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We consider a class of nonlinear two-dimensional dynamic systems of the neutral type (𝑥(𝑡)−𝑎(𝑡)𝑥(𝜏
1
(𝑡)))
Δ

= 𝑝(𝑡)𝑓
1
(𝑦(𝑡)), 𝑦

Δ
(𝑡) =

−𝑞(𝑡)𝑓
2
(𝑥(𝜏
2
(𝑡))). We obtain sufficient conditions for all solutions of the system to be oscillatory. Our oscillation results when

𝑎(𝑡) = 0 improve the oscillation results for dynamic systems on time scales that have been established by Fu and Lin (2010), since
our results do not restrict to the case where 𝑓(𝑢) = 𝑢. Also, as a special case when T = R, our results do not require 𝑎

𝑛
to be a

positive real sequence. Some examples are given to illustrate the main results.

1. Introduction

In this paper, we are concerned with oscillation of the two-
dimensional nonlinear neutral dynamic systems

(𝑥 (𝑡) − 𝑎 (𝑡) 𝑥 (𝜏
1
(𝑡)))
Δ

= 𝑝 (𝑡) 𝑓
1
(𝑦 (𝑡)) ,

𝑦
Δ
(𝑡) = −𝑞 (𝑡) 𝑓

2
(𝑥 (𝜏
2
(𝑡))) ,

(1)

on time scales. Since we are interested in the oscillatory
behavior of the solution of system (1) near infinity, we will
assume throughout this paper that the time scales T are
unbounded. We assume that 𝑡

0
∈ T , and it is convenient to

let 𝑡
0

> 0, and define the time scale interval 𝑡 ∈ [𝑡
0
,∞)T by

𝑡 ∈ [𝑡
0
,∞)T := [𝑡

0
,∞) ∩ T . For system (1), we assume that

(𝐻
1
) 𝑎(𝑡) ∈ 𝐶([𝑡

0
,∞)T ,R), and −1 < 𝑎(𝑡) ≤ 1;

(𝐻
2
) 𝜏
𝑖
(𝑡) = 𝑡 − 𝛿

𝑖
, where 𝛿

𝑖
≥ 0, 𝑖 = 1, 2;

(𝐻
3
) 𝑝(𝑡) and 𝑞(𝑡) are real valued positive and rd-

continuous functions defined on T , and ∫
∞

𝑡0

𝑝(𝑡)Δ𝑡 =

∞;
(𝐻
4
) 𝑓
𝑖

: R → R are continuous, nondecreasing
with 𝑢𝑓

𝑖
(𝑢) > 0 for 𝑢 ̸= 0, 𝑖 = 1, 2. There exists

continuous function ℎ : R × R → R such that
𝑓
1
(𝑢)−𝑓

1
(V) = ℎ(𝑢, V)(𝑢−V) for all 𝑢 ̸= V, and ℎ(𝑢, V) >

𝛽
1
> 0 for all 𝑢, V ∈ R. |𝑓

2
(𝑢)| ≥ 𝛽

2
|𝑢|, where 𝛽

2
is a

positive constant.

The theory of time scales, which has recently a lot of
attention, was introduced by Hilger in his Ph.D. degree thesis
in 1988 in order to unify continuous and discrete analysis
(see [1]). Not only can this theory of the so-called “dynamic
equations” unify the theories of differential equations and
difference equations, but also extend these classical cases to
cases “in between,” for example, to the so-called 𝑞-difference
equations and can be applied on other different types of time
scales. Since Hilger formed the definition of derivatives and
integrals on time scales, several authors have expounded on
various aspects of the new theory; see the paper in [2] and the
references cited therein. A book on the subject of time scales
in [3] summarizes and organizes much of time scale calculus.
The reader is referred to [3], Chapter 1, for the necessary time
scale definitions and notations used throughout this paper.

Our main interest in this paper is to establish some
oscillation results for system (1). We will relate our results to
some earlier work for system (1). In the special case when
T = N, system (1) becomes the two-dimensional difference
system

Δ (𝑥
𝑛
− 𝑎
𝑛
𝑥
𝜏1(𝑛)

) = 𝑝
𝑛
𝑓
1
(𝑦
𝑛
) ,

Δ𝑦
𝑛
= −𝑞
𝑛
𝑓
2
(𝑥
𝜏2(𝑛)

) .

(2)

If 𝑎
𝑛
is a positive real sequence, the oscillatory property of

system (2) has been receiving attention. We refer the reader
to the papers [4, 5] and the references cited therein. However,
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system (1) have been restricted to the case when 0 < 𝑎(𝑡) ≤ 1

in paper [4].
On the other hand, system (1) reduces to some important

second-order dynamic equations in the particular case; for
example,

(𝑟 (𝑡) 𝑥
Δ
(𝑡))
Δ

+ 𝑝 (𝑡) 𝑓 (𝑥 (𝜏 (𝑡))) = 0,

(𝑝 (𝑡) ([𝑦 (𝑡) + 𝑟 (𝑡) 𝑦 (𝜏 (𝑡))]
Δ

)
𝛾

)
Δ

+ 𝑓 (𝑡, 𝑦 (𝜃 (𝑡))) = 0,

𝛾 ≥ 1.

