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We propose and analyze a new numericalmethod, called a couplingmethod based on a new expandedmixed finite element (EMFE)
and finite element (FE), for fourth-order partial differential equation of parabolic type. We first reduce the fourth-order parabolic
equation to a coupled system of second-order equations and then solve a second-order equation by FEmethod and approximate the
other one by a new EMFEmethod. We find that the new EMFEmethod’s gradient belongs to the simple square integrable (𝐿2(Ω))2

space, which avoids the use of the classicalH(div;Ω) space and reduces the regularity requirement on the gradient solution 𝜆 = ∇𝑢.
For a priori error estimates based on both semidiscrete and fully discrete schemes, we introduce a new expanded mixed projection
and some important lemmas. We derive the optimal a priori error estimates in 𝐿2 and𝐻1-norm for both the scalar unknown 𝑢 and
the diffusion term 𝛾 and a priori error estimates in (𝐿2)2-norm for its gradient 𝜆 and its flux 𝜎 (the coefficients times the negative
gradient). Finally, we provide some numerical results to illustrate the efficiency of our method.

1. Introduction

In recent years, many researchers have studied some numeri-
cal methods for fourth-order elliptic equations [1–6], fourth-
order parabolic equations [5–9], fourth-order wave equations
[10, 11], and so on. Chen [1] proposed and analyzed an
expanded mixed finite element method for fourth-order
elliptic problems. In [2], Chen et al. studied an anisotropic
nonconforming element for fourth-order elliptic singular
perturbation problem. In [3–6], some mixed finite ele-
ment (MFE) methods were studied for fourth-order lin-
ear/nonlinear elliptic equations. In [7], the FE method was
studied for nonlinear Cahn-Hilliard equation. The optimal-
order error estimates were obtained in 𝐿2-norm by means of
an FE biharmonic projection approximation. In [12], theMFE
methods were studied for solving a fourth-order nonlinear
reaction diffusion equation. In [8], an 𝐻1-Galerkin MFE
method was studied for solving the fourth-order parabolic
partial differential equations. Optimal error estimates were
derived for both semidiscrete and fully discrete schemes

for problems in one space dimension, and error estimates
were derived for semidiscrete scheme for several space
dimensions, and the stability for fully discrete scheme was
proved by the iteration method. In [9], the FE method was
studied for fourth-order nonlinear parabolic equation. He
et al. [10] studied and analyzed the explicit/implicit MFE
methods for a class of fourth-order wave equations. Shi and
Peng [13] studied the finite element methods for fourth-order
eigenvalue problems on anisotropic meshes. Liu et al. [11]
studied a 𝐶1-conforming FE method for nonlinear fourth-
order wave equation. In this paper, we consider the following
fourth-order partial differential equations of parabolic type:

𝑢
𝑡
+∇ ⋅ (𝑏 (x, 𝑡) ∇ (∇ ⋅ (𝑎 (𝑡) ∇𝑢)))=𝑓 (x, 𝑡) , (x, 𝑡) ∈ Ω × 𝐽,

𝑢 (x, 𝑡) = Δ𝑢 (x, 𝑡) = 0, (x, 𝑡) ∈ 𝜕Ω × 𝐽,

𝑢 (x, 0) = 𝑢
0
(x) , x ∈ Ω,

(1)
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where Ω ⊂ 𝑅2 is a bounded convex polygonal domain with
the Lipschitz continuous boundary 𝜕Ω and 𝐽 = (0, 𝑇] is
the time interval with 0 < 𝑇 < ∞. The initial value 𝑢

0
(x)

and 𝑓(x, 𝑡) are given functions; coefficients 𝑎 = 𝑎(𝑡) and
𝑏 = 𝑏(x, 𝑡) satisfy

A
1
: 0 < 𝑎

0
≤ 𝑎 (𝑡) ≤ 𝑎

1
< +∞,

𝑎𝑡 (𝑡)
 ≤ 𝑐
0
,

A
2
: 0 < 𝑏

0
≤ 𝑏 (x, 𝑡) ≤ 𝑏

1
< +∞,

𝑏𝑡 (x, 𝑡)
 ≤ 𝑐
0
,

(2)

for some positive constants 𝑎
0
, 𝑎
1
, 𝑏
0
, 𝑏
1
, and 𝑐

0
.

