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The disturbance on the free surface of the liquid when the liquid-filled tanks are excited is called sloshing. This paper examines
the nonlinear sloshing response of the liquid free surface in partially filled two-dimensional rectangular tanks using finite element
method. The liquid is assumed to be inviscid, irrotational, and incompressible; fully nonlinear potential wave theory is considered
and mixed Eulerian-Lagrangian scheme is adopted. The velocities are obtained from potential using least square method for
accurate evaluation. The fourth-order Runge-Kutta method is employed to advance the solution in time. A regridding technique
based on cubic spline is employed to avoid numerical instabilities. Regular harmonic excitations and random excitations are used
as the external disturbance to the container. The results obtained are compared with published results to validate the numerical
method developed.

1. Introduction

It is common everyday knowledge to each of us that any small
container filled with liquid must be moved or carried very
carefully to avoid spills. For example, one has to be careful
while carrying a cup of coffee while moving, because the
motion of the person makes coffee spill. Such a motion on
the free surface of the liquid, due to external excitation in the
liquid-filled containers, is called sloshing. Sloshing is likely
to be seen whenever we have a liquid with a free surface in
the presence of gravity. At equilibrium the free surface of the
liquid is static and coincideswith a gravitational equipotential
surface. When the surface is perturbed, an oscillation is set
up in which the energy oscillates between kinetic energy
and gravitational potential energy. The phenomenon called
sloshing occurs in a variety of engineering applications such
as sloshing in liquid-propellant launch vehicles, sloshing
in liquids used in industries to store oil, water, chemicals,
liquefied natural gases, and so forth, and sloshing in the
nuclear reactors of pool type, nuclear fuel storage tanks
under earthquake. The liquid sloshing may cause huge loss
of human, economic, and environmental resources owing

to unexpected failure of the container; for example the
spillage of toxic chemicals stored in tanks in industries can
cause contamination of soil and the environment. Thus,
understanding the dynamic behaviour of liquid free surface
is essential. As a result, the problem of sloshing has attracted
many researchers and engineers targeting to understand the
complex behaviour of sloshing and to design the structures to
withstand its effects.

Abundant research has been made on the sloshing phe-
nomenon and the literature is vast with wide varieties of
numerical methods, analytical solutions, and experiments.
The position of the free surface of liquid is not known a
priori and obeys a dynamic boundary condition which is
nonlinear andmakes the problem of sloshing that a nonlinear
boundary value problem. Although the sloshing problem is
nonlinear, by assuming the free-surface elevation to be small
and applying the linearized free-surface boundary condition,
a linear theory of sloshing is developed [1, 2]. This linear
theory is acceptable in few cases when the amplitude of
external excitation is small and not in the neighborhood
of the sloshing natural frequency. When the above men-
tioned conditions do not hold, linear theory fails to predict
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the sloshing response accurately. Hence nonlinear analysis
becomes inevitable for accurate and reliable evaluation of
liquid sloshing.

Nonlinear sloshing problem is difficult to solve analyti-
cally because of its nonlinear boundary conditions implying
a numerical modeling is necessary. Faltinsen [3, 4] solved
the nonlinear sloshing problem numerically and derived the
analytical solution using perturbation approach with two-
dimensional flow. Nakayama and Washizu [5] employed the
boundary element method for the problem. Wu and Taylor
[6, 7] applied finite element analysis for twodimensional non-
linear transient waves. Chen et al. [8] applied finite difference
method to simulate large-amplitude sloshing under seismic
excitations. Turnbull et al. [9] used sigma-transformed finite
element inviscid flow solver for the problem. Frandsen [10]
analysed the nonlinear sloshing motions of liquid under
vertical, horizontal, and combined motions of the tank
using analytical and numerical methods. The author used
perturbation methods for analytical solution and modified
sigma-transformed finite difference method for numerical
solution. Cho and Lee [11] used semi-Lagrangian nonlinear
finite element approximation to analyse the large amplitude
sloshing in two-dimensional tanks. Wang and Khoo [12]
analysed the nonlinear sloshing in two-dimensional tanks
under random excitations. Sriram et al. [13] analysed non-
linear sloshing in two-dimensional tanks using finite element
and finite difference method. Biswal et al. [14] analysed the
nonlinear sloshing response in tanks with baffles using finite
element method. Ibrahim et al. [15] give an excellent review
of sloshing phenomenonwith extensive number of references
available in the literature.