(3)

We refer the reader to the recent papers [6–9] and the
references cited therein. However, there are few works about
oscillation of dynamic systems on time scales, motivated by
[4] and the references cited therein, and in this paper, we
investigate oscillatory properties for system (1). In Section 2,
we present some basic definitions concerning the calculus on
time scales. In Section 3, we discuss the case 0 < 𝑎(𝑡) ≤ 1; the
case −1 < 𝑎(𝑡) ≤ 0 will be studied in Section 4. Examples are
given in Section 5 to illustrate our theorems.

2. Preliminary

For completeness, we recall the following concepts and results
concerning time scales that we will use in the sequel. More
details can be found in [10–12].

The forward and backward jump operators are defined by

𝜎 (𝑡) := inf {𝑠 ∈ T : 𝑠 > 𝑡} , 𝜌 (𝑡) := sup {𝑠 ∈ T : 𝑠 < 𝑡} ,

(4)

where inf 0 := sup T and sup 0 := inf T , where 0 denotes
the empty set. A point 𝑡 ∈ T is called left-dense if 𝑡 > inf T
and 𝜌(𝑡) = 𝑡, right-dense if 𝑡 < sup T and 𝜎(𝑡) = 𝑡, left-
scattered if 𝜌(𝑡) < 𝑡, and right-scattered if𝜎(𝑡) > 𝑡. A function
𝑔 : T → R is said to be rd-continuous if it is continuous
at every right-dense point and if the left-sided limit exists
at every left-dense point. The set of all such rd-continuous
functions is denoted by 𝐶rd(T). The graininess function 𝜇 for
a time scale T is defined by 𝜇(𝑡) := 𝜎(𝑡) − 𝑡, and for any
function 𝑓(𝑡) : T → R, the notation 𝑓

𝜎(𝑡) denotes 𝑓(𝜎(𝑡)).
A function 𝑃 : T → R is called positively regressive (we

write 𝑝 ∈ R+) if it is rd-continuous function and satisfies
1 + 𝜇(𝑡)𝑝(𝑡) > 0 for all 𝑡 ∈ T . For a function 𝑓 : T → R, the
(delta) derivative is defined by

𝑓
Δ
(𝑡) =

𝑓 (𝜎 (𝑡)) − 𝑓 (𝑡)

𝜎 (𝑡) − 𝑡
, (5)

if 𝑓 is continuous at 𝑡 and 𝑡 is right-scattered. If 𝑡 is not right-
scattered, then the derivative is defined by

𝑓
Δ
(𝑡) = lim
𝑠→ 𝑡

𝑓 (𝑡) − 𝑓 (𝑠)

𝑡 − 𝑠
, (6)

provided this limit exists. A function 𝑓 : [𝑎, 𝑏] → R is said
to be right-dense continuous if it is right continuous at each

right-dense point and there exists a finite left limit at all left-
dense points, and 𝑓 is said to be differentiable if its derivative
exists. A useful formula is

𝑓
𝜎
= 𝑓 (𝜎 (𝑡)) = 𝑓 (𝑡) + 𝜇 (𝑡) 𝑓

Δ
(𝑡) . (7)

Assume that 𝑓, 𝑔 : T → R are differentiable at 𝑡 ∈ T and
𝑓(𝑡)𝑓

𝜎(𝑡) ̸= 0; then, 𝑔/𝑓 is differentiable at 𝑡 and

(
𝑔

𝑓
)

Δ

(𝑡) =
𝑓 (𝑡) 𝑔

Δ
(𝑡) − 𝑓

Δ
(𝑡) 𝑔
𝜎
(𝑡)

𝑓 (𝑡) 𝑓𝜎 (𝑡)
. (8)

If 𝑓, 𝑔 ∈ 𝐶rd and 𝑎, 𝑏 ∈ T , then

∫
𝑏

𝑎

𝑓 (𝑡) 𝑔
Δ
(𝑡) Δ𝑡 = (𝑓𝑔) (𝑏) − (𝑓𝑔) (𝑎) − ∫

𝑏

𝑎

𝑓
Δ
(𝑡) 𝑔
𝜎
(𝑡) Δ𝑡.

(9)

Assume that 𝑔 : T → R is continuously differentiable
and 𝑓 : T → R is delta differentiable. Then, 𝑔 ∘ 𝑓 : T → R

is differentiable and

(𝑔 ∘ 𝑓)
Δ

(𝑡) = ∫
1

0

𝑔

(𝑓 (𝑡) + ℎ𝜇 (𝑡) 𝑓

Δ
(𝑡)) 𝑑ℎ𝑓

Δ
(𝑡) . (10)

Hilger [1] showed that for 𝑝(𝑡) to be rd-continuous and
regressive, the solution of the initial value problem

𝑦
Δ
+ 𝑝 (𝑡) 𝑦 = 0, 𝑦 (𝑡

0
) = 1 (11)

is given by

𝑦 (𝑡) = exp{∫
𝑡

𝑡0

𝜁
𝜇(𝑠)

(−𝑝 (𝑠)) Δ𝑠} 𝑦 (𝑡
0
) = 𝑒
−𝑝

(𝑡, 𝑡
0
) 𝑦 (𝑡
0
) ,

(12)

where

𝜁
ℎ
(𝑧) =

{

{

{

log (1 + ℎ𝑧)

ℎ
, ℎ ̸= 0,

𝑧, ℎ = 0,

𝑒
𝑝
(𝑡, 𝑠) = exp{∫

𝑡

𝑠

𝜁
𝜇(𝜏)

(𝑝 (𝜏)) Δ𝜏} , 𝑠, 𝑡 ∈ T .