Chen proposed the EMFE method for second-order
linear/quasilinear elliptic equation [14–16] and fourth-order
linear elliptic equation [1]. Then the method was applied
to other partial differential equations [17, 18]. Compared to
standard MFE methods, the EMFE method is expanded in
the sense that three variables are explicitly approximated,
namely, the scalar unknown, its gradient, and its flux. In
recent years, many numerical method based on the expanded
mixed scheme, such as two-grid EMFEmethods [19–22],𝐻1-
Galerkin EMFEmethods [23–25], expandedmixed covolume
method [26], expanded mixed hybrid method [27], and
positive definite EMFEmethod [28], have been proposed and
discussed.

In [29], we developed and analyzed a new EMFEmethod
for second-order elliptic problems based on the mixed weak
formulation [30–32]. The new EMFE method [29], whose
gradient belongs to the square integrable (𝐿

2(Ω))
2 space

instead of the classical H(div; Ω) space, is different from
Chen’s EMFE method [14–16].

In this paper, we present a new coupling method of new
EMFE scheme [29] and FE scheme for fourth-order partial
differential equation of parabolic type. We first introduce an
auxiliary variable 𝛾 = −∇ ⋅ (𝑎(𝑡)∇𝑢) to reduce the fourth-
order parabolic equation to a coupled system of second-order
equations, then solve a second-order equation by FEmethod.
For the other one, we introduce the two auxiliary variables,
𝜆 = ∇𝑢 and 𝜎 = −𝑎(𝑡)∇𝑢 = −𝑎𝜆, to split the equation
into a first-order system of equations, then approximate that
by a new EMFE method. Because the new EMFE method’s
gradient belongs to the simple square integrable (𝐿

2(Ω))
2

space, the regularity requirement on the gradient solution
𝜆 = ∇𝑢 is reduced. We apply the new coupling method of
new EMFE and FE to derive a priori error estimates based on
both semidiscrete and fully discrete schemes; that is to say,
we obtain the optimal a priori error estimates in 𝐿2 and𝐻1-
norm for both the scalar unknown 𝑢 and the diffusion term
𝛾 and a priori error estimates in (𝐿2)2-norm for its gradient 𝜆
and its flux 𝜎. Finally, we provide some numerical results to
verify our theoretical analysis.

Throughout this paper, 𝐶 will denote a generic positive
constant which does not depend on the spatial mesh param-
eter ℎ or the time step Δ𝑡. At the same time, we denote the
natural inner product in 𝐿2(Ω) or (𝐿2(Ω))2 by (⋅, ⋅) with the
corresponding norm ‖ ⋅ ‖.The other notations and definitions
for the Sobolev spaces as in [33, 34] are used.

2. New Expanded Mixed Scheme

We first introduce an auxiliary variable 𝛾 = −∇ ⋅ (𝑎(𝑡)∇𝑢)

to obtain the following coupled system of second-order
equations:

𝑢
𝑡
− ∇ ⋅ (𝑏 (x, 𝑡) ∇𝛾) = 𝑓 (x, 𝑡) , (3a)

𝛾 + ∇ ⋅ (𝑎 (𝑡) ∇𝑢) = 0, (3b)

𝑢 (x, 𝑡) = 𝛾 (x, 𝑡) = 0. (3c)

For (3b), we introduce the two auxiliary variables, 𝜆 = ∇𝑢

and 𝜎 = −𝑎(𝑡)∇𝑢 = −𝑎𝜆, to obtain the following first-order
system of equations:

𝑢
𝑡
− ∇ ⋅ (𝑏∇𝛾) = 𝑓 (x, 𝑡) , (4a)

𝛾 − ∇ ⋅ 𝜎 = 0, (4b)

𝜎 + 𝑎𝜆 = 0, (4c)