In the present paper a numerical approach based on
mixed Eulerian-Lagrangian scheme is adopted. The free
surface nodes behave like Lagrangian particles and interior
nodes behave like Eulerian particles. The nonlinear sloshing
analysis is carried out using finite element method. A four-
noded isoparametric element is used in the analysis. The
calculation of velocities from velocity potential is an impor-
tant step to study the sloshing behaviour. Thus velocities
must be calculated accurately for accurate sloshing analysis.
The velocity field is interpolated from the velocity potential
according to least square method [16]. Fourth-order Runge-
Kutta method is employed to advance the solution in time.
As the time proceeds in the simulation due to Lagrangian
behaviour of the free surface nodes, these nodes move closer
and develop a steep gradient leading to numerical instability.
To get rid of this problem, a cubic spline interpolation is used
for the regridding the free surface uniformly. In the present
simulation the tank is assumed to be rigid with aspect ratio
(ℎ/𝐿) of 0.5; ℎ is depth of fluid,𝐿 is length of the tank. Sloshing
response is simulated when the external excitation frequency
is in resonance and off resonance region. For horizontal exci-
tations the free surface undergoes resonance when excitation
frequency is equal to fundamental slosh frequency and shows
beating phenomenon when excitation frequency is close to
fundamental slosh frequency.The present numericalmodel is
validated with Frandsen [10] numerical results for harmonic
excitations and then applied for sloshing response due to
random excitation.
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Figure 1: Sloshing wave tank in moving coordinate system.

2. Governing Equations

Consider a rectangular tank fixed in Cartesian coordinate
system 𝑂𝑥𝑧, which is moving with respect to inertial Carte-
sian coordinate system𝑂

0
𝑥
0
𝑧
0
. The origins of this system are

at the left end of the tank wall at the free surface and pointing
upwards in 𝑧 direction.These two Cartesian systems coincide
when the tank is at rest. Figure 1 shows the tank in themoving
Cartesian coordinate system 𝑂𝑥𝑧 along with the prescribed
boundary conditions. The tank is assumed to get displaced
along 𝑥-axes, and the tank position at time is given by

𝑋 = 𝑋
𝑡
(𝑡) . (1)

Fluid is assumed to be inviscid, incompressible, and irrota-
tional. Therefore the fluid motion is governed by Laplace’s
equation with the unknown as velocity potential 𝜙:

∇
2
𝜙 = 0. (2)

The fluid obeysNeumann boundary conditions at the walls of
the container and Dirichlet boundary condition at the liquid
free surface. In the moving coordinate system the velocity
component of the fluid normal to the walls is zero. Hence,
on the bottom and on the walls of the tank (Γ

𝐵
) we have

𝜕𝜙

𝜕𝑛

𝑥=0,𝐿
= 0,

𝜕𝜙

𝜕𝑛

𝑧=−ℎ
= 0. (3)

On the free surface (Γ
𝑠
) dynamic and kinematic conditions

hold; they are given as

𝜕𝜙

𝜕𝑡

𝑧=𝜁
+

1

2
∇𝜙 ⋅ ∇𝜙 + 𝑔𝜁 + 𝑥𝑋



𝑡
,

𝜕𝜁

𝜕𝑡
+

𝜕𝜙

𝜕𝑥

𝜕𝜁

𝜕𝑥
−

𝜕𝜙

𝜕𝑧
= 0.

(4)

Rewrite the above equations in the Lagrangian form [16]:

𝑑𝜙

𝑑𝑡

𝑧=𝜁
=

1

2
∇𝜙 ⋅ ∇𝜙 − 𝑔𝜁 − 𝑥𝑋



𝑡
, (5)

𝑑𝑥

𝑑𝑡
=

𝜕𝜙

𝜕𝑥
,

𝑑𝑧

𝑑𝑡
=

𝜕𝜙

𝜕𝑧
, (6)
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Figure 2: A typical mesh of the liquid domain using isoparametric
four-noded elements.

where 𝜁 is the free surface elevationmeasured vertically above
still water level,𝑋

𝑡
is the horizontal acceleration of the tank,

and 𝑔 is the acceleration due to gravity.
Equations (1)–(6) give the complete behaviour of nonlin-

ear sloshing in fluids. The position of the fluid free surface is
not known a priori; to solve the problem the fluid is assumed
to be at rest. Thus the initial conditions for the free surface in
themovingCartesian system at 𝑡 = 0 and 𝑧 = 0 can bewritten
as:

𝜙 (𝑥, 0, 0) = −𝑥
𝑑𝑋
𝑡
(𝑡)

𝑑𝑡
, (7)

𝜁 (𝑥, 0) = 0. (8)

Using these initial conditions, Laplace equation (2) is solved
and the free surface elevation and potential are updated for
the subsequent time steps using (5)-(6).