(13)

3. The Case 0 < 𝑎(𝑡) ≤ 1

In this section, we always assume that

0 < 𝑎 (𝑡) ≤ 1. (14)

For any 𝑥(𝑡), we define 𝑧(𝑡) by

𝑧 (𝑡) = 𝑥 (𝑡) − 𝑎 (𝑡) 𝑥 (𝜏
1
(𝑡)) . (15)

In the following, we will give some lemmas which are
important in proving our first results.

Lemma 1. Suppose that (𝐻
2
)–(𝐻
4
) and (14) hold, and

(𝑥(𝑡), 𝑦(𝑡)) is a solution of system (1)with𝑥(𝑡) eventually of one
sign for 𝑡 ∈ [𝑡

0
,∞)T . Then, (𝑥(𝑡), 𝑦(𝑡)) is nonoscillatory, and

there exists 𝑡
1
∈ [𝑡
0
,∞)T such that 𝑧(𝑡) and 𝑦(𝑡) are monotone

for 𝑡 ∈ [𝑡
1
,∞)T .
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Proof. Assume that (𝑥(𝑡), 𝑦(𝑡)) is a solution of system (1)
and 𝑥(𝑡) is nonoscillatory. Then, in view of (𝐻

3
) and the

hypothesis on 𝑓
2
, from the second equation of system (1),

we have either 𝑦Δ(𝑡) ≤ 0 or ≥0 for all 𝑡 ≥ 𝑡
1

≥ 𝑡
0
. Thus

𝑦(𝑡) is monotone and 𝑦(𝑡) is eventually of one sign for all
sufficiently large 𝑡 ≥ 𝑡

2
. Now, from the first equation of system

(1), we can prove that 𝑧(𝑡) is monotone and nonoscillatory for
all sufficiently large 𝑡 ≥ 𝑡

2
. This completes the proof of the

lemma.

Lemma 2. Suppose that (𝐻
2
) and (14) hold. Let 𝑥(𝑡) be a

nonoscillatory solution of the inequality

𝑥 (𝑡) [𝑥 (𝑡) − 𝑎 (𝑡) 𝑥 (𝜏
1
(𝑡))] ≤ 0 (16)

defined for all sufficiently large 𝑡. Then, 𝑥(𝑡) is bounded.

Proof. Without loss of generality, we may assume that 𝑥(𝑡)

is an eventually positive solution of inequality (16), and the
proof for the case 𝑥(𝑡) eventually negative is similar. From
(16), we have

𝑥 (𝑡) − 𝑎 (𝑡) 𝑥 (𝜏
1
(𝑡)) ≤ 0 (17)

for all sufficiently large 𝑡. In view of (14), we have

𝑥 (𝑡) ≤ 𝑎 (𝑡) 𝑥 (𝜏
1
(𝑡)) ≤ 𝑥 (𝜏

1
(𝑡)) . (18)

Hence, 𝑥(𝑡) is bounded.

We now establish some sufficient conditions for the
oscillation of (1) by reducing our study to a first-order delay
dynamic inequality where we apply the results of Zhang and
Deng [12]. The main result from [12] is the following lemma.

Lemma 3. Assume that 𝑏(𝑡) > 0, 𝜏(𝑡) < 𝑡 and lim
𝑡→∞

𝜏(𝑡) =

∞. If

lim
𝑡→∞

sup sup
𝜆>0,−𝜆𝑏∈R+

𝜆𝑒
−𝜆𝑏

(𝑡, 𝜏 (𝑡)) < 1, (19)

then the inequality

𝑥
Δ
(𝑡) + 𝑏 (𝑡) 𝑥 (𝜏 (𝑡)) ≤ 0 (20)

cannot have an eventually positive solution, and the inequality

𝑥
Δ
(𝑡) + 𝑏 (𝑡) 𝑥 (𝜏 (𝑡)) ≥ 0 (21)

cannot have an eventually negative solution.

Now, we state and prove our main theorem.

Theorem 4. Assume that 𝑎(𝑡) is bounded and 𝑓
1
∈ 𝐶1(R,R)

with 𝑓
1
(𝑢) ≥ 𝐾 > 0. Denote that 𝐴(𝑡) = ∫

𝑡

𝑡0

𝑝(𝑠)Δ𝑠. If there
exists constant 𝑘 such that 𝛿

2
> 𝑘 + 𝛿

1
such that

lim
𝑡→∞

sup{𝐴 (𝑡) ∫
∞

𝑡+𝛿2

𝑞 (𝑠) Δ𝑠} >
1

𝛽
1
𝛽
2

, (22)

lim
𝑡→∞

sup sup
𝜆>0,−𝜆𝑝∈R+

× 𝜆𝑒
−𝜆𝛽1𝛽2𝑝∫

𝑠+𝑘

𝑠
(𝑞(𝑢)/𝑎(𝑢−𝛿2+𝛿1))Δ𝑢

× (𝑡, 𝑡 + 𝑘 − 𝛿
2
+ 𝛿
1
) < 1,

(23)

then every solution (𝑥(𝑡), 𝑦(𝑡)) of system (1) with 𝑥(𝑡) bounded
is oscillatory.

