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This paper is devoted to the study of delta shockwaves for a hyperbolic systemof conservation laws of Keyfitz-Kranzer typewith two
linearly degenerate characteristics.TheRiemannproblem is solved constructively.TheRiemann solutions include exactly two kinds.
One consists of two (or just one) contact discontinuities, while the other contains a delta shock wave. Under suitable generalized
Rankine-Hugoniot relation and entropy condition, the existence and uniqueness of delta shock solution are established. These
analytical results match well the numerical ones. Finally, two kinds of interactions of elementary waves are discussed.

1. Introduction

Consider the following hyperbolic system of conservation
laws:

𝜌
𝑡
+ (𝜌 (𝑢 − 𝑃))

𝑥
= 0,

(𝜌𝑢)
𝑡
+ (𝜌𝑢 (𝑢 − 𝑃))

𝑥
= 0,

(1)

where 𝑃 = 𝑃(𝜌) with 𝜌 ≥ 0. Model (1) belongs to the non-
symmetric system of Keyfitz-Kranzer type [1, 2] as

𝜌
𝑡
+ (𝜌𝜙 (𝜌, 𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑛
))
𝑥
= 0,

(𝜌𝑢
𝑖
)
𝑡
+ (𝜌𝑢

𝑖
𝜙 (𝜌, 𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑛
))
𝑥
= 0, 𝑖 = 1, 2, . . . , 𝑛.

(2)

System (1) was also introduced as a macroscopic model for
trafficflowbyAwandRascle [3], where𝜌 and𝑢 are the density
and the velocity of cars on the roadway, and the function 𝑃 is
smooth and strictly increasing and it satisfies

𝜌𝑃
󸀠󸀠
(𝜌) + 2𝑃

󸀠
(𝜌) > 0 for 𝜌 > 0. (3)

Model (1) was also studied by Lu [2]. By using the compen-
sated compactness method, he established the existence of

global bounded weak solutions of the Cauchy problem under
the following two assumptions on 𝑃(𝜌), respectively:

𝑃 (0) = 0, lim
𝜌→0

𝜌𝑃
󸀠
(𝜌) = 0,

𝜌𝑃
󸀠󸀠
(𝜌) + 2𝑃

󸀠
(𝜌) > 0 for 𝜌 > 0,

lim
𝜌→0

𝜌𝑃 (𝜌) = 0, lim
𝜌→∞

(𝜌𝑃 (𝜌))
󸀠

≥ 𝐴,

𝜌𝑃
󸀠󸀠
(𝜌) + 2𝑃

󸀠
(𝜌) > 0 for 𝜌 > 0.

(4)

One can find that system (1) has two characteristics; one is
always linearly degenerate while the other is linearly degen-
erate or genuinely nonlinear depending on the behaviors of
𝑝(𝜌). In [2, 3], the condition (3) is required, which implies
that the second characteristic is genuinely nonlinear. Thus,
one interesting topic is the case when both characteristics are
linearly degenerate.

These motivate us to consider (1) with

𝑃 = 𝑃 (𝜌) = −
1

𝜌
, (5)

which is the prototype function satisfying

𝜌𝑃
󸀠󸀠
(𝜌) + 2𝑃

󸀠
(𝜌) ≡ 0 for 𝜌 > 0. (6)
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For system (1) with (5) or (6), a distinctive feature is that
both eigenvalues are linearly degenerate; that is, this is a fully
linearly degenerate system. Thus, all the classical elementary
waves only consist of contact discontinuities. Moreover, the
overlapping of linearly degenerate characteristics may result
in the formation of delta shock wave. A delta shock wave is
a generalization of an ordinary shock wave. Speaking infor-
mally, it is a kind of discontinuity, on which at least one of
the state variables may develop an extreme concentration in
the form of a Dirac delta functionwith the discontinuity as its
support. It is more compressive than an ordinary shock wave
in the sense that more characteristics enter the discontinuity
line. From the physical point of view, a delta shock wave
represents the process of concentration of the mass and for-
mation of the universe. For related results of delta shock
waves, we refer the readers to the papers [4–24] and the refe-
rences therein.

Putting (5) into (1), we obtain the equivalent system

𝜌
𝑡
+ (𝜌𝑢)

𝑥
= 0,

(𝜌𝑢)
𝑡
+ (𝜌𝑢

2
+ 𝑢)
𝑥
= 0.

(7)

Firstly, we consider the Riemann problem for (7) with initial
data

(𝑢, 𝜌) (𝑥, 𝑡 = 0) =
{

{

{

(𝑢
−
, 𝜌
−
) , 𝑥 < 0,

(𝑢
+
, 𝜌
+
) , 𝑥 > 0.

(8)

By the analysismethod in phase plane, when𝑢
+
+(1/𝜌

+
) > 𝑢
−
,

we can construct Riemann solution only involving two dif-
ferent (or just one) contact discontinuities. However, for the
case 𝑢

+
+ (1/𝜌

+
) ≤ 𝑢
−
, we find that the Riemann solution can

not be constructed by these classical contact discontinuities
and delta shock wave should occur. For delta shock wave, by
a definition ofmeasure solutions to (7), we derive the general-
ized Rankine-Hugoniot relation which describes the relation
among the limit states on both sides of the discontinuity, loca-
tion, propagation speed, weight, and the assignment of the
component 𝑢 on its discontinuity relative to the delta shock
wave. The entropy condition is an overcompressive one and
guarantees the uniqueness of solution. With the generalized
Rankine-Hugoniot relation and entropy condition, we solve
the delta shock solution uniquely. Secondly, we simulate the
obtained Riemann solutions by using N-T scheme [25] and
get the numerical results coinciding with the analytical ones.
Thirdly, we study two kinds of interactions of delta shock
waves and contact discontinuities by considering the initial-
value problem with initial data as