3. Numerical Procedure

3.1. Finite Element Formulation. The solution of the non-
linear sloshing boundary value problem is obtained using
finite elementmethod.The entire liquid domain is discretized
by using four-noded isoparametric quadrilateral elements. A
typical mesh structure is shown in Figure 2. By introducing
the finite element shape functions the liquid velocity potential
can be approximated as

𝜙 (𝑥, 𝑧) =

𝑛

∑
𝑗=1

𝑁
𝑗
(𝑥, 𝑧) 𝜙

𝑗
, (9)

where 𝑁
𝑗
is the shape function, 𝑛 is the number of nodes in

the element, and 𝜙
𝑗
is nodal velocity potential.

On applying Galerkin residual method to the Laplace
equation, we get

𝐾𝜙 = 0, (10)

with matrix 𝐾 defined by

𝐾 = ∫
Ω

(∇𝑁)
𝑇
(∇𝑁) 𝑑Ω. (11)
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Figure 3: Numerical procedure for nonlinear sloshing simulation.

Matrix 𝐾 is analogous to stiffness matrix in structural prob-
lems. Using (10), from the known free-surface velocity poten-
tial, the velocity potential in the interior nodes is calculated.

3.2. Velocity Recovery. To track the free surface (4) need
velocities, which are computed from the calculated potential
field using

𝜈 = ∇ ⋅ 𝜙
𝑗
. (12)

The velocities calculated using (12) are the velocities at the
Gauss integration points and they do not possess interele-
ment continuity and have a low accuracy at nodes and
element boundaries. Utmost care should be taken to calculate
the velocities; a small error in the velocity recovery will
affect the accuracy of free surface updating and gets accu-
mulated with time and leads to underestimation of sloshing
response. In order to derive a smoothed and continuous
velocity, patch recovery technique [17] is applied. In patch
recovery technique, the continuous velocity field is obtained
by considering the linear interpolation of the velocities at the
Gauss integration points:

𝜈 = 𝑎
1
+ 𝑎
2
𝜉 + 𝑎
3
𝜂 + 𝑎
4
𝜉𝜂, (13)

where 𝜈 is any velocity component (𝜈
𝑥
or 𝜈
𝑦
), 𝜉, 𝜂 are the

Gauss locations, and 𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
are unknowns which need

to be evaluated. To evaluate these unknowns, a least square fit
is considered between 𝜈 and 𝜈:

𝐹 (𝑎) =

4

∑
𝑖=1

{𝜈 (𝜉
𝑖
, 𝜂
𝑖
) − 𝜈 (𝜉

𝑖
, 𝜂
𝑖
)}
2
, (14)
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Figure 4: First four mode shapes of sloshing.

where 𝑖 is 2×2 order Gauss integration points.Then, the four
unknown coefficients are determined from four simultaneous
equations obtained from

𝜕𝐹 (𝑎)

𝜕𝑎
𝑘

= 0, 𝑘 = 1, 2, 3, 4. (15)

Substituting the obtained 𝑎
𝑘
’s in (13) gives the velocity

values for individual elements and these are averaged for the
common nodes. Finally, a smoothed velocity field which is
interelement continuous is constructed by interpolating the
finite element shape functions used in (9) and nodal averaged
velocities. The global continuous velocity field is given as

𝜈 = 𝑁 ⋅ 𝜈, (16)

where 𝜈 is velocity component (𝜈
𝑥
or 𝜈
𝑦
). Using the patch

recovery technique velocity components 𝜈
𝑥
and 𝜈
𝑦
are calcu-

lated.