𝜆 − ∇𝑢 = 0, (4d)

𝑢 (x, 𝑡) = 𝛾 (x, 𝑡) = 0. (4e)

Using Green’s formula, the new mixed weak formulation of
(4a)–(4e) is to determine {𝑢, 𝛾,𝜆,𝜎} : [0, 𝑇] → 𝐻1

0
(Ω) ×

𝐻1
0
(Ω) × (𝐿2(Ω))

2
× (𝐿2(Ω))

2 such that

(𝑢
𝑡
, V) + (𝑏∇𝛾, ∇V) = (𝑓, V) , ∀V ∈ 𝐻

1

0
(Ω) , (5a)

(𝛾, 𝑔) + (𝜎, ∇𝑔) = 0, ∀𝑔 ∈ 𝐻
1

0
(Ω) , (5b)

(𝜎, z) + (𝑎𝜆, z) = 0, ∀z ∈ (𝐿2 (Ω))
2

, (5c)

(𝜆,w) − (∇𝑢,w) = 0, ∀w ∈ (𝐿
2
(Ω))
2

. (5d)

Then, the semidiscrete coupled EMFE scheme-FE scheme for
(5a)–(5d) is to find {𝑢

ℎ
, 𝛾
ℎ
,𝜆
ℎ
,𝜎
ℎ
} : [0, 𝑇] → 𝑉

ℎ
× 𝑉
ℎ
×W
ℎ
×

W
ℎ
such that

(𝑢
ℎ𝑡
, V
ℎ
) + (𝑏∇𝛾

ℎ
, ∇V
ℎ
) = (𝑓, V

ℎ
) , ∀V

ℎ
∈ 𝑉
ℎ
, (6a)

(𝛾
ℎ
, 𝑔
ℎ
) + (𝜎

ℎ
, ∇𝑔
ℎ
) = 0, ∀𝑔

ℎ
∈ 𝑉
ℎ
, (6b)

(𝜎
ℎ
, z
ℎ
) + (𝑎𝜆

ℎ
, z
ℎ
) = 0, ∀z

ℎ
∈ W
ℎ
, (6c)

(𝜆
ℎ
,w
ℎ
) − (∇𝑢

ℎ
,w
ℎ
) = 0, ∀w

ℎ
∈ W
ℎ
. (6d)

By the theory of differential equations [35], we can prove
the existence and uniqueness of solution for semidiscrete
scheme (6a)–(6d).

Remark 1. From the new coupling weak formulation (5a)–
(5d), we can find that the gradient belongs to the weaker
square integrable (𝐿2(Ω))

2 space taking the place of the
classical H(div; Ω) space. It is easy to see that our method
reduces the regularity requirement on the gradient solution
𝜆 = ∇𝑢.
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Remark 2. In the semidiscrete coupling scheme (6a)–(6d),
the MFE space (𝑉

ℎ
,W
ℎ
) based on the FE pair 𝑃

1
− 𝑃
2

0
is

chosen as follows:

𝑉
ℎ
= {V
ℎ
∈ 𝐶
0
(Ω) ∩ 𝐻

1

0
(Ω) | V

ℎ
∈ 𝑃
1
(𝐾) , ∀𝐾 ∈ K

ℎ
} ,

W
ℎ
= {w

ℎ
= (𝑤
1ℎ
, 𝑤
2ℎ
) ∈ (𝐿

2
(Ω))
2

|

𝑤
1ℎ
, 𝑤
2ℎ
∈ 𝑃
0
(𝐾) , ∀𝐾 ∈ K

ℎ
} .

(7)

From [30, 31], we know that MFE space (𝑉
ℎ
,W
ℎ
) satisfies the

discrete LBB condition.

Remark 3. From (6a)–(6d), we know that (6a) is an FE
scheme for 𝑢

ℎ
, 𝛾
ℎ
, V
ℎ
∈ 𝑉
ℎ
and that (6b)–(6d) is a new EMFE

scheme for (𝛾
ℎ
,𝜎
ℎ
,𝜆
ℎ
), (𝑔
ℎ
, z
ℎ
,w
ℎ
) ∈ 𝑉

ℎ
× W
ℎ
× W
ℎ
. So

the scheme (6a)–(6d) is called as the coupling system of new
EMFE scheme and FE scheme.

