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We present two methods for solving a nonlinear system of fractional differential equations within Caputo derivative. Firstly, we
derive operational matrices for Caputo fractional derivative and for Riemann-Liouville fractional integral by using the Bernstein
polynomials (BPs). In the first method, we use the operational matrix of Caputo fractional derivative (OMCFD), and in the
second one, we apply the operational matrix of Riemann-Liouville fractional integral (OMRLFI). The obtained results are in good
agreement with each other as well as with the analytical solutions. We show that the solutions approach to classical solutions as the
order of the fractional derivatives approaches 1.

1. Introduction

Differential equations of fractional order have been subjected
to many studies due to their frequent appearance in vari-
ous applications in fluid mechanics, viscoelasticity, biology,
physics, engineering, and so on. Recently, a large amount of
literature was developed regarding the application of frac-
tional differential equations in nonlinear dynamics (see, e.g.,
[1–11] and the references therein). Thus, a huge attention has
been given to the solution of fractional ordinary differential
equations, integral equations, and fractional partial differ-
ential equations of physical interest. As it is known, there
exists no method that yields an exact solution for fractional
differential equations. Various methods have been proposed
in order to solve the fractional differential equations. These
methods include the homotopy perturbation method [12–
15], Adomian’s decomposition method [16–20], variation
iteration method [12–14, 21–23], homotopy analysis method
[24], differential transformmethod [25], operationalmatrices
[26–28], and nonstandard finite difference scheme [29].

In this paper, we investigate the nonlinear system of
fractional differential equations as

𝐷
𝛼𝑖𝑥
𝑖
(𝑡) = 𝑔

𝑖
(𝑡, 𝑋 (𝑡)) ,

𝑖 = 1, . . . , 𝑛, 0 < 𝑡 ≤ 1, 0 < 𝛼
𝑖
≤ 1,

(1)

and the initial condition

𝑋 (0) = 𝑋
0
, (2)

where 𝑋(𝑡) = [𝑥
1
(𝑡), . . . , 𝑥

𝑛
(𝑡)]
𝑇 and 𝑋

0
= [𝑥
0,1

, . . . , 𝑥
0,𝑛

]
𝑇.

Also, 𝑔
𝑖

: [0 , 1] × 𝑅
𝑛

→ 𝑅 are multivariable polynomial
functions.

The structure of the paper is given later. In Section 2,
we present some preliminaries and properties in fractional
calculus and Bernstein polynomials. In Section 3, we make
operational matrices for product, power, Caputo fractional
derivative, and Riemann-Liouville fractional integral by BPs.
In Section 4, we apply two methods for solving nonlinear
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system of fractional differential equations by BPs. In Sec-
tion 5, numerical examples are simulated to demonstrate the
high performance of the proposed method. Conclusions are
presented in Section 6.

2. Basic Tools

In this section, we recall some basic definitions and properties
of the fractional calculus and Bernstein polynomials.

Definition 1 (see [2, 7, 10]). The Riemann-Liouville fractional
integral operator of order 𝛼 ≥ 0, of a function 𝑓 ∈ 𝐶

𝜇
, 𝜇 ≥

−1, is defined as

𝐼
𝛼

𝑓 (𝑡) =
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑥)
𝛼−1

𝑓 (𝑥) 𝑑𝑥, 𝛼 > 0, 𝑡 > 0,

𝐼
0

𝑓 (𝑡) = 𝑓 (𝑡) ,

(3)

and for 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ 𝑁, 𝑡 > 0, 𝑓 ∈ 𝐶
𝑛

−1
, the fractional

derivative of 𝑓(𝑡) in the Caputo sense is defined as

𝐷
𝛼

𝑓 (𝑡) =
1

Γ (𝑛 − 𝛼)
∫

𝑡

0

(𝑡 − 𝑥)
𝑛−𝛼−1

𝑓
(𝑛)

(𝑥) 𝑑𝑥, (4)

where for 𝑛 ∈ 𝑁, 𝜇 ∈ 𝑅 we have

𝐶
𝜇
= {𝑓 (𝑡) | 𝑓 (𝑡) > 0 for 𝑡 > 0,

𝑓 (𝑡) = 𝑡
𝑝

𝑓
1
(𝑡) where 𝑝 > 𝜇, 𝑓

1
(𝑡) ∈ 𝐶 [0 ,∞)} ,

𝐶
𝑛

𝜇
= {𝑓 (𝑡) | 𝑓

(𝑛)

(𝑡) ∈ 𝐶
𝜇
} .