Proof. Let (𝑥(𝑡), 𝑦(𝑡)) be a nonoscillatory solution of system
(1) with 𝑥(𝑡) bounded. Without loss of generality, we may
assume that 𝑥(𝑡) is eventually positive and bounded for all
𝑡 ≥ 𝑡
1
≥ 𝑡
0
. From the second equation of system (1), we obtain

𝑦Δ(𝑡) ≤ 0 for sufficiently large 𝑡 ≥ 𝑡
1
. In view of Lemma 1, we

have two cases for sufficiently large 𝑡
2
≥ 𝑡
1
:

(a) 𝑦(𝑡) < 0 for 𝑡 ≥ 𝑡
2
;

(b) 𝑦(𝑡) > 0 for 𝑡 ≥ 𝑡
2
.

Case (a). Because 𝑦(𝑡) is negative and nonincreasing, there is
a constant 𝐿 > 0 such that

𝑦 (𝑡) ≤ −𝐿, 𝑡 ≥ 𝑡
2
. (24)

Since 𝑥(𝑡) and 𝑎(𝑡) are bounded, 𝑧(𝑡) defined by (15) is
bounded. Integrating the first equation of system (1) from 𝑡

2

to 𝑡 and using (24), we have

𝑧 (𝑡) − 𝑧 (𝑡
2
) = ∫

𝑡

𝑡2

𝑝 (𝑠) 𝑓
1
(𝑦 (𝑠)) Δ𝑠

≤ 𝑓
1
(−𝐿) ∫

𝑡

𝑡2

𝑝 (𝑠) Δ𝑠, 𝑡 ≥ 𝑡
2
.

(25)

From (25), we get lim
𝑡→∞

𝑧(𝑡) = −∞, which contradicts the
fact that 𝑧(𝑡) is bounded. Case (a) cannot occur.

Case (b).We consider two possibilities.
(i) Let 𝑧(𝑡) > 0 for 𝑡 ≥ 𝑡

2
be sufficiently large. Because 𝑧(𝑡)

is nondecreasing, there is a positive constant 𝑀 such that

𝑧 (𝑡) ≥ 𝑀, (26)

for all sufficiently large 𝑡 ≥ 𝑡
2
. From (15) and the hypothesis

(𝐻
4
), we obtain

𝑞 (𝑡) 𝑧 (𝜏
2
(𝑡)) ≤ 𝑞 (𝑡) 𝑥 (𝜏

2
(𝑡)) ≤ 𝑞 (𝑡)

𝑓
2
(𝑥 (𝜏
2
(𝑡)))

𝛽
2

,

(27)

for all sufficiently large 𝑡 ≥ 𝑡
2
. Integrating the second equation

of system (1) from 𝑡 to 𝑏, using (27), and then letting 𝑏 → ∞,
we get

𝑦 (𝑡) ≥ 𝛽
2
∫
∞

𝑡

𝑞 (𝑠) 𝑧 (𝜏
2
(𝑠)) Δ𝑠, (28)

for all sufficiently large 𝑡 ≥ 𝑡
2
. From condition (22), we obtain

lim
𝑡→∞

sup{∫
∞

𝑡

𝐴 (𝑠) 𝑞 (𝑠) Δ𝑠}

≥ lim
𝑡→∞

sup{𝐴 (𝑡) ∫
∞

𝑡+𝛿2

𝑞 (𝑠) Δ𝑠} >
1

𝛽
1
𝛽
2

.

(29)

We claim that condition (22) implies

∫
∞

𝛼

𝐴 (𝑠) 𝑞 (𝑠) Δ𝑠 = ∞, 𝛼 ≥ 𝑡
0
. (30)
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Otherwise, if ∫∞
𝛼

𝐴(𝑠)𝑞(𝑠)Δ𝑠 < ∞, we can choose an integer
𝛾 ≥ 𝛼 so large that ∫

∞

𝛾
𝐴(𝑠)𝑞(𝑠)Δ𝑠 < 1/(𝛽

1
𝛽
2
), which

contradicts (29). From (9) and the monotonicity of 𝑦(𝑡), we
have

∫
𝑡

𝛼

𝐴 (𝑠) 𝑓
Δ

1
(𝑦 (𝑠)) Δ𝑠

= 𝐴 (𝑡) 𝑓
1
(𝑦 (𝑡)) − 𝐴 (𝛼) 𝑓

1
(𝑦 (𝛼))

− ∫
𝑡

𝛼

𝐴
Δ
(𝑠) 𝑓
1
(𝑦 (𝜎 (𝑠))) Δ𝑠

= 𝐴 (𝑡) 𝑓
1
(𝑦 (𝑡)) − 𝐴 (𝛼) 𝑓

1
(𝑦 (𝛼))

− ∫
𝑡

𝛼

𝑝 (𝑠) 𝑓
1
(𝑦 (𝜎 (𝑠))) Δ𝑠

≥ 𝐴 (𝑡) 𝑓
1
(𝑦 (𝑡)) − 𝐴 (𝛼) 𝑓

1
(𝑦 (𝛼))

− ∫
𝑡

𝛼

𝑝 (𝑠) 𝑓
1
(𝑦 (𝑠)) Δ𝑠 = 𝐴 (𝑡) 𝑓

1
(𝑦 (𝑡))

− 𝐴 (𝛼) 𝑓
1
(𝑦 (𝛼)) − 𝑧 (𝑡) + 𝑧 (𝛼) .