3.3. Numerical Time Integration and Free Surface Tracking.
After calculating the velocity at a time step 𝑡, we need to
calculate the position of free surface from (6) and determine
the potential on the free surface using (5) for the next time
step 𝑡 + ∇𝑡. As a result, the liquid mesh and the boundary
condition required for the next-time step are established.
This is done using fourth-order Runge-Kutta explicit time
integrationmethod.The nodal coordinates of the free surface
and the associated velocity potential at a current time step 𝑖

are known and can be represented in a single variable as

𝑠
𝑖
= (𝑥
𝑖
, 𝑧
𝑖
, 𝜙
𝑖
) , (17)

where

𝑥
𝑖
= (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁𝑋+1
)
𝑖
,

𝑧
𝑖
= (𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑁𝑋+1
)
𝑖
,

𝑥
𝑖
= (𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑁𝑋+1
)
𝑖
,

(18)
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Figure 5: Time history response and associated phase plane plot for case 1.

where 𝑁𝑋 is number of segments along the free surface.
Similarly the time derivative can be written as

𝐷𝑠
𝑖

𝐷𝑡
= 𝐹 (𝑡

𝑖
, 𝑠
𝑖
) = 𝐹
𝑖
. (19)

The free surface position and associated velocity potential at
the next time step 𝑖 + 1 can be expresses as

𝑠
𝑖+1

= 𝑠
𝑖
+

𝑠
1

6
+

𝑠
2

3
+

𝑠
3

3
+

𝑠
4

6
, (20)

where

𝑠
1
= ∇𝑡𝐹 (𝑡

𝑖
, 𝑠
𝑖
) ,

𝑠
2
= ∇𝑡𝐹 (𝑡

𝑖
+

∇𝑡

2
, 𝑠
𝑖
+

𝑠
1

2
) ,

𝑠
3
= ∇𝑡𝐹 (𝑡

𝑖
+

∇𝑡

2
, 𝑠
𝑖
+

𝑠
2

2
) ,

𝑠
4
= ∇𝑡𝐹 (𝑡

𝑖
+ ∇𝑡, 𝑠

𝑖
+ 𝑠
3
) .

(21)

After obtaining the new positions and potential of the free
surface, the liquid domain is remeshed based on these
obtained new coordinate positions.
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Figure 6: Time history response for case 2.

3.4. Regridding Algorithm. At the beginning of the numerical
simulation, the free surface nodes are uniformly distributed
along the 𝑥-direction with zero surface elevation. As the time
proceeds the free surface nodes are spaced unequally and
cluster into a steep gradient leading to numerical instability.
This problem occurs for a long time simulation; to avoid
this instability an automatic regridding condition using cubic
spline is employed when the movement of the nodes is 75%
more or less then the initial grid spacing. For the regridding,
first the free surface length 𝐿

𝑓
is obtained. Then the free

surface is divided into 𝑁𝑋 segments with the identical arc
length. The coordinates of node is denoted as (𝑥

𝑙
, 𝑦
𝑙
) (𝑙 =

1, 2, . . . , 𝑁𝑋+1) and let the arc length between two successive
points 𝑙 and 𝑙 + 1 be 𝑆

𝑙
. Being a uniform regridding, 𝑆

𝑙
can be

expressed as

𝑆
𝑙
=

𝑙𝐿
𝑓

𝑁𝑋
. (22)

The coordinates of the nodes (𝑥
𝑙
, 𝑦
𝑙
) is a function of the arc

length 𝑆
𝑙
:

(𝑥
𝑙
, 𝑦
𝑙
) = 𝑓 (𝑆

𝑙
) . (23)

The cubic spline interpolation is used to calculate the coor-
dinates (𝑥

𝑙
, 𝑦
𝑙
) and the velocity potential on the new uniform

free surface is also obtained in a similar fashion.

3.5. Complete Algorithm for Nonlinear Sloshing. Including all
the steps above, the algorithm for numerical simulation of
nonlinear sloshing is as shown in Figure 3.

4. Numerical Results and Discussion

A code is developed following the above numerical formu-
lation for computing sloshing response. The liquid sloshing

response inside a 2.0m wide rectangular rigid container with
liquid filled to a depth of 1m is simulated. Aspect ratio of 0.5
is maintained. In the numerical simulations, 40 nodes along
the 𝑥-direction and 20 nodes along the 𝑧-direction are taken.