(5)

Also, if 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ 𝑁, and 𝑓 ∈ 𝐶
𝑛

𝜇
, 𝜇 ≥ −1, then

(1) 𝐷
𝛼

𝐼
𝛼

𝑓 (𝑡) = 𝑓 (𝑡) , (6)

(2) 𝐼
𝛼

𝐷
𝛼

𝑓 (𝑡) = 𝑓 (𝑡) −

𝑛−1

∑

𝑘=0

𝑓
(𝑘)

(0
+

)
𝑥
𝑘

𝑘!
, 𝑡 > 0. (7)

Definition 2 (see [30]). The Bernstein polynomials (BPs) of
𝑚th degree are defined on the interval [0, 1] as follows:

𝐵
𝑖,𝑚

(𝑥) = (
𝑚

𝑖
) 𝑥
𝑖

(1 − 𝑥)
𝑚−𝑖

, 𝑖 = 0, 1, . . . , 𝑚. (8)

Lemma 3. One can write Φ
𝑚
(𝑥) = 𝐴 𝑇

𝑚
(𝑥), where 𝐴 is

a matrix upper triangular, 𝑇
𝑚
(𝑥) = [1, 𝑥, . . . , 𝑥

𝑚

]
𝑇, and

Φ
𝑚
(𝑥) = [𝐵

0,𝑚
(𝑥), 𝐵

1,𝑚
(𝑥), . . . , 𝐵

𝑚,𝑚
(𝑥)]
𝑇.

Proof. (see [26]).

Definition 4. We can define the dual matrix 𝑄
(𝑚+1)×(𝑚+1)

on
the basis of Bernstein polynomials of 𝑚th degree as follows:

𝑄 = ∫

1

0

Φ (𝑥)Φ(𝑥)
𝑇

𝑑𝑥, (9)

where

(𝑄)
𝑖+1,𝑗+1

= ∫

1

0

𝐵
𝑖,𝑚

(𝑥) 𝐵
𝑗,𝑚

(𝑥) 𝑑𝑥

=
(
𝑚

𝑖
) (
𝑚

𝑗 )

(2𝑚 + 1) (
2𝑚

𝑖+𝑗
)

, 𝑖, 𝑗 = 0, 1, . . . , 𝑚.

(10)

Lemma 5. Let 𝐿
2

[0, 1] be a Hilbert space with the inner
product ⟨𝑓, 𝑔⟩ = ∫

1

0

𝑓(𝑥)𝑔(𝑥)𝑑𝑥 and 𝑦 ∈ 𝐿
2

[0 , 1]. Then,
we can find the unique vector 𝑐 = [𝑐

0
, 𝑐
1
, . . . , 𝑐

𝑚
]
𝑇 such

that 𝑐
𝑇

Φ
𝑚
(𝑥) is the best approximation of 𝑦(𝑥) from space

𝑆
𝑚

= Span{𝐵
0,𝑚

(𝑥), 𝐵
1,𝑚

(𝑥), . . . , 𝐵
𝑚,𝑚

(𝑥)}. Moreover, one can
get 𝑐 = 𝑄

−1

⟨𝑦, Φ
𝑚
⟩, such that ⟨𝑦, Φ

𝑚
⟩ = [⟨𝑦, 𝐵

0,𝑚
⟩,

⟨𝑦, 𝐵
1,𝑚

⟩, . . . , ⟨𝑦 , 𝐵
𝑚,𝑚

⟩]
𝑇.

Proof. (see [31]).
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Figure 4: Plot of absolute error function 𝑥
2
(𝑡) for 𝛼
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= 𝛼
2
= 1 and 𝑚 = 10 by OMCFD and OMRLFI in Example 12.

Lemma 6. Suppose that the function 𝑦 : [0 , 1] → 𝑅 is𝑚+1

times continuously differentiable (𝑖.𝑒., 𝑦 ∈ 𝐶
𝑚+1

([0, 1])). If
𝑐
𝑇

𝐵 is the best approximation 𝑦 out of 𝑆
𝑚
, then


𝑦 − 𝑐
𝑇

𝐵
𝐿2[0,1]

≤
�̂�

(𝑚 + 1)!√2𝑚 + 3
, (11)

where �̂� = max
𝑥∈[0,1]

|𝑦
(𝑚+1)

(𝑥)|. Also, if 𝑦 ∈ 𝐶
∞

([0 , 1]), then
the error bound vanishes.