(31)

From (26), (27), (31), and the second equation of system (1),
we have

∫
𝑡

𝛼

𝐴 (𝑠) 𝑓
Δ

1
(𝑦 (𝑠)) Δ𝑠

≤ 𝐾∫
𝑡

𝛼

𝐴 (𝑠) 𝑦
Δ
(𝑠) Δ𝑠

= 𝐾∫
𝑡

𝛼

𝐴 (𝑠) [−𝑞 (𝑠) 𝑓
2
(𝑥 (𝜏
2
(𝑠)))] Δ𝑠

≤ 𝐾𝛽
2
∫
𝑡

𝛼

𝐴 (𝑠) [−𝑞 (𝑠) 𝑧 (𝜏
2
(𝑠))] Δ𝑠

≤ −𝑀𝐾𝛽
2
∫
𝑡

𝛼

𝐴 (𝑠) 𝑞 (𝑠) Δ𝑠,

𝑀𝐾𝛽
2
∫
𝑡

𝛼

𝐴 (𝑠) 𝑞 (𝑠) Δ𝑠 ≤ −𝐴 (𝑡) 𝑓
1
(𝑦 (𝑡)) + 𝐴 (𝛼) 𝑓

1
(𝑦 (𝛼))

+ 𝑧 (𝑡) − 𝑧 (𝛼) , 𝑡 ≥ 𝛼.

(32)

Combining the last inequality with (30), we have

lim
𝑡→∞

[𝑧 (𝑡) − 𝐴 (𝑡) 𝑓
1
(𝑦 (𝑡))] = ∞,

𝑧 (𝑡) ≥ 𝐴 (𝑡) 𝑓
1
(𝑦 (𝑡)) ≥ 𝛽

1
𝐴 (𝑡) 𝑦 (𝑡) ,

(33)

for all sufficiently large 𝑡 ≥ 𝑡
2
. The last inequality together

with (28) and the monotonicity of 𝑧(𝑡) implies

𝑧 (𝑡) ≥ 𝛽
1
𝛽
2
𝐴 (𝑡) ∫

∞

𝑡

𝑞 (𝑠) 𝑧 (𝜏
2
(𝑠)) Δ𝑠

≥ 𝛽
1
𝛽
2
𝐴 (𝑡) ∫

∞

𝑡+𝛿2

𝑞 (𝑠) 𝑧 (𝜏
2
(𝑠)) Δ𝑠

≥ 𝛽
1
𝛽
2
𝐴 (𝑡) 𝑧 (𝑡) ∫

∞

𝑡+𝛿2

𝑞 (𝑠) Δ𝑠,

(34)

and 1 ≥ 𝛽
1
𝛽
2
𝐴(𝑡) ∫

∞

𝑡+𝛿2

𝑞(𝑠)Δ𝑠, for all sufficiently large 𝑡 ≥ 𝑡
2
,

which contradicts (22). This case cannot occur.
(ii) Let 𝑧(𝑡) < 0 for all sufficiently large 𝑡 ≥ 𝑡

2
. From (15),

we have

𝑧 (𝑡 − 𝛿
2
+ 𝛿
1
) > −𝑎 (𝑡 − 𝛿

2
+ 𝛿
1
) 𝑥 (𝑡 − 𝛿

2
) , (35)

where 𝑡 is sufficiently large and

−𝛽
2
𝑞 (𝑡) 𝑧 (𝑡 − 𝛿

2
+ 𝛿
1
)

𝑎 (𝑡 − 𝛿
2
+ 𝛿
1
)

≤ 𝛽
2
𝑞 (𝑡) 𝑥 (𝜏

2
(𝑡)) . (36)

In view of the hypothesis and the second equation of system
(1), the last inequality implies

𝑦
Δ
−

𝛽
2
𝑞 (𝑡) 𝑧 (𝑡 − 𝛿

2
+ 𝛿
1
)

𝑎 (𝑡 − 𝛿
2
+ 𝛿
1
)

≤ 0, 𝑡 ≥ 𝑡
2
. (37)

Integrating (37) from 𝑡 to 𝑡 + 𝑘, we have

𝑦 (𝑡) + ∫
𝑡+𝑘

𝑡

𝛽
2
𝑞 (𝑠) 𝑧 (𝑠 − 𝛿

2
+ 𝛿
1
)

𝑎 (𝑠 − 𝛿
2
+ 𝛿
1
)

Δ𝑠 ≥ 0. (38)

Multiplying the last inequality by 𝛽
1
𝑝(𝑡) and then using the

monotonicity of 𝑧(𝑡) and the first equation of system (1), we
have

𝑧
Δ
(𝑡) + 𝛽

1
𝛽
2
𝑝 (𝑡) 𝑧 (𝑡 + 𝑘 − 𝛿

2
+ 𝛿
1
)

× ∫
𝑡+𝑘

𝑡

𝑞 (𝑠)

𝑎 (𝑠 − 𝛿
2
+ 𝛿
1
)
Δ𝑠 ≥ 0, 𝑡 ≥ 𝑡

6
.

(39)

By condition (23) and Lemma 3, the last inequality cannot
have an eventually negative solution. This contradicts the
assumption that 𝑧(𝑡) < 0 eventually. The proof is com-
plete.