Remark 4. The finite element spaces 𝑉
ℎ
and W

ℎ
for the new

EMFE method are chosen as finite dimensional subspaces
of 𝐻1
0
(Ω) and (𝐿2(Ω))

2, respectively. However, 𝑉
ℎ
and W

ℎ

for 𝐻1-Galerkin MFE method in two space variables in [8]
are finite dimensional subspaces of 𝐻1

0
(Ω) and H(div; Ω),

respectively. Compared to the complexH(div; Ω) space used
in the𝐻1-GalerkinMFEmethod, we use the weaker (𝐿2(Ω))2
space for our EMFE method.

3. Semidiscrete Error Estimates

For deriving some a priori error estimates of our method,
we first introduce the projection operator P

ℎ
and the new

expanded mixed elliptic projection operator R
ℎ
associated

with the coupled equations.

Lemma 5. One now defines a linear projection operatorP
ℎ
:

𝐻1
0
(Ω) → 𝑉

ℎ
as

(𝑏∇ (𝛾 −P
ℎ
𝛾) , ∇V

ℎ
) = 0, ∀V

ℎ
∈ 𝑉
ℎ
, (8)

and then
𝛾 −P

ℎ
𝛾
𝐿2(Ω) + ℎ

𝛾 −P
ℎ
𝛾
𝐻1 ≤ 𝐶ℎ

2𝛾
𝐻2 ,

𝛾𝑡 −P
ℎ
𝛾
𝑡

𝐿2(Ω) ≤ 𝐶ℎ
2
(
𝛾
𝐻2 +

𝛾𝑡
𝐻2) ,

𝛾𝑡𝑡 −P
ℎ
𝛾
𝑡𝑡

𝐿2(Ω) ≤ 𝐶ℎ
2
(
𝛾
𝐻2 +

𝛾𝑡
𝐻2 +

𝛾𝑡𝑡
𝐻2) .

(9)

Let (R
ℎ
𝑢,R
ℎ
𝜆,R
ℎ
𝜎) : [0, 𝑇] → 𝑉

ℎ
×W
ℎ
×W
ℎ
be given

by the following new expanded mixed relations [29]

(𝜎 −R
ℎ
𝜎, ∇𝑔
ℎ
) = 0, ∀𝑔

ℎ
∈ 𝑉
ℎ
, (10a)

(𝜎 −R
ℎ
𝜎, z
ℎ
) + (𝑎 (𝜆 −R

ℎ
𝜆) , z
ℎ
) = 0, ∀z

ℎ
∈ W
ℎ
,

(10b)

(𝜆 −R
ℎ
𝜆,w
ℎ
) − (∇ (𝑢 −R

ℎ
𝑢) ,w
ℎ
) = 0, ∀w

ℎ
∈ W
ℎ
.

(10c)

Then the following two important lemmas based on the
new expanded mixed projection (10a)–(10c) hold.

Lemma6. There is a constant𝐶 > 0 independent of the spatial
mesh parameter ℎ such that

𝜆 −R
ℎ
𝜆
 ≤ 𝐶ℎ (‖𝜆‖

(𝐻
1
)
2 + ‖𝑢‖𝐻2) ,

𝜎 −R
ℎ
𝜎
 ≤ 𝐶ℎ (‖𝑢‖

𝐻
2 + ‖𝜎‖

(𝐻
1
)
2 + ‖𝜆‖

(𝐻
1
)
2) ,

∇ (𝑢 −R
ℎ
𝑢)
 ≤ 𝐶ℎ (‖𝑢‖𝐻2 + ‖𝜆‖(𝐻1)2) .