4.1. Free Vibration Analysis. To validate the code for stiffness
matrix formulation, a free vibration problem is solved first.
A mass matrix 𝑀 (shown in (24)) for the free surface of the
liquid is formed:

𝑀 =
1

𝑔
∫
Γ
𝑠

𝑁
𝑇
𝑁𝑑Γ
𝑠
. (24)

If 𝜔
𝑛
denotes the 𝑛th natural slosh frequency of the coupled

system and {Ψ
𝑛
} the corresponding mode shape, the free

vibration problem to be solved is

(𝐾 − 𝜔
2

𝑛
𝑀) {Ψ

𝑛
} = 0. (25)

The natural slosh frequencies obtained from (25) are
compared with Faltinsen’s analytical solution [4]. For a
rectangular tank the order of natural sloshing frequency is
[4],

𝜔
𝑛
= √𝑔𝑘

𝑛
tanh (𝑘

𝑛
ℎ) (𝑛 = 1, 2, 3, . . .) , (26)

where 𝑘
𝑛
is the wave number, given by 𝑘

𝑛
= 𝑛𝜋/𝐿, 𝐿 is the

length of the container, and ℎ is thewater depth. Table 1 shows
the slosh frequencies in rad/s obtained for the present tank
using finite elementmethod and the above analytical formula.
Both the results are in good match. Figure 4 shows the first
four mode shapes obtained.

4.2. Sloshing Response under Harmonic Excitation. In this
section, sloshing response is simulated, when the tank is
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Figure 7: Time history response and associated phase plane plots for case 3.

Table 1: Slosh frequencies compared with analytical solution.

Mode no. Present (rad/s) Equation (26) (rad/s) Error %
1 3.7607 3.7594 0.0353
2 5.5456 5.5411 0.0801
3 6.8092 6.7986 0.1553
4 7.8715 7.8510 0.2620
5 8.8126 8.7777 0.3983

excited with harmonic motion. The tank is assumed to
be subjected to the following forced harmonic horizontal
motion:

𝑋
𝑡
(𝑡) = 𝑎

ℎ
cos (𝜔

ℎ
𝑡) , (27)

where 𝑎
ℎ
is horizontal forcing amplitude, 𝑡 is time, and 𝜔

ℎ

is the angular frequency of the forced horizontal motion.
Equation (27) gives excitation velocity as −𝑎

ℎ
𝜔
ℎ
sin(𝜔
ℎ
𝑡),

which leads to a zero-free surface velocity potential initial
condition from (7). In the present numerical simulation,
40 nodes along the 𝑥-direction and 20 nodes along the 𝑧-
direction are taken, and a time step of 0.003 s is adopted.
The sloshing response is evaluated for various excitation fre-
quencies which are closer, away, and equal to the fundamental
sloshing frequency. The free surface behaviour is examined
for smaller and steeper wave according to Frandsen [10]. The
simulation cases considered are shown in Table 2.The results
obtained are compared with numerical results of Frandsen
[10].
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Figure 8: Generated mesh in case 3 for large forcing amplitude at various time steps.
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Figure 9: Time history response for case 4.

Figures 5(a) and 5(b) show the free-surface elevation
at the left wall for case 1 for smaller and large horizontal
forcing amplitude. The external excitation frequency is in
off resonance region; the forcing frequency is smaller than
the first fundamental sloshing frequency. The time histories
of the sloshing response are nondimensionalised with the
first natural sloshing frequency. The results obtained are

compared with Frandsen and found to be in good agreement.
Figures 5(c) and 5(d) show the associated phase plane plots.
These phase plane plots display linear behaviour of the free
surface.

Figures 6(a) and 6(b) show the slosh response for case
2 for small and large forcing amplitude, respectively. In
this case the excitation frequency is closer to the first slosh
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Table 2: Simulation cases for the sloshing response.

Case Frequency 𝜔
ℎ
(rad/s) Amplitude 𝑎

ℎ
(m)

Smaller wave Steeper wave
1 0.7𝜔

1
0.0052 0.0520

2 0.9𝜔
1

0.0039 0.0393
3 𝜔

1
9.9 ∗ 10−4 0.0097

4 1.3𝜔
1

0.0015 0.0301

natural frequency and as expected a beating phenomenon
is observed. For small forcing amplitude the response is
compared with linear solution and both the results are in
good match the response is symmetric in this case displaying
a linear behaviour. For large forcing amplitude, the system
is in nonlinear region; due to nonlinearities an asymmetric
beating phenomenon is observed.