(𝑢, 𝜌) (𝑥, 𝑡 = 0) =

{{{{

{{{{

{

(𝑢
−
, 𝜌
−
) , 𝑥 < 0,

(𝑢
𝑚
, 𝜌
𝑚
) , 0 < 𝑥 < 𝑎,

(𝑢
+
, 𝜌
+
) , 𝑥 > 𝑎,

(9)

where 𝑎 > 0 is a constant. In the first kind, the interaction
of two contact discontinuities leads to a delta shock wave.
In the second one, the delta shock wave vanishes after it
interacts with a contact discontinuity. Such two cases are not

encountered in the interactions of elementary waves for some
other systems, such as the zero-pressure gas dynamics.

This paper is organized as follows. In Section 2,we present
some preliminaries and construct the Riemann solution
consisting of contact discontinuities by phase plane anal-
ysis method. Then, in Section 3, with suitable generalized
Rankine-Hugoniot relation and entropy condition, we solve
delta shock solution uniquely. Section 4 presents some nume-
rical results of Riemann solutions obtained by using the
Nessyahu-Tadmor scheme [25]. Finally, in Section 5, we study
two kinds of interactions of delta shock waves and contact
discontinuities.

2. Preliminaries and Solutions Involving
Contact Discontinuities

In this section, we analyze some basic properties and then
solve the Riemann problem (7)-(8) by the analysis in phase
plane. The system has two eigenvalues

𝜆
1
= 𝑢, 𝜆

2
= 𝑢 +

1

𝜌
(10)

with associated right eigenvectors

⃗𝑟
1
= (1, 0)

𝑇
, ⃗𝑟

2
= (1,

1

𝜌2
)

𝑇

(11)

satisfying

∇𝜆
𝑖
⋅ ⃗𝑟
𝑖
≡ 0, 𝑖 = 1, 2. (12)

Thus, system (7) is fully linearly degenerate.The linear degen-
eracy also excludes the possibility of rarefaction waves and
shock waves.

As usual, we seek the self-similar solution

(𝑢, 𝜌) (𝑡, 𝑥) = (𝑢, 𝜌) (𝜉) , 𝜉 =
𝑥

𝑡
, (13)

for which system (7) becomes

− 𝜉𝜌
𝜉
+ (𝜌𝑢)

𝜉
= 0,

− 𝜉(𝜌𝑢)
𝜉
+ (𝜌𝑢

2
+ 𝑢)
𝜉
= 0,

(14)

and initial data (8) changes to the boundary condition

(𝑢, 𝜌) (±∞) = (𝑢
±
, 𝜌
±
) . (15)

This is a two-point boundary value problem of first-order
ordinary differential equations with the boundary values in
the infinity.

For any smooth solution, (14) turns into

(

𝑢 − 𝜉 𝜌

0 𝑢 +
1

𝜌
− 𝜉
)(
𝑑𝜌

𝑑𝑢
) = 0. (16)

It provides either the general solutions (constant states)

(𝑢, 𝜌) = const. (𝜌 > 0) (17)
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or singular solutions

𝜉 = 𝜆
1
= 𝑢, 𝑑𝑢 = 0,

𝜉 = 𝜆
1
= 𝑢 +

1

𝜌
, 𝑑 (𝑢 +

1

𝜌
) = 0.

(18)

Integrating (18) from (𝑢
−
, 𝜌
−
) to (𝑢, 𝜌), respectively, one can

get that

𝜉 = 𝑢,

𝑢 = 𝑢
−
,

𝜉 = 𝑢 +
1

𝜌
,

𝑢 +
1

𝜌
= 𝑢
−
+
1

𝜌
−

.

(19)

Indeed, (19) are contact discontinuities; see (21) and (22) in
the following.

For a bounded discontinuous solution at 𝜉 = 𝜔, the
Rankine-Hugoniot relation

−𝜔 [𝜌] + [𝜌𝑢] = 0,

−𝜔 [𝜌𝑢] + [𝜌𝑢
2
+ 𝑢] = 0

(20)

holds, where [𝑞] = 𝑞
−
−𝑞 is the jump of 𝑞 across the discontin-

uous line and 𝜔 is the velocity of the discontinuity. A simple
calculation gives

𝜔 = 𝑢,

𝑢 = 𝑢
−
,

(21)

𝜔 = 𝑢 +
1

𝜌
,

𝑢 +
1

𝜌
= 𝑢
−
+
1

𝜌
−

.

(22)

Obviously, (21) and (22) are two kinds of contact discontinu-
ities, denoted by←󳨀𝐽 and ⃗𝐽, respectively. In the phase plane, the
curves expressed by the second equations in (21) and (22) are
called the contact discontinuity curves.

Starting from any point (𝑢
−
, 𝜌
−
), we draw the curve 𝑢 =

𝑢
−
for 𝜌 > 0 in the phase plane, which is parallel to the 𝜌-axis.

We also draw the curve 𝑢 + (1/𝜌) = 𝑢
−
+ (1/𝜌

−
) for 𝜌 > 0,

which is monotonically increasing and has the lines 𝜌 = 0
and 𝑢 = 𝑢

−
+ (1/𝜌

−
) as its two asymptotic lines. Also, from

the point (𝑢
−
− (1/𝜌

−
), 𝜌
−
), we draw the curve 𝑢+ (1/𝜌) = 𝑢

−
.

