, from the proof given above, it follows that � is regular regarded as
a boundary point of Ωδ with ρ(t) = | log|t||−1. Therefore, from the Lemma 2.3, it fol-
lows that if ρ(t) satisfies ρ(t) ≥ | log|t||−1 for all sufficiently small |t|, then � is regular
regarded as a boundary point of Ωδ . Hence, assuming that (4.1) is not satisfied, we need
only to consider functions ρ(t) which has infinitely many intersections with the graph of
the function ρ(t) = | log|t||−1 at any small interval (ε,0) with ε < 0. In [6], it is proved
that under this condition the function ρ1(t) =min{ρ(t);| log|t||−1} makes the integral∫ 0−(ρ1(t)/t)dt divergent. It follows that the integral

∫ 0−(ρ1(t)| logρ1(t)|N/2/t)dt is also di-
vergent. The function ρ1 satisfies (4.1), and therefore � is regular regarded as a boundary
point of Ωδ with ρ replaced by ρ1. Since ρ1 ≤ ρ, from Lemma 2.3, it follows that � is reg-
ular regarded as a boundary point of Ωδ as well. Finally, to remove (3.1), we can use the
condition (1.4). Indeed, applying l’Hopital’s rule, we have

0= lim
t→0

logρ(t)
log|t| = lim

t→0

tρ′(t)
ρ(t)

. (4.53)

Theorem 1.1 is proved.
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