(11)

Lemma 7. There is a constant𝐶 > 0 independent of the spatial
mesh parameter ℎ such that

𝑢 −R
ℎ
𝑢
 ≤ 𝐶ℎ

2
‖𝑢‖𝐻2 ,

𝑢𝑡 −R
ℎ
𝑢
𝑡

 ≤ 𝐶ℎ
2𝑢𝑡

𝐻2 ,

𝑢𝑡𝑡 −R
ℎ
𝑢
𝑡𝑡

 ≤ 𝐶ℎ
2𝑢𝑡𝑡

𝐻2 ,

𝑢 −R
ℎ
𝑢
1 ≤ 𝐶ℎ (‖𝑢‖𝐻2 + ‖𝜆‖(𝐻1)2) .

(12)

In [29], we can obtain the detailed proof for Lemmas 6-7.
For a priori error estimates, we write the errors as

𝛾 − 𝛾
ℎ
= 𝛾 −P

ℎ
𝛾 +P

ℎ
𝛾 − 𝛾
ℎ
= 𝜓 + 𝜛;

𝑢 − 𝑢
ℎ
= 𝑢 −R

ℎ
𝑢 +R

ℎ
𝑢 − 𝑢
ℎ
= 𝜂 + 𝜍;

𝜆 − 𝜆
ℎ
= 𝜆 −R

ℎ
𝜆 +R

ℎ
𝜆 − 𝜆
ℎ
= 𝛿 + 𝜃;

𝜎 − 𝜎
ℎ
= 𝜎 −R

ℎ
𝜎 +R

ℎ
𝜎 − 𝜎
ℎ
= 𝜌 + 𝜉.

(13)

Using (5a), (5b), (5c), (5d), (6a), (6b), (6c), (6d), (8), (10a),
(10b), and (10c) we can obtain the error equations

(𝜍
𝑡
, V
ℎ
) + (𝑏∇𝜛, ∇V

ℎ
) = − (𝜂

𝑡
, V
ℎ
) , ∀V

ℎ
∈ 𝑉
ℎ
, (14a)

(𝜛, 𝑔
ℎ
) + (𝜉, ∇𝑔

ℎ
) = − (𝜓, 𝑔

ℎ
) , ∀𝑔

ℎ
∈ 𝑉
ℎ
, (14b)

(𝜉, z
ℎ
) + (𝑎𝜃, z

ℎ
) = 0, ∀z

ℎ
∈ W
ℎ
, (14c)

(𝜃,w
ℎ
) − (∇𝜍,w

ℎ
) = 0, ∀w

ℎ
∈ W
ℎ
. (14d)

We will prove the error estimates for semidiscrete scheme.

Theorem 8. Suppose that 𝛾, 𝛾
𝑡
, 𝑢
𝑡

∈ 𝐿2(𝐻2(Ω)), 𝜆,𝜎 ∈

𝐿∞((𝐻1(Ω))
2
), and 𝑢, 𝛾 ∈ 𝐿∞(𝐻2(Ω)); then there exists a

constant 𝐶 > 0 independent of the spatial mesh parameter ℎ
such that

𝑢 − 𝑢ℎ
 ≤ 𝐶ℎ

2
[‖𝑢‖𝐿∞(𝐻2) +

𝛾
𝐿∞(𝐻2)

+(∫
𝑡

0

|||◼|||
2
𝑑𝑠)

1/2

] ,
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𝑢 − 𝑢ℎ
1 ≤ 𝐶ℎ[‖𝜆‖

𝐿
∞
((𝐻
1
)
2
)
+ ‖𝑢‖𝐿∞(𝐻2)

+
𝛾
𝐿∞(𝐻2) + (∫

𝑡

0

|||◼|||
2
𝑑𝑠)

1/2

] ,

𝜆 − 𝜆ℎ
 ≤ 𝐶ℎ[‖𝜆‖

𝐿
∞
((𝐻
1
)
2
)
+
𝛾
𝐿∞(𝐻2)

+(∫
𝑡

0

|||◼|||
2
𝑑𝑠)

1/2

] ,

𝜎 − 𝜎ℎ
 ≤ 𝐶ℎ[‖𝑢‖

𝐿
∞
(𝐻
2
)
+ ‖𝜎‖
𝐿
∞
((𝐻
1
)
2
)
+ ‖𝜆‖
𝐿
∞
((𝐻
1
)
2
)

+
𝛾
𝐿∞(𝐻2) + (∫

𝑡

0

|||◼|||
2
𝑑𝑠)

1/2

] ,

(15)

where |||◼|||2 ≜ ‖𝑢
𝑡
‖
2

𝐻
2 + ‖𝛾‖

2

𝐻
2 + ‖𝛾𝑡‖

2

𝐻
2 .

Proof. Choose V
ℎ
= 𝜛, 𝑔

ℎ
= 𝜍
𝑡
, z
ℎ
= ∇𝜍
𝑡
, and w

ℎ
= ∇𝜍
𝑡
in

(14a)–(14d) to obtain

(𝜍
𝑡
, 𝜛) +


𝑏
1/2
∇𝜛



2

= − (𝜂
𝑡
, 𝜛) , (16a)

− (𝜛, 𝜍
𝑡
) − (𝜉, ∇𝜍

𝑡
) = (𝜓, 𝜍

𝑡
) , (16b)

(𝜉, ∇𝜍
𝑡
) + (𝑎𝜃, ∇𝜍

𝑡
) = 0, (16c)

− (𝑎𝜃, ∇𝜍
𝑡
) +

1

2

𝑑

𝑑𝑡


𝑎
1/2
∇𝜍


2

=
1

2
(𝑎
𝑡
∇𝜍, ∇𝜍) . (16d)

Adding the above four equations and using Cauchy-Schwarz
inequality and Young’s inequality, we have

1

2

𝑑

𝑑𝑡


𝑎
1/2
∇𝜍


2

+

𝑏
1/2
∇𝜛



2

= − (𝜂
𝑡
, 𝜛) + (𝜓, 𝜍

𝑡
) +

1

2
(𝑎
𝑡
∇𝜍, ∇𝜍)

= − (𝜂
𝑡
, 𝜛) +

𝑑

𝑑𝑡
(𝜓, 𝜍) − (𝜓

𝑡
, 𝜍) +

1

2
(𝑎
𝑡
∇𝜍, ∇𝜍)

≤
𝑑

𝑑𝑡
(𝜓, 𝜍) +

𝜂𝑡
 ‖𝜛‖ + 𝐶 (‖𝜍‖

2

1
+
𝜓𝑡


2

) .

(17)

Integrate with respect to time from 0 to 𝑡 to obtain

𝑎
0‖∇𝜍‖

2
+ 2𝑏
0
∫
𝑡

0

‖∇𝜛‖
2
𝑑𝑠

≤ 2 (𝜓, 𝜍) + 2∫
𝑡

0

𝜂𝑡
 ‖𝜛‖ 𝑑𝑠 + 𝐶∫

𝑡

0

(‖𝜍‖
2

1
+
𝜓𝑡


2

) 𝑑𝑠.

(18)

Noting that 𝜍, 𝜛 ∈ 𝐻1
0
(Ω), we use Poincaré inequality to have

‖𝜍‖1 ≤ 𝐶
1 ‖∇𝜍‖ , ‖𝜛‖ ≤ 𝐶

2 ‖∇𝜛‖ . (19)

Using (18), (19), Cauchy-Schwarz inequality and Young
inequality, we have

𝑎
0‖∇𝜍‖

2
+ 2𝑏
0
∫
𝑡

0

‖∇𝜛‖
2
𝑑𝑠

≤ 2
𝜓
 ‖𝜍‖ + 2∫

𝑡

0

𝜂𝑡
 ‖𝜛‖ 𝑑𝑠 + 𝐶∫

𝑡

0

(‖𝜍‖
2

1
+
𝜓𝑡


2

) 𝑑𝑠

≤ 2𝐶
1

𝜓
 ‖∇𝜍‖ + 2𝐶2 ∫

𝑡

0

𝜂𝑡
 ‖∇𝜛‖ 𝑑𝑠

+ 𝐶∫
𝑡

0

(𝐶
2