I

II

III

IV

V

𝑢
𝑢−𝑢− −

1

𝜌−

(𝑢−
(𝑢−

−
1

𝜌−
, 𝜌

𝜌

−)
−), 𝜌

𝑢− +
1

𝜌−

→
𝐽

→
𝐽

←
𝐽

Figure 1: Contact discontinuity curves.

Then the phase plane is divided into five regions as follows
(shown in Figure 1):

I = { (𝑢, 𝜌) | 𝑢
−
< 𝑢 < 𝑢

−
+
1

𝜌
−

,

0 < 𝜌 <
1

𝑢
−
+ 𝜌−1
−
− 𝑢
} ∪ {𝑢

−
+
1

𝜌
−

< 𝑢 < +∞,

0 < 𝜌 < +∞} ,

II = {(𝑢, 𝜌) | −∞ < 𝑢 < 𝑢
−
, 0 < 𝜌 <

1

𝑢
−
+ 𝜌−1
−
− 𝑢
} ,

III = { (𝑢, 𝜌) | 𝑢
−
< 𝑢 < 𝑢

−
+
1

𝜌
−

,

1

𝑢
−
+ 𝜌−1
−
− 𝑢
< 𝜌 < +∞} ,

IV = { (𝑢, 𝜌) | −∞ < 𝑢 < 𝑢
−
,

1

𝑢
−
+ 𝜌−1
−
− 𝑢
< 𝜌 <

1

𝑢
−
− 𝑢
} ,

V = {(𝑢, 𝜌) | −∞ < 𝑢 < 𝑢
−
,
1

𝑢
−
− 𝑢
< 𝜌 < +∞} .

(23)

By the analysis method in the phase plane, when
(𝑢
+
, 𝜌
+
) ∈ I, II, III, IV, namely, 𝑢

+
+ (1/𝜌

+
) > 𝑢

−
, one can

easily construct the solution consisting of two different (or
just one) contact discontinuities (see Figure 2), in which,

←󳨀
𝐽 : 𝑥 = 𝑢

−
𝑡, ⃗𝐽 : 𝑥 = (𝑢

+
+
1

𝜌
+

) 𝑡, (24)

the intermediate states (𝑢∗, 𝜌∗) connecting two contact dis-
continuities satisfy

𝑢
∗
= 𝑢
−
, 𝑢

∗
+
1

𝜌∗
= 𝑢
+
+
1

𝜌
+

. (25)
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𝑡

𝑂
𝑥

(𝑢−, 𝜌−) (𝑢+, 𝜌+)

(𝑢∗, 𝜌∗)

→
𝐽

←
𝐽

Figure 2: Riemann solution involving two contact discontinuities.

3. Delta Shock Solution

In this section, let us in detail discuss the last case when
(𝑢
+
, 𝜌
+
) ∈ V (𝑢

−
, 𝜌
−
); that is, 𝑢

+
+ (1/𝜌

+
) ≤ 𝑢
−
. The charac-

teristic lines from initial data will overlap in a domain Ω =
{(𝑥, 𝑡) : 𝑢

+
+ (1/𝜌

+
) < 𝑥/𝑡 < 𝑢

−
} shown in Figure 3. So

singularity must happen in Ω. It is easy to know that the
singularity is impossible to be a jump with finite amplitude
because the Rankine-Hugoniot relation is not satisfied on the
bounded jump. In other words, there is no solution which is
piecewise smooth and bounded.Motivated by [7, 8, 16, 21, 22],
we seek solutions with delta distribution at the jump.

Denote by 𝐵𝑀(𝑅) the space of bounded Borel measures
on 𝑅, and then the definition of a measure solution of (7) in
𝐵𝑀(𝑅) can be given as follows (see [16, 22, 24]).

Definition 1. A pair (𝑢, 𝜌) is called a measure solution to (7)
if there hold

𝜌 ∈ 𝐿
∞
((0,∞) , 𝐵𝑀 (𝑅)) ∩ 𝐶 ((0,∞) ,𝐻

−𝑠
(𝑅)) ,

𝑢 ∈ 𝐿
∞
((0,∞) , 𝐿

∞
(𝑅)) ∩ 𝐶 ((0,∞) ,𝐻

−𝑠
(𝑅)) , 𝑠 > 0,

𝑢 is measurable with respect to 𝜌

at almost for all 𝑡 ∈ (0,∞) ,
(26)

and (7) is satisfied inmeasured and distributional senses; that
is,

𝐼
1
= ∬
𝑅
+
×𝑅

(𝜙
𝑡
+ 𝑢𝜙
𝑥
) 𝑑𝜌 𝑑𝑡 = 0,

𝐼
2
= ∬
𝑅
+
×𝑅

𝑢 (𝜙
𝑡
+ 𝑢𝜙
𝑥
) 𝑑𝜌 𝑑𝑡 +∬

𝑅
+
×𝑅

𝑢𝜙
𝑥
𝑑𝑥 𝑑𝑡 = 0

(27)

for all test function 𝜙 ∈ 𝐶∞
0
(𝑅
+
× 𝑅).