Theorem 5. Let (16) hold. Assume that 0 < 𝑎(𝑡) ≤ 1, 𝜏
𝑖
=

𝑡 − 𝛿
𝑖
, and there exists an constant 𝑘 such that 𝛿

2
> 𝑘 + 𝛿

1

and conditions (22) and (23) are satisfied. Then, all solutions
of system (1) are oscillatory.

Proof. Let (𝑥(𝑡), 𝑦(𝑡)) be a nonoscillatory solution of system
(1). Without loss of generality, we may assume that 𝑥(𝑡) is
positive for 𝑡 ≥ 𝑡

1
. As in the proof of Theorem 4, we have

two cases.

Case (a). Analogous to the proof of case (a) of Theorem 4,
we can show that lim

𝑡→∞
𝑧(𝑡) = −∞. By Lemma 2,
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𝑥(𝑡) is bounded, and, hence, 𝑧(𝑡) is bounded, which is a
contradiction. Hence, case (a) cannot occur.

Case (b).Theproof of this case is similar to that ofTheorem 4,
and, hence, the details are omitted. The proof is now com-
plete.

Remark 6. Theorems 4–5 includeTheorems 5–6 in [4].

4. The Case −1 < 𝑎(𝑡) ≤ 0

In this section, we always assume that

−1 < −𝑐 ≤ 𝑎 (𝑡) ≤ 0, (40)

where 𝑐 is a positive constant.

Lemma 7. Suppose that (𝐻
2
)–(𝐻
4
) and (40) hold, and

(𝑥(𝑡), 𝑦(𝑡)) is a nonoscillatory solution of system (1). Then,
𝑥(𝑡)𝑦(𝑡) is eventually positive.

Proof. Without loss of generality, we may assume that 𝑥(𝑡) >

0, 𝑡 ≥ 𝑡
0
. Then, in view of (𝐻

3
) and the hypothesis on 𝑓

2
, we

have 𝑦Δ(𝑡) ≤ 0 for all 𝑡 ≥ 𝑡
1
≥ 𝑡
0
from the second equation of

system (1). We claim that

𝑦 (𝑡) > 0, 𝑡 ≥ 𝑡
1
. (41)

Otherwise, there exists 𝑡
2
≥ 𝑡
1
such that

𝑦 (𝑡) < 0, 𝑡 ≥ 𝑡
2
. (42)

Now, from the first equation of system (1) and themonotonic-
ity of 𝑦(𝑡), we have

𝑧
Δ
(𝑡) ≤ 0. (43)

Integrating the first equation of system (1) from 𝑡
2
to 𝑡, we get

𝑧 (𝑡) − 𝑧 (𝑡
2
) = ∫
𝑡

𝑡2

𝑝 (𝑠) 𝑓
1
(𝑦 (𝑠)) Δ𝑠

≤ 𝛽
1
∫
𝑡

𝑡2

𝑝 (𝑠) 𝑦 (𝑠) Δ𝑠

≤ 𝛽
1
𝑦 (𝑡
2
) ∫
𝑡

𝑡2

𝑝 (𝑠) Δ𝑠.

(44)

From (𝐻
3
), (42), and the last inequality, we obtain

lim
𝑡→∞

𝑧(𝑡) = −∞. But in view of (15), we have 𝑧(𝑡) ≥ 𝑥(𝑡).
So, lim

𝑡→∞
𝑥(𝑡) = −∞. This contradicts 𝑥(𝑡) > 0. This

completes the proof of the lemma.

Theorem 8. Suppose that (𝐻
2
)–(𝐻
4
) and (40) hold, and 𝑓

1
∈

𝐶1(R,R) with 𝑓
1
(𝑢) ≥ 𝐾 > 0. If

lim
𝑡→∞

sup{𝐴 (𝑡) ∫
∞

𝑡+𝛿2

𝑞 (𝑠) Δ𝑠} >
1

𝛽
1
𝛽
2
(1 − 𝑐)

. (45)

Then, every solution (𝑥(𝑡), 𝑦(𝑡)) of system (1) is oscillatory.

Proof. Suppose that (𝑥(𝑡), 𝑦(𝑡)) is a nonoscillatory solution of
system (1). From Lemma 7, without loss of generality, wemay
assume that

𝑥 (𝑡) > 0, 𝑦 (𝑡) > 0, 𝑡 ≥ 𝑡
1
. (46)

Combining (15) with (40), we obtain that 𝑧(𝑡) > 0 for 𝑡 ≥ 𝑡
1
.

From the first equation of system (1), we get 𝑧Δ(𝑡) ≥ 0 for all
𝑡 ≥ 𝑡
1
. So, 𝑧(𝑡) is nondecreasing. There is a positive constant

𝑀 such that

𝑧 (𝑡) ≥ 𝑀, 𝑡 ≥ 𝑡
2
≥ 𝑡
1
. (47)

From (15), we get

𝑥 (𝑡) = 𝑧 (𝑡) + 𝑎 (𝑡) 𝑥 (𝜏
1
(𝑡))

= 𝑧 (𝑡) + 𝑎 (𝑡) [𝑧 (𝜏
1
(𝑡)) + 𝑎 (𝜏

1
(𝑡)) 𝑥 (𝜏

1
(𝜏
1
(𝑡)))]