Figures 7(a) and 7(b) show the slosh response at the
left wall for case 3 for small and large forcing amplitude,
respectively, and the corresponding phase plane plots. In
this case, the external excitation frequency is equal to
the fundamental slosh frequency and as expected reso-
nance takes place. The results obtained are in excellent
agreement with the Frandsen results. For small ampli-
tude case the response is almost symmetric, but for large
amplitude case the response is not symmetric because of
nonlinear effects. The phase plane plots show clearly the
difference between the small forcing amplitude and large
forcing amplitude. A moving mesh generated at different
type steps for large forcing amplitude case is shown in
Figure 8. (Animation of simulation in this case can be seen
in http://www.youtube.com/watch?v=LlwUOWMmVtc.) It
helps in understanding the sloshing flow patterns.

Figures 9(a) and 9(b) show the slosh response at the
left wall for case 4. This case is also an off resonance case
as case 1 but the forcing frequency is higher than the first

natural sloshing frequency. The results obtained are in good
agreement with Frandsen.

4.3. Sloshing Response under Random Excitation. In this sec-
tion sloshing response is simulated for random excitations.
For simulating random sloshing, first a random excitation
time history is needed. The required random excitation is
generated using Bretschneider spectrum:

𝑆
𝜂
=

5𝐻2
𝑠

16𝜔
𝑝

(
𝜔
𝑝

𝜔
)
5

exp [−
5

4
(
𝜔
𝑝

𝜔
)
4

] , (28)

where 𝐻
𝑠
is the significant wave height and 𝜔

𝑝
is the peak

frequency. Since the higher frequencies have no influence on
the sloshing waves, a cut of frequency for random waves is
set. In this simulation the cut of frequency is taken as five
times the natural slosh frequency. Based on this spectrum,
the random waves are generated which are given as the base
excitation to the container. The displacement of the random
wave can be obtained by linear superposition of a series of
harmonic waves with random phase as a time function:

𝑥 (𝑡) =

𝑁
𝜔

∑
𝑖=1

𝐴
𝑖
sin (𝜔

𝑖
𝑡 + 𝜙
𝑖
) , (29)

where 𝑥(𝑡) denotes a random horizontal oscillation that the
container is subjected to, 𝑡 is time, 𝜔

𝑖
is the frequency of 𝑖th

linear wave, and 𝑁
𝜔
is the number of all the linear harmonic

waves. The frequency 𝜔
𝑖
ranges from 0 to 𝜋/𝑑𝑡. 𝐴

𝑖
and 𝜙

𝑖

are the wave amplitude and phase of each linear harmonic
wave, respectively. The wave amplitude is determined by the
following equation:

𝐴
𝑖
= √2𝑆

𝜂
(𝜔) Δ𝜔, (30)

where Δ𝜔 is the frequency interval. The phase 𝜙
𝑖
is a random

variable and uniformly distributed in the interval [0, 2𝜋].
The specified spectrum of oscillation with 𝐻

𝑠
= 0.01 h

and peak frequency 𝜔
𝑝

= 𝜔
1
is shown in Figure 10. To

generate random wave from the shown spectrum, 𝑁
𝜔
is

taken as 512, 1024 data points are taken, and a time step of
0.02 s is adopted. The horizontal oscillation of the container
corresponding to the spectrum is shown in Figure 11(a).
Figure 11(b) shows the corresponding time history of the slosh
response at the left wall of the container.

5. Conclusion

Sloshing response of liquid in 2D fixed and forced tanks is
investigated numerically considering fully nonlinear equa-
tions. A mixed Eulerian-Lagrangian nonlinear finite element
numerical model has been developed based on potential flow
theory. Free-surface sloshing response is simulated under
regular harmonic base excitations for small and steep waves
and then the formulation is extended to random excitations.
In the simulations, the tank is assumed to be rigid with
aspect ratio of ℎ/𝐿 = 0.5. For accurate velocity computation,
the velocity field is interpolated from the velocity potential
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Figure 11: (a) Random horizontal excitation, (b) slosh response at the left wall of the container.

according to least square method. The fourth-order Runge-
Kutta method is employed to advance the solution in time
domain and a regridding technique based on cubic spline
is employed to avoid numerical instabilities. The test cases
considered here are similar to the test cases by Frandsen
for regular harmonic excitations. The results obtained are
in perfect match with Frandsen results. In the present
simulation, no regridding is required for the simulation of
small amplitude waves. In the case of steep waves, for long
time simulation, regridding should be carried out for every
few time steps.
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