Definition 2. A two-dimensional weighted delta function
𝑤(𝑠)𝛿

𝐿
supported on a smooth curve 𝐿 parameterized as 𝑡 =

𝑡(𝑠), 𝑥 = 𝑥(𝑠) (𝑐 ≤ 𝑠 ≤ 𝑑) is defined by

⟨𝑤 (𝑠) 𝛿
𝐿
, 𝜙 (𝑡, 𝑥)⟩ = ∫

𝑑

𝑐

𝑤 (𝑠) 𝜙 (𝑡 (𝑠) , 𝑥 (𝑠)) 𝑑𝑠 (28)

for all 𝜙 ∈ 𝐶∞
0
(𝑅
2
).

𝑡

𝑂
𝑥

(𝑢−, 𝜌−) (𝑢+, 𝜌+)

𝑥/𝑡 = 𝑢− +
1

𝜌−

𝑥/𝑡 = 𝑢+ +
1

𝜌+

𝑥/𝑡 = 𝑢−

𝑥/𝑡 = 𝑢+ Ω

𝛿 : 𝑥/𝑡 = 𝑢𝛿

Figure 3: Riemann solution containing delta shock wave.

Let us consider the discontinuity of (7) of the form

(𝑢, 𝜌) (𝑥, 𝑡)

=

{{{{

{{{{

{

(𝑢
𝑙
, 𝜌
𝑙
) (𝑥, 𝑡) , 𝑥 < 𝑥 (𝑡) ,

(𝑢
𝛿
(𝑡) , 𝑤 (𝑡) 𝛿 (𝑥 − 𝑥 (𝑡))) , 𝑥 = 𝑥 (𝑡) ,

(𝑢
𝑟
, 𝜌
𝑟
) (𝑥, 𝑡) , 𝑥 > 𝑥 (𝑡) ,

(29)

in which (𝑢
𝑙
, 𝜌
𝑙
)(𝑥, 𝑡) and (𝑢

𝑟
, 𝜌
𝑟
)(𝑥, 𝑡) are piecewise smooth

bounded solutions of (7), for which we also set 𝑑𝑥(𝑡)/𝑑𝑡 =
𝑢
𝛿
(𝑡) for the concentration in 𝜌 needs to travel at the speed

of discontinuity (also see [16, 22, 24]). We assert that the dis-
continuity (29) is a measure solution to (7) if and only if the
following relation

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝑢
𝛿
(𝑡) ,

𝑑𝑤 (𝑡)

𝑑𝑡
= −𝑢
𝛿
(𝑡) [𝜌] + [𝜌𝑢] ,

𝑑𝑤 (𝑡) 𝑢
𝛿
(𝑡)

𝑑𝑡
= −𝑢
𝛿
(𝑡) [𝜌𝑢] + [𝜌𝑢

2
+ 𝑢]

(30)

is satisfied.
In fact, for any 𝜙 ∈ 𝐶∞

0
(𝑅
+
×𝑅), with Green’s formula and

taking (7) in mind, one can calculate

𝐼
2
= ∬
𝑅
+
×𝑅

𝑢 (𝜙
𝑡
+ 𝑢𝜙
𝑥
) 𝑑𝜌 𝑑𝑡 +∬

𝑅
+
×𝑅

𝑢𝜙
𝑥
𝑑𝑥 𝑑𝑡

= ∫

+∞

0

∫

𝑥(𝑡)

−∞

(𝜌
𝑙
𝑢
𝑙
𝜙
𝑡
+ 𝜌
𝑙
𝑢
2

𝑙
𝜙
𝑥
) 𝑑𝑥 𝑑𝑡

+ ∫

+∞

0

∫

𝑥(𝑡)

−∞

𝑢
𝑙
𝜙
𝑥
𝑑𝑥 𝑑𝑡

+ ∫

+∞

0

∫

+∞

𝑥(𝑡)

(𝜌
𝑟
𝑢
𝑟
𝜙
𝑡
+ 𝜌
𝑟
𝑢
2

𝑟
𝜙
𝑥
) 𝑑𝑥 𝑑𝑡
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+ ∫

+∞

0

∫

+∞

𝑥(𝑡)

𝑢
𝑟
𝜙
𝑥
𝑑𝑥 𝑑𝑡

+ ∫

+∞

0

{𝑤 (𝑡) 𝑢
𝛿
(𝑡) (𝜙
𝑡
+ 𝑢
𝛿
(𝑡) 𝜙
𝑥
)} 𝑑𝑡

= ∫

+∞

0

∫

𝑥(𝑡)

−∞

{(𝜌
𝑙
𝑢
𝑙
𝜙)
𝑡
+ ((𝜌
𝑙
𝑢
2

𝑙
+ 𝑢
𝑙
) 𝜙)
𝑥
} 𝑑𝑥 𝑑𝑡

− ∫

+∞

0

∫

𝑥(𝑡)

−∞

{(𝜌
𝑙
𝑢
𝑙
)
𝑡
+ (𝜌
𝑙
𝑢
2

𝑙
+ 𝑢
𝑙
)
𝑥
} 𝜙 𝑑𝑥 𝑑𝑡

+ ∫

+∞

0

∫

+∞

𝑥(𝑡)

{(𝜌
𝑟
𝑢
𝑟
𝜙)
𝑡
+ ((𝜌
𝑟
𝑢
2

𝑟
+ 𝑢
𝑟
) 𝜙)
𝑥
} 𝑑𝑥 𝑑𝑡

− ∫

+∞

0

∫

+∞

𝑥(𝑡)

{(𝜌
𝑟
𝑢
𝑟
)
𝑡
+ (𝜌
𝑟
𝑢
2

𝑟
+ 𝑢
𝑟
)
𝑥
} 𝜙 𝑑𝑥 𝑑𝑡

+ ∫

+∞

0

𝑤 (𝑡) 𝑢
𝛿
(𝑡)
𝑑𝜙

𝑑𝑡
𝑑𝑡

= ∫

+∞

0

∫

𝑥(𝑡)