= 𝑧 (𝑡) + 𝑎 (𝑡) 𝑧 (𝜏
1
(𝑡)) + 𝑎 (𝑡) 𝑎 (𝜏

1
(𝑡)) 𝑥 (𝜏

1
(𝜏
1
(𝑡)))

> 𝑧 (𝑡) + 𝑎 (𝑡) 𝑧 (𝜏
1
(𝑡))

≥ 𝑧 (𝑡) + 𝑎 (𝑡) 𝑧 (𝑡)

= (1 + 𝑎 (𝑡)) 𝑧 (𝑡) ,

(48)

for 𝑡 ≥ 𝑡
2
. The last inequality together with (𝐻

4
) implies

𝑞 (𝑡) 𝑧 (𝜏
2
(𝑡)) ≤

𝑞 (𝑡) 𝑥 (𝜏
2
(𝑡))

1 + 𝑎 (𝜏
2
(𝑡))

≤
𝑞 (𝑡) 𝑓

2
(𝑥 (𝜏
2
(𝑡)))

[1 + 𝑎 (𝜏
2
(𝑡))] 𝛽

2

. (49)

Integrating the second equation of system (1) from 𝑡 to 𝑏,
using (49), and then letting 𝑏 → ∞, we obtain

𝑦 (𝑡) ≥ (1 − 𝑐) 𝛽
2
∫
∞

𝑡

𝑞 (𝑠) 𝑧 (𝜏
2
(𝑠)) Δ𝑠. (50)

From condition (45), we have

1

(1 − 𝑐) 𝛽
1
𝛽
2

< lim
𝑡→∞

sup{𝐴 (𝑡) ∫
∞

𝑡+𝛿2

𝑞 (𝑠) Δ𝑠}

≤ lim
𝑡→∞

sup∫
∞

𝑡

𝐴 (𝑠) 𝑞 (𝑠) Δ𝑠.

(51)

We claim that condition (45) implies

∫
∞

𝛼

𝐴 (𝑠) 𝑞 (𝑠) Δ𝑠 = ∞, 𝛼 ≥ 𝑡
0
. (52)

In fact, if ∫
∞

𝛼
𝐴(𝑠)𝑞(𝑠)Δ𝑠 < ∞, we can choose a constant

𝛾 ≥ 𝛼 so large that ∫∞
𝛾

𝐴(𝑠)𝑞(𝑠)Δ𝑠 < 1/(𝛽
1
𝛽
2
(1 − 𝑐)), which
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contradicts (51). From (9) and the monotonicity of 𝑦(𝑡), we
have

∫
𝑡

𝛼

𝐴 (𝑠) 𝑓
Δ

1
(𝑦 (𝑠)) Δ𝑠 = 𝐴 (𝑡) 𝑓

1
(𝑦 (𝑡)) − 𝐴 (𝛼) 𝑓

1
(𝑦 (𝛼))

− ∫
𝑡

𝛼

𝐴
Δ
(𝑠) 𝑓
1
(𝑦 (𝜎 (𝑠))) Δ𝑠

= 𝐴 (𝑡) 𝑓
1
(𝑦 (𝑡)) − 𝐴 (𝛼) 𝑓

1
(𝑦 (𝛼))

− ∫
𝑡

𝛼

𝑝 (𝑠) 𝑓
1
(𝑦 (𝜎 (𝑠))) Δ𝑠

≥ 𝐴 (𝑡) 𝑓
1
(𝑦 (𝑡)) − 𝐴 (𝛼) 𝑓

1
(𝑦 (𝛼))

− ∫
𝑡

𝛼

𝑝 (𝑠) 𝑓
1
(𝑦 (𝑠)) Δ𝑠

= 𝐴 (𝑡) 𝑓
1
(𝑦 (𝑡)) − 𝐴 (𝛼) 𝑓

1
(𝑦 (𝛼))

− 𝑧 (𝑡) + 𝑧 (𝛼) .

(53)

From (49) and (53) and the second equation of system (1), we
have

∫
𝑡

𝛼

𝐴 (𝑠) 𝑓
Δ

1
(𝑦 (𝑠)) Δ𝑠 ≤ 𝐾∫

𝑡

𝛼

𝐴 (𝑠) 𝑦
Δ
(𝑠) Δ𝑠

= 𝐾∫
𝑡

𝛼

𝐴 (𝑠) [−𝑞 (𝑠) 𝑓
2
(𝑥 (𝜏
2
(𝑠)))] Δ𝑠

≤ 𝐾𝛽
2
∫
𝑡

𝛼

𝐴 (𝑠) [1 + 𝑎 (𝜏
2
(𝑠))]

× [−𝑞 (𝑠) 𝑧 (𝜏
2
(𝑠))] Δ𝑠

≤ −𝑀𝐾𝛽
2
(1 − 𝑐) ∫

𝑡

𝛼

𝐴 (𝑠) 𝑞 (𝑠) Δ𝑠,

𝑀𝐾𝛽
2
(1 − 𝑐) ∫

𝑡

𝛼

𝐴 (𝑠) 𝑞 (𝑠) Δ𝑠

≤ −𝐴 (𝑡) 𝑓
1
(𝑦 (𝑡)) + 𝐴 (𝛼) 𝑓

1
(𝑦 (𝛼))

+ 𝑧 (𝑡) − 𝑧 (𝛼) , 𝑡 ≥ 𝛼.