Proof. (see [32]).

3. Operational Matrices of
Bernstein Polynomials

In Section 3, we recall the operational matrices for product,
power, Caputo fractional derivative and Riemann-Liouville
fractional integral by BPs.

Lemma 7. Suppose that 𝑐
(𝑚+1)×1

is an arbitrary vector. The
operational matrix of product �̂�

(𝑚+1)×(𝑚+1)
using BPs can be

given as follows:

𝑐
𝑇

Φ
𝑚

(𝑥)Φ
𝑚
(𝑥)
𝑇

≈ Φ
𝑚
(𝑥)
𝑇

�̂�. (12)

Proof. (see [27]).

Corollary 8. Suppose that 𝑦(𝑡) ≈ 𝑐
𝑇

Φ
𝑚
(𝑡), 𝑥(𝑡) ≈ 𝑑

𝑇

Φ
𝑚
(𝑡),

and �̂�
(𝑚+1)×(𝑚+1)

is the operational matrix of product using BPs
for vector 𝑐. One can get the approximate function for 𝑥(𝑡)𝑦(𝑡)

using BPs as follows:

𝑦 (𝑡) 𝑥 (𝑡) ≈ Φ
𝑚
(𝑡)
𝑇

�̂�𝑑. (13)

Proof. By using Lemma 7, it is clear.

Corollary 9. Suppose that 𝑦(𝑡) ≈ 𝑐
𝑇

Φ
𝑚
(𝑡) and �̂�

(𝑚+1)×(𝑚+1)

is the operational matrix of product using BPs for vector 𝑐. One
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can get the approximate function for 𝑦𝑘(𝑡) (𝑘 ∈ 𝑁), using BPs
as follows:

𝑦
𝑘

(𝑡) ≈ Φ
𝑚
(𝑡)
𝑇

�̃�
𝑘
, (14)

where �̃�
𝑘
= �̂�
𝑘−1

𝑐.

Proof. (see [26]).

Theorem 10. One can get BPs operational matrix 𝐷
𝛼
from

order (𝑚 + 1) × (𝑚 + 1) for the Caputo fractional derivative
as follows:

𝐷
𝛼

Φ
𝑚

(𝑡) =
1

Γ (𝑛 − 𝛼)
∫

𝑡

0

(𝑡 − 𝑥)
𝑛−𝛼−1

Φ
(𝑛)

𝑚
(𝑥) 𝑑𝑥

≈ 𝐷
𝛼
Φ
𝑚

(𝑡) .

(15)

Proof. See [26] for details.
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Theorem 11. One can obtain the operational matrix 𝐹
𝛼

from
order (𝑚 + 1) × (𝑚 + 1) for the Riemann-Liouville fractional
integral on the basis of BPs from order 𝑚 as

𝐼
𝛼

Φ
𝑚

(𝑡) =
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑥)
𝛼−1

Φ
𝑚

(𝑥) 𝑑𝑥 ≈ 𝐹
𝛼
Φ
𝑚

(𝑡) . (16)

Proof. See [28] for details.

4. Solving System of Fractional
Differential Equations

In this section, we use two methods for solving system
of fractional differential equations. In the first method, we
use the operational matrix for Caputo fractional deriva-
tive (OMCFD), and in the second method, we apply the
operational matrix for Riemann-Liouville fractional integral
(OMRLFI).

4.1. Solving the Problem by OMCFD. Using Lemma 5, we can
approximate the functions 𝑥

𝑖
(𝑡) as follows:

𝑥
𝑖
(𝑡) ≈ 𝐶

𝑇

𝑖
Φ
𝑚

(𝑡) , 𝑖 = 1, . . . , 𝑛, (17)

where 𝐶
𝑖
∈ 𝑅
(𝑚+1)×1.
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From (17) and (15) we can write

𝐷
𝛼𝑖𝑥
𝑖
(𝑡) ≈ 𝐶

𝑇

𝑖
𝐷
𝛼𝑖
Φ
𝑚

(𝑡) , 𝑖 = 0, . . . , 𝑛. (18)

Therefore, problem (1) and (2) reduces to the following
problem:

𝐶
𝑇

𝑖
𝐷
𝛼𝑖
Φ
𝑚

(𝑡) = 𝑔
𝑖
(𝑡, 𝐶
𝑇

1
Φ
𝑚

(𝑡) , . . . , 𝐶
𝑇

𝑛
Φ
𝑚

(𝑡)) ,

𝑖 = 1, . . . , 𝑛,

(19)

and the initial condition

𝐶
𝑇

𝑖
Φ
𝑚

(0) = 𝑥
0,𝑖
, 𝑖 = 1, . . . , 𝑛. (20)

Now, using Lemma 5 we can approximate all of the known
functions in the system (19). Then, by using Lemma 7 and
Corollaries 8 and 9, since functions 𝑔

𝑖
are polynomial, we

obtain the following approximations:

𝑔
𝑖
(𝑡, 𝑋 (𝑡)) ≈ 𝐺

𝑖
(𝐶
1
, . . . , 𝐶

𝑛
)Φ
𝑚

(𝑡) , 𝑖 = 1, . . . , 𝑛, (21)

where 𝐺
𝑖

: 𝑅
(𝑚+1)×𝑛

→ 𝑅
1×(𝑚+1).

Also, for each 𝑖 (𝑖 = 1, . . . , 𝑛), by using taumethod [33] we
can generate algebraic equations from (19) and (21) as follows

�̃�
𝑖,𝑗

= ∫

1

0

(𝐶
𝑇

𝑖
𝐷
𝛼 𝑖

− 𝐺
𝑖
(𝐶
1
, . . . , 𝐶

𝑛
))

× Φ
𝑚

(𝑡) 𝐵
𝑗,𝑚

(𝑡) 𝑑𝑡 = 0, 𝑗 = 0, . . . , 𝑚 − 1,

(22)

and from (23) we set �̃�
𝑖,𝑚

= 𝐶
𝑇

𝑖
Φ
𝑚
(0) − 𝑥

0,𝑖
.

Finally, problem (1) and (2) has been reduced to the
system of algebraic equations

�̃�
𝑖,𝑗

(𝐶
1
, . . . , 𝐶

𝑛
) = 0, 𝑖 = 1, . . . , 𝑛, 𝑗 = 0, . . . , 𝑚. (23)

The aforementioned system can be solved for 𝐶
𝑖
by Newton’s

iterative method. Then, we get the approximate value of the
functions 𝑥

𝑖
(𝑡) from (17).

4.2. Solving the Problem byOMRLFI. Thismethod consists of
two steps.

Step 1. Initial conditions are used to reduce a given initial-
value problem to a problem with zero initial conditions.
Therefore we have a modified system, incorporating the
initial values.

Step 2. The BPs operational matrix of Riemann-Liouville
fractional integral is used to transform the problem into a
system of algebraic equations.

Now, from (2) we define

𝑥
𝑖
(𝑡) = 𝑥

0,𝑖
+ 𝑧
𝑖
(𝑡) , 𝑖 = 1, 2, . . . , 𝑛, (24)

where 𝑧
𝑖
(𝑡), 𝑖 = 1, 2, . . . , 𝑛, are the new unknown functions.

Substituting (24) in (1) and (2), we have the following
system:

𝐷
𝛼𝑖𝑧
𝑖
(𝑡) = 𝑓

𝑖
(𝑡, 𝑍 (𝑡)) ,

𝑖 = 1, . . . , 𝑛, 0 < 𝑡 ≤ 1, 0 < 𝛼
𝑖
≤ 1,

(25)

and the initial condition

𝑧
𝑖
(0) = 0, 𝑖 = 1, . . . , 𝑛, (26)

where 𝑍(𝑡) = [𝑧
1
(𝑡), . . . , 𝑧

𝑛
(𝑡)]
𝑇 and 𝑓

𝑖
: [0, 1] × 𝑅

𝑛

→ 𝑅

are multivariable polynomial functions.We use the following
approximation:

𝐷
𝛼𝑖𝑧
𝑖
(𝑡) ≈ �̃�

𝑇

𝑖
Φ
𝑚

(𝑡) , 𝑖 = 1, . . . , 𝑛, (27)

where �̃�
𝑖
∈ 𝑅
(𝑚+1)×1 are unknown vectors. From (7), (27),

andTheorem 11, we can write

𝑧
𝑖
(𝑡) = 𝐼

𝛼𝑖𝐷
𝛼𝑖𝑧
𝑖
(𝑡) ≈ 𝐼

𝛼𝑖 (�̃�
𝑇

𝑖
Φ
𝑚

(𝑡))

= �̃�
𝑇

𝑖
𝐼
𝛼𝑖Φ
𝑚

(𝑡) ≈ �̃�
𝑇

𝑖
𝐹
𝛼𝑖
Φ
𝑚

(𝑡) .