−∞

{(𝜌
𝑙
𝑢
𝑙
𝜙)
𝑡
+ ((𝜌
𝑙
𝑢
2

𝑙
+ 𝑢
𝑙
) 𝜙)
𝑥
} 𝑑𝑥 𝑑𝑡

+ ∫

+∞

0

∫

+∞

𝑥(𝑡)

{(𝜌
𝑟
𝑢
𝑟
𝜙)
𝑡
+ ((𝜌
𝑟
𝑢
2

𝑟
+ 𝑢
𝑟
) 𝜙)
𝑥
} 𝑑𝑥 𝑑𝑡

+ ∫

+∞

0

𝑤 (𝑡) 𝑢
𝛿
(𝑡)
𝑑𝜙

𝑑𝑡
𝑑𝑡

= ∮
𝜕Ω
−

− 𝜌
𝑙
𝑢
𝑙
𝜙𝑑𝑥 + (𝜌

𝑙
𝑢
2

𝑙
+ 𝑢
𝑙
) 𝜙 𝑑𝑡

+ ∮
𝜕Ω
+

− 𝜌
𝑟
𝑢
𝑟
𝜙𝑑𝑥 + (𝜌

𝑟
𝑢
2

𝑟
+ 𝑢
𝑟
) 𝜙 𝑑𝑡

− ∫

+∞

0

𝑑𝑤 (𝑡) 𝑢
𝛿
(𝑡)

𝑑𝑡
𝜙 𝑑𝑡

= ∫

+∞

0

(−𝜌
𝑙
𝑢
𝑙

𝑑𝑥

𝑑𝑡
+ (𝜌
𝑙
𝑢
2

𝑙
+ 𝑢
𝑙
)

+ 𝜌
𝑟
𝑢
𝑟

𝑑𝑥

𝑑𝑡
− (𝜌
𝑟
𝑢
2

𝑟
+ 𝑢
𝑟
)) 𝜙 𝑑𝑡

− ∫

+∞

0

𝑑𝑤 (𝑡) 𝑢
𝛿
(𝑡)

𝑑𝑡
𝜙 𝑑𝑡

= ∫

+∞

0

{−𝑢
𝛿
(𝑡) [𝜌𝑢] + [𝜌𝑢

2
+ 𝑢] −

𝑑𝑤 (𝑡) 𝑢
𝛿
(𝑡)

𝑑𝑡
} 𝜙 𝑑𝑡,

(31)

where Ω
−
= {(𝑥, 𝑡) : 𝑡 ∈ 𝑅

+
, −∞ < 𝑥 < 𝑥(𝑡)}, Ω

+
= {(𝑥, 𝑡) :

𝑡 ∈ 𝑅
+
, 𝑥(𝑡) < 𝑥 < +∞}, 𝜕Ω

±
is the boundaries of Ω

±
, and

∮
𝜕Ω
±

are the line integral on boundaries 𝜕Ω
±
.

Similarly, we have

𝐼
1
= ∬
𝑅
+
×𝑅

(𝜙
𝑡
+ 𝑢𝜙
𝑥
) 𝑑𝜌 𝑑𝑡

= ∫

+∞

0

{−𝑢
𝛿
(𝑡) [𝜌] + [𝜌𝑢] −

𝑑𝑤 (𝑡)

𝑑𝑡
} 𝜙 𝑑𝑡.

(32)

With the above results, we can reach the assertion easily.

Relation (30) reflects the exact relationship among the
limit states on two sides of the discontinuity, the weight,
propagation speed and the location of the discontinuity. We
call it the generalized Rankine-Hugoniot relation of the dis-
continuity.

In addition, the admissibility (entropy) condition for the
discontinuity (29) is

𝜆
2
(𝜌
𝑟
, 𝑢
𝑟
) ≤ 𝑢
𝛿
(𝑡) ≤ 𝜆

1
(𝜌
𝑙
, 𝑢
𝑙
) , (33)

which means that all characteristics on both sides of the
discontinuity are not outcoming and guarantees uniqueness
of solution.

Definition 3. A discontinuity which is presented in the form
(29) and satisfies (30) and (33) will be called a delta shock
wave to system (7), symbolized by 𝛿.

In what follows, the generalized Rankine-Hugoniot rela-
tion will in particular be applied to the Riemann problem (7)-
(8) for the case (𝑢

+
, 𝜌
+
) ∈ V(𝑢

−
, 𝜌
−
), which is equivalent to the

inequality

𝜆
1
(𝑢
+
, 𝜌
+
) < 𝜆
2
(𝑢
+
, 𝜌
+
) ≤ 𝜆
1
(𝑢
−
, 𝜌
−
) < 𝜆
2
(𝑢
−
, 𝜌
−
) ,

(34)

that is,

𝑢
+
< 𝑢
+
+
1

𝜌
+

≤ 𝑢
−
< 𝑢
−
+
1

𝜌
−

. (34
󸀠
)

At this moment, the Riemann solution is a delta shock wave
besides two constant states with the form

(𝑢, 𝜌) (𝑥, 𝑡)

=

{{{{

{{{{

{

(𝑢
−
, 𝜌
−
) , 𝑥 < 𝑥 (𝑡) ,

(𝑢
𝛿
(𝑡) , 𝑤 (𝑡) 𝛿 (𝑥 − 𝑥 (𝑡))) , 𝑥 = 𝑥 (𝑡) ,

(𝑢
+
, 𝜌
+
) , 𝑥 > 𝑥 (𝑡) .