(54)

Combining the last inequality with (52), we have

lim
𝑡→∞

[𝑧 (𝑡) − 𝐴 (𝑡) 𝑓
1
(𝑦 (𝑡))] = ∞,

𝑧 (𝑡) ≥ 𝐴 (𝑡) 𝑓
1
(𝑦 (𝑡)) ≥ 𝛽

1
𝐴 (𝑡) 𝑦 (𝑡) , 𝑡 ≥ 𝑡

3
≥ 𝑡
2
.

(55)

The last inequality together with (28) and the monotonicity
of 𝑧(𝑡) implies

𝑧 (𝑡) ≥ 𝛽
1
𝛽
2
(1 − 𝑐) 𝐴 (𝑡) ∫

∞

𝑡

𝑞 (𝑠) 𝑧 (𝜏
2
(𝑠)) Δ𝑠

≥ 𝛽
1
𝛽
2
𝐴 (𝑡) (1 − 𝑐) ∫

∞

𝑡+𝛿2

𝑞 (𝑠) 𝑧 (𝜏
2
(𝑠)) Δ𝑠

≥ 𝛽
1
𝛽
2
(1 − 𝑐) 𝐴 (𝑡) 𝑧 (𝑡) ∫

∞

𝑡+𝛿2

𝑞 (𝑠) Δ𝑠,

(56)

and 1 ≥ 𝛽
1
𝛽
2
(1−𝑐)𝐴(𝑡) ∫

∞

𝑡+𝛿2

𝑞(𝑠)Δ𝑠, 𝑡 ≥ 𝑡
3
, which contradicts

(45). This case cannot occur. The proof is complete.

Remark 9. Theorem 8 improves Theorem 3.1 in [13], because
condition (45) is weaker than condition (5) assumed in [13].

5. Some Examples

In this section, we present examples to illustrate the results
obtained in the previous sections.

Example 10. Consider the system

[𝑥 (𝑡) −
1

4
𝑥 (𝑡 − 𝑏)]

Δ

= 𝑡 (𝑡 + 2𝑏) 𝑦 (𝑡) ,

𝑦
Δ
(𝑡) = −

𝑐

𝑡 (𝑡 + 𝑏)
𝑥 (𝑡 − 4𝑏) ,

(57)

where T = 𝑏N = {𝑏𝑛 | 𝑛 ∈ N} and 𝑏, 𝑐 is a positive constant.
Here, 𝑓(𝑢) = 𝑔(𝑢) = 𝑢, 𝑎(𝑡) = 1/4, 𝛿

1
= 𝑏, 𝛿

2
= 4𝑏, 𝑝(𝑡) =

𝑡(𝑡 + 2𝑏), 𝑞(𝑡) = 𝑐/(𝑡(𝑡 + 𝑏)). Choose 𝑘 = 1, since

𝐴 (𝑡) = ∫
𝑡

0

𝑝 (𝑠) Δ𝑠 = 𝑏
3

𝑛

∑
𝑖=0

𝑖 (𝑖 + 2)

= 𝑏
3

𝑛+1

∑
𝑖=1

(𝑖 + 1) (𝑖 − 1) = 𝑏
3 2𝑛
3 + 9𝑛2 + 12𝑛

6
;

(58)

then, conditions (22) and (23) are

lim
𝑡→∞

sup{𝐴 (𝑡) ∫
∞

𝑡+𝛿2

𝑞 (𝑠) Δ𝑠}

= lim
𝑛→∞

sup{𝑏
3 2𝑛
3 + 9𝑛2 + 12𝑛

6

1

𝑏

∞

∑
𝑠=𝑛+4

𝑐

𝑠 (𝑠 + 1)
} = ∞,

lim
𝑛→∞

inf {𝑏
3

𝑛−1

∑
𝑠=𝑛−2

𝑠 (𝑠 + 2) [
1

𝑏

𝑠+1

∑
𝑡=𝑠

4𝑐

𝑡 (𝑡 + 1)
]} = 16𝑏

2
𝑐.

(59)

For 16𝑏2𝑐 > 1, all the conditions of Theorem 4 are satisfied,
and so all solutions of the system (57) are oscillatory. But the
results [4] are not applicable.

Example 11. Consider the system

[𝑥 (𝑡) + 𝑎 (𝑡) 𝑥 (𝜏
1
(𝑡))]
Δ

= 𝑡𝑓
1
(𝑦 (𝑡)) ,

𝑦
Δ
(𝑡) = −

1

𝑡3/2
𝑓
2
(𝑥 (𝜏
2
(𝑡))) ,

(60)

where T = R and −1 < 𝑎(𝑡) ≤ 0. Here, 𝑝(𝑡) = 𝑡, 𝑞(𝑡) = 1/𝑡3/2.
Since

𝐴 (𝑡) = ∫
𝑡

0

𝑝 (𝑠) Δ𝑠 = ∫
𝑡

0

𝑠𝑑𝑠 =
1

2
𝑡
2
, (61)
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then condition (45) is

lim
𝑡→∞

sup{𝐴 (𝑡) ∫
∞

𝑡+𝛿2

𝑞 (𝑠) Δ𝑠}

= lim
𝑡→∞

sup{
1

2
𝑡
2
∫
∞

𝑡+𝛿2

1

𝑠3/2
𝑑𝑠} = ∞.

(62)

Condition (45) is satisfied. Hence, byTheorem 8, all solutions
of system (60) are oscillatory.
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