(28)
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Figure 9: Approximate solutions of 𝑥
1
(𝑡) for 𝑚 = 10 and different

values of 𝛼
1
, 𝛼
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3
by OMCFD and OMRLFI in Example 14.

So, by (27) and (28), problem (25) and (26) reduces to the
following problem:

�̃�
𝑇

𝑖
Φ
𝑚

(𝑡) = 𝑓
𝑖
(𝑡, �̃�
𝑇

1
𝐹
𝛼1
Φ
𝑚

(𝑡) , . . . , �̃�
𝑇

𝑛
𝐹
𝛼𝑛
Φ
𝑚

(𝑡)) ,

𝑖 = 1, . . . , 𝑛.

(29)

Aswe saw in the previous section, we can obtain the following
approximations:

𝑓
𝑖
(𝑡, 𝑋 (𝑡)) ≈ 𝐹

𝑖
(�̃�
1
, . . . , �̃�

𝑛
)Φ
𝑚

(𝑡) , 𝑖 = 1, . . . , 𝑛, (30)

where 𝐹
𝑖

: 𝑅
(𝑚+1)×𝑛

→ 𝑅
1×(𝑚+1). So, from (29) and (30) we

have

(�̃�
𝑇

𝑖
− 𝐹
𝑖
(�̃�
1
, . . . , �̃�

𝑛
))Φ
𝑚

(𝑡) = 0, 𝑖 = 1, . . . , 𝑛. (31)

Therefore, we have reduced problem (1) and (2) to the system
of algebraic equations as follows:

�̃�
𝑇

𝑖
− 𝐹
𝑖
(�̃�
1
, . . . , �̃�

𝑛
) = 0, (32)

where this system can be solved for �̃�
𝑖
by Newton’s iterative

method. Finally we obtain the approximate of the functions
𝑥
𝑖
(𝑡) by

𝑥
𝑖
(𝑡) ≈ 𝑥

0,𝑖
+ �̃�
𝑇

𝑖
𝐹
𝛼𝑖
Φ
𝑚

(𝑡) , 𝑖 = 1, 2, . . . , 𝑛. (33)

5. Examples

To demonstrate the applicability and to validate the numer-
ical scheme, we apply the present method for the following
examples.

Example 12. Consider the following linear system of frac-
tional differential equations [24, 25]:

𝐷
𝛼1𝑥
1
(𝑡) = 𝑥

1
(𝑡) + 𝑥

2
(𝑡) ,

𝐷
𝛼2𝑥
2
(𝑡) = −𝑥

1
(𝑡) + 𝑥

2
(𝑡) , 0 < 𝛼

1
, 𝛼
2
≤ 1,

(34)
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Figure 10: Approximate solutions of 𝑥
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values of 𝛼
1
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by OMCFD and OMRLFI in Example 14.
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with initial condition

𝑥
1
(0) = 0, 𝑥

2
(0) = 1. (35)

For this problemwe have the exact solution in the case of𝛼
1
=

𝛼
2
= 1 as

𝑥
1
(𝑡) = 𝑒

𝑡 sin (𝑡) ,

𝑥
2
(𝑡) = 𝑒

𝑡 cos (𝑡) .
(36)

We solved this problem by OMCFD and OMRLFI. Figures
1 and 2 show the approximate solutions of 𝑥

1
(𝑡) and 𝑥

2
(𝑡),

respectively, as a function of time for 𝑚 = 10, for different
values of 𝛼

1
, 𝛼
2
. The results show that numerical solutions

are in good agreement with each other, in both methods.
Also, these figures show that as 𝛼

1
, 𝛼
2
approach close to 1, the

numerical solutions approach to the solutions for𝛼
1
= 𝛼
2
= 1

as expected. In Figures 3 and 4, we see the absolute error of
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Figure 12: Plot of absolute error function 𝑥
1
(𝑡) for 𝛼

1
= 𝛼
2
= 𝛼
3
= 1

and 𝑚 = 10 by OMCFD and OMRLFI in Example 14.

both methods, for 𝑚 = 10, 𝛼
1

= 𝛼
2

= 1. In these figures,
we can see that obtained results using the presented methods
agree well with the analytical solutions for 𝛼

1
= 𝛼
2
= 1.