(35)

To determine 𝑥(𝑡), 𝑤(𝑡), and 𝑢
𝛿
(𝑡) uniquely, we solve (30)

with initial data

𝑡 = 0 : 𝑥 (0) = 0, 𝑤 (0) = 0 (36)

under entropy condition (33) which is, at this moment,

𝑢
+
+
1

𝜌
+

≤ 𝑢
𝛿
(𝑡) ≤ 𝑢

−
. (33

󸀠
)

From (30) and (36), it follows that

𝑤 (𝑡) = − [𝜌] 𝑥 (𝑡) + [𝜌𝑢] 𝑡,

𝑤 (𝑡) 𝑢
𝛿
(𝑡) = − [𝜌𝑢] 𝑥 (𝑡) + [𝜌𝑢

2
+ 𝑢] 𝑡.

(37)

Multiplying the first equation in (37) by 𝑢
𝛿
(𝑡) and then sub-

tracting it from the second one, we obtain that

[𝜌] 𝑥 (𝑡) 𝑢
𝛿
(𝑡) − [𝜌𝑢] 𝑢

𝛿
(𝑡) 𝑡 − [𝜌𝑢] 𝑥 (𝑡) + [𝜌𝑢

2
+ 𝑢] 𝑡 = 0,

(38)



6 Advances in Mathematical Physics

or

𝑑

𝑑𝑡
(
[𝜌]

2
𝑥
2
(𝑡) − [𝜌𝑢] 𝑥 (𝑡) 𝑡 +

[𝜌𝑢
2
+ 𝑢]

2
𝑡
2
) = 0. (39)

It gives

[𝜌] 𝑥
2
(𝑡) − 2 [𝜌𝑢] 𝑥 (𝑡) 𝑡 + [𝜌𝑢

2
+ 𝑢] 𝑡

2
= 0. (40)

From (40), we can find that 𝑥󸀠(𝑡) = 𝑢
𝛿
(𝑡) := 𝑢

𝛿
is a constant

and 𝑥(𝑡) = 𝑢
𝛿
𝑡. Then (40) can be rewritten into

𝐻(𝑢
𝛿
) := [𝜌] 𝑢

2

𝛿
− 2 [𝜌𝑢] 𝑢

𝛿
+ [𝜌𝑢

2
+ 𝑢] = 0. (41)

When 𝜌
−
= 𝜌
+
, (41) is just a linear equation of 𝑢

𝛿
, and then

we have

𝑢
𝛿
=
(𝑢
−
+ 𝑢
+
+ (1/𝜌

−
))

2
,

𝑥 (𝑡) =
(𝑢
−
+ 𝑢
+
+ (1/𝜌

−
)) 𝑡

2
,

𝑤 (𝑡) = 𝜌
−
(𝑢
−
− 𝑢
+
) 𝑡,

(42)

which satisfies the entropy condition (33󸀠) obviously.
When 𝜌

−
̸= 𝜌
+
, (41) is just a quadratic equation with res-

pect to 𝑢
𝛿
, and the discriminant is

Δ = 4[𝜌𝑢]
2

− 4 [𝜌] [𝜌𝑢
2
+ 𝑢]

= 4𝜌
−
𝜌
+
(𝑢
−
− 𝑢
+
) (𝑢
−
+
1

𝜌
−

− 𝑢
+
−
1

𝜌
+

) > 0

(43)

by virtue of (34), and then we can find

𝑢
𝛿
=
[𝜌𝑢] − √[𝜌𝑢]

2

− [𝜌] [𝜌𝑢2 + 𝑢]

[𝜌]
,

𝑤 (𝑡) = √[𝜌𝑢]
2

− [𝜌] [𝜌𝑢2 + 𝑢] 𝑡,

𝑥 (𝑡) =
[𝜌𝑢] − √[𝜌𝑢]

2

− [𝜌] [𝜌𝑢2 + 𝑢]

[𝜌]
𝑡,

(44)

𝑢
𝛿
=
[𝜌𝑢] + √[𝜌𝑢]

2

− [𝜌] [𝜌𝑢2 + 𝑢]

[𝜌]
,

𝑤 (𝑡) = −√[𝜌𝑢]
2

− [𝜌] [𝜌𝑢2 + 𝑢] 𝑡,

𝑥 (𝑡) =
[𝜌𝑢] + √[𝜌𝑢]

2

− [𝜌] [𝜌𝑢2 + 𝑢]

[𝜌]
𝑡.

(45)

Next, with the help of the entropy condition (33󸀠), we
will choose the admissible solution to Riemann problem (7)-
(8) from (44) and (45). Taking into account (34󸀠), one can
calculate that

− [𝜌] 𝜆
1
(𝑢
−
, 𝜌
−
) + [𝜌𝑢] = 𝜌

+
(𝑢
−
− 𝑢
+
) > 0,

− [𝜌] 𝜆
2
(𝑢
+
, 𝜌
+
) + [𝜌𝑢] = 𝜌

−
(𝑢
−
+
1

𝜌
−

− 𝑢
+
−
1

𝜌
+

) > 0,

[𝜌] (𝜆
1
(𝑢
−
, 𝜌
−
))
2

− 2 [𝜌𝑢] 𝜆
1
(𝑢
−
, 𝜌
−
) + [𝜌𝑢

2
+ 𝑢]

= −𝜌
+
(𝑢
−
− 𝑢
+
) (𝑢
−
− 𝑢
+
−
1

𝜌
+

) ≤ 0,

[𝜌] (𝜆
2
(𝑢
+
, 𝜌
+
))
2

− 2 [𝜌𝑢] 𝜆
2
(𝑢
+
, 𝜌
+
) + [𝜌𝑢

2
+ 𝑢]

= 𝜌
−
(𝑢
−
− 𝑢
+
−
1

𝜌
+

)(𝑢
−
+
1

𝜌
−

− 𝑢
+
−
1

𝜌
+

) ≥ 0.

(46)

Then, for solution (44), we have

𝑢
𝛿
− 𝜆
2
(𝑢
+
, 𝜌
+
)

=
[𝜌𝑢] − √[𝜌𝑢]

2

− [𝜌] [𝜌𝑢2 + 𝑢]

[𝜌]
− 𝜆
2
(𝑢
+
, 𝜌
+
)

=
[𝜌] (𝜆

2
(𝑢
+
, 𝜌
+
))
2

− 2 [𝜌𝑢] 𝜆
2
(𝑢
+
, 𝜌
+
) + [𝜌𝑢

2
+ 𝑢]

(− [𝜌] 𝜆
2
(𝑢
+
, 𝜌
+
) + [𝜌𝑢]) + √[𝜌𝑢]

2

− [𝜌] [𝜌𝑢2 + 𝑢]

≥ 0,

𝑢
𝛿
− 𝜆
1
(𝑢
−
, 𝜌
−
)

=
[𝜌𝑢] − √[𝜌𝑢]

2

− [𝜌] [𝜌𝑢2 + 𝑢]

[𝜌]
− 𝜆
1
(𝑢
−
, 𝜌
−
)

=
[𝜌] (𝜆

1
(𝑢
−
, 𝜌
−
))
2

− 2 [𝜌𝑢] 𝜆
1
(𝑢
−
, 𝜌
−
) + [𝜌𝑢

2
+ 𝑢]

(− [𝜌] 𝜆
1
(𝑢
−
, 𝜌
−
) + [𝜌𝑢]) + √[𝜌𝑢]

2

− [𝜌] [𝜌𝑢2 + 𝑢]

≤ 0,

(47)

which imply that the entropy condition (33󸀠) is valid. One
can easily observe especially that, in the two inequali-
ties above, both of the signs “=” are valid if and only
if 𝜆
1
(𝑢
−
, 𝜌
−
) = 𝜆

2
(𝑢
+
, 𝜌
+
). In this case, we have 𝑢

𝛿
=

𝜆
1
(𝑢
−
, 𝜌
−
) = 𝜆
2
(𝑢
+
, 𝜌
+
).
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For solution (45), when 𝜌
−
< 𝜌
+
,

𝑢
𝛿
− 𝜆
2
(𝑢
+
, 𝜌
+
)

=
[𝜌𝑢] + √[𝜌𝑢]

2

− [𝜌] [𝜌𝑢2 + 𝑢]

[𝜌]
− 𝜆
2
(𝑢
+
, 𝜌
+
)

=
− [𝜌] 𝜆

2
(𝑢
+
, 𝜌
+
) + [𝜌𝑢] + √[𝜌𝑢]

2

− [𝜌] [𝜌𝑢2 + 𝑢]

[𝜌]

< 0,

(48)

and when 𝜌
−
> 𝜌
+
,

𝑢
𝛿
− 𝜆
1
(𝑢
−
, 𝜌
−
)

=
[𝜌𝑢] + √[𝜌𝑢]

2

− [𝜌] [𝜌𝑢2 + 𝑢]

[𝜌]
− 𝜆
1
(𝑢
−
, 𝜌
−
)

=
− [𝜌] 𝜆

1
(𝑢
−
, 𝜌
−
) + [𝜌𝑢] + √[𝜌𝑢]

2

− [𝜌] [𝜌𝑢2 + 𝑢]

[𝜌]

> 0.

(49)

These show that the solution (45) does not satisfy the entropy
condition (33󸀠).

Thus we have proved the following result.

Theorem 4. Let (𝑢
+
, 𝜌
+
) ∈ 𝑉 (𝑢

−
, 𝜌
−
). Then Riemann prob-

lem (8) for (7) admits one and only one entropy solution in the
sense of measures of the form

(𝑢, 𝜌) (𝑥, 𝑡)

=

{{

{{

{

(𝑢
−
, 𝜌
−
) , 𝑥 < 𝑢

𝛿
𝑡,

(𝑢
𝛿
, 𝑤 (𝑡) 𝛿 (𝑥 − 𝑢

𝛿
𝑡)) , 𝑥 = 𝑢

𝛿
𝑡,

(𝑢
+
, 𝜌
+
) , 𝑥 > 𝑢

𝛿
𝑡,

(50)

where 𝑢
𝛿
and 𝑤(𝑡) are shown in (42) for 𝜌

−
= 𝜌
+
or (44) for

𝜌
−
̸= 𝜌
+
.

At last, associating with the results in Section 2, we can
conclude the following.

Theorem 5. For Riemann problem (7)-(8), there exists a
unique entropy solution, which contains two different (or just
one) contact discontinuities when 𝑢

−
< 𝑢
+
+(1/𝜌

+
) and a delta

shock wave when 𝑢
−
≥ 𝑢
+
+ (1/𝜌

+
).