Example 13. Let us consider the following nonlinear frac-
tional system [24] as follows:

𝐷
𝛼1𝑥
1
(𝑡) =

𝑥
1
(𝑡)

2
,

𝐷
𝛼2𝑥
2
(𝑡) = 𝑥

2

1
(𝑡) + 𝑥

2
(𝑡) , 0 < 𝛼

1
, 𝛼
2
≤ 1,

(37)

such that

𝑥
1
(0) = 1, 𝑥

2
(0) = 0. (38)

The exact solution of this system, when 𝛼
1
= 𝛼
2
= 1, is

𝑥
1
(𝑡) = 𝑒

𝑡/2

,

𝑥
2
(𝑡) = 𝑡𝑒

𝑡

.

(39)

Figures 5 and 6 show the approximate solutions of 𝑥
1
(𝑡) and

𝑥
2
(𝑡), respectively, for different values of 𝛼

1
, 𝛼
2
by OMCFD
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Figure 13: Plot of absolute error function 𝑥
2
(𝑡) for 𝛼

1
= 𝛼
2
= 𝛼
3
= 1

and 𝑚 = 10 by OMCFD and OMRLFI in Example 14.

and OMRLFI. We conclude that as 𝛼
1
, 𝛼
2
approach close to 1,

the numerical solutions approach solutions for 𝛼
1

= 𝛼
2

= 1

as expected. Furthermore, in both methods, the results agree
well with each other. Figures 7 and 8 show that, the absolute
error of obtained results for 𝑚 = 10 and 𝛼

1
= 𝛼
2

= 1 using
OMCFD and OMRLFI is in good agreement with the exact
solution.

Example 14. Consider the nonlinear system of fractional
differential equations [24]:

𝐷
𝛼1𝑥
1
(𝑡) = 𝑥

1
(𝑡) ,

𝐷
𝛼2𝑥
2
(𝑡) = 2𝑥

2

1
(𝑡) ,

𝐷
𝛼3𝑥
3
(𝑡) = 3𝑥

1
(𝑡) 𝑥
2
(𝑡) , 0 < 𝛼

1
, 𝛼
2
, 𝛼
3
≤ 1,

(40)

with the initial conditions given by

𝑥
1
(0) = 1, 𝑥

2
(0) = 1, 𝑥

3
(0) = 0. (41)
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3
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and 𝑚 = 10 by OMCFD and OMRLFI in Example 14.

The exact solution of this system, when 𝛼
1

= 𝛼
2

= 𝛼
3

= 1,
becomes

𝑥
1
(𝑡) = 𝑒

𝑡

,

𝑥
2
(𝑡) = 𝑒

2𝑡

,

𝑥
3
(𝑡) = 𝑒

3𝑡

− 1.

(42)

We can see the approximate solutions of 𝑥
1
(𝑡), 𝑥
2
(𝑡) and

𝑥
3
(𝑡), by OMCFD and OMRLFI for 𝑚 = 10 and different

values of 𝛼
1
, 𝛼
2
and 𝛼

3
, in Figures 9, 10, and 11. These figures

show that, when 𝛼
1
, 𝛼
2
, and 𝛼

3
approach close to 1, the

numerical solutions approach the solutions for 𝛼
1

= 𝛼
2

=

𝛼
3
= 1 as expected. In Figures 9–11, we observe that results of

OMCFD and OMRLFI overlap. In Figures 12, 13, and 14, we
see the absolute error of the obtained results for 𝑚 = 10 and
𝛼
1
= 𝛼
2
= 𝛼
3
= 1 in both methods.

6. Conclusion

In this paper, we get operational matrices of the product,
Caputo fractional derivative, and Riemann-Liouville frac-
tional integral by Bernstein polynomials. Then by using

these matrices, we proposed two methods that reduced the
nonlinear systems of fractional differential equations to the
two system of algebraic equations that can be solved easily.
Finally, numerical examples are simulated to demonstrate the
high performance of the proposed method. We saw that the
results of both methods were in good agreement with each
other, and the classical solutions were recovered when the
order of the fractional derivative goes to 1.
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