4. Numerical Simulations for
Riemann Solutions

In this section, by employing the Nessyahu-Tadmor scheme
[25] with 300 × 300 cells and 𝐶𝐹𝐿 = 0.475, we simulate

the obtained Riemann solutions in two cases 𝑢
−
< 𝑢
+
+(1/𝜌

+
)

and 𝑢
−
≥ 𝑢
+
+ (1/𝜌

+
). We take (𝑢

−
, 𝜌
−
) = (2, 1).

For the case 𝑢
−
< 𝑢
+
+ (1/𝜌

+
), we take (𝑢

+
, 𝜌
+
) = (4, 2),

and from (24), we can calculate (𝑢∗, 𝜌∗) = (2, 0.4). For
the case 𝑢

−
≥ 𝑢
+
+ (1/𝜌

+
), we take (𝑢

+
, 𝜌
+
) = (−1, 3, ).

The numerical results are presented in Figures 4 and 5, res-
pectively.

It can be clearly observed that the contact discontinuities
develop in Figure 4 while a delta shock wave is developed in
Figure 5. All the numerical results are in complete agreement
with the theoretical analysis.

5. Two kinds of Interactions of
Elementary Waves

In this section, we investigate two kinds of interesting inter-
actions of elementary waves by considering the initial-value
problem (9) for system (7).Thefirst case is that the interaction
of two contact discontinuities results in a delta shock wave.
The second case is that a delta shock wave vanishes after its
interaction with a contact discontinuity.

Case (i). Assume that the initial data in (9) satisfy

𝑢
−
+
1

𝜌
−

= 𝑢
𝑚
+
1

𝜌
𝑚

, 𝑢
𝑚
= 𝑢
+
. (51)

At this moment, a contact discontinuity ⃗𝐽 emits from (0, 0)
with a speed 𝑢

𝑚
+(1/𝜌

𝑚
) and a contact discontinuity←󳨀𝐽 emits

from (𝑎, 0)with a speed 𝑢
𝑚
, respectively. From 𝑢

𝑚
+(1/𝜌

𝑚
) >

𝑢
𝑚
, it is known that ⃗𝐽will overtake←󳨀𝐽 at a point (𝑥

0
, 𝑡
0
), which

can be calculated to be (𝑥
0
, 𝑡
0
) = (𝑎(𝜌

𝑚
𝑢
𝑚
+ 1), 𝑎𝜌

𝑚
). At

the moment 𝑡 = 𝑡
0
, a new Riemann problem is formed with

(𝑢
−
, 𝜌
−
) and (𝑢

+
, 𝜌
+
) on both sides.We consider the following

situation for 𝜌:

1

𝜌
𝑚

−
1

𝜌
−

≥
1

𝜌
+

, (52)

which means that from (51)

𝑢
−
≥ 𝑢
+
+
1

𝜌
+

. (53)

Then fromTheorem 5, it can be concluded that a delta shock
wave 𝛿 emits from the moment 𝑡 = 𝑡

0
, whose speed, location,

and weight can be obtained by solving (30) under (33) with
initial data

𝑡 = 𝑡
0
: 𝑥 (𝑡

0
) = 𝑥
0
, 𝑤 (𝑡

0
) = 0. (54)

See Figure 6(a), in which m = (𝑢
𝑖
, 𝜌
𝑖
) (𝑖 = −,𝑚, +).

Case (ii). Suppose the initial data (9) in satisfy

𝑢
−
≥ 𝑢
𝑚
+
1

𝜌
𝑚

, 𝑢
𝑚
= 𝑢
+
. (55)
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Figure 4: Numerical results for the case 𝑢
−
< 𝑢
+
+ (1/𝜌

+
) at 𝑡 = 0.2.
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Figure 5: Numerical results for the case 𝑢
−
≥ 𝑢
+
+ (1/𝜌

+
) at 𝑡 = 0.5.

At this time, a delta shock wave 𝛿 emits from (0, 0) with the
speed 𝜎 satisfying 𝑢

−
≥ 𝜎 ≥ 𝑢

𝑚
+ (1/𝜌

𝑚
) and a contact

discontinuity ←󳨀𝐽 emits from (𝑎, 0) with the speed 𝑢
𝑚
. Since

𝜎 ≥ 𝑢
𝑚
+ (1/𝜌

𝑚
) > 𝑢

𝑚
, 𝛿 will interact with ←󳨀𝐽 at a point

(𝑥
0
, 𝑡
0
) = (𝑎𝜎/(𝜎−𝑢

+
), 𝑎/(𝜎−𝑢

+
)). As before, at the moment

𝑡 = 𝑡
0
, a new Riemann problem is formed with (𝑢

−
, 𝜌
−
) and

(𝑢
+
, 𝜌
+
) on both sides. Let us suppose that the initial data

furthermore satisfy

𝑢
−
< 𝑢
+
+
1

𝜌
+

, (56)

then fromTheorem 5, we can conclude that two contact dis-
continuities emit form 𝑡 = 𝑡

0
as follows:

←󳨀
𝐽 :
𝑑𝑥

𝑑𝑡
= 𝑢
−
, ⃗𝐽 :

𝑑𝑥

𝑑𝑡
= 𝑢
+
+
1

𝜌
+

, (57)

and the intermediate states (𝑢∗, 𝜌∗) connecting two contact
discontinuities satisfy

𝑢
∗
= 𝑢
−
, 𝑢

∗
+
1

𝜌∗
= 𝑢
+
+
1

𝜌
+

. (58)

See Figure 6(b), in which ⊛ = (𝑢∗, 𝜌∗).
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Figure 6: Two kinds of interactions of elementary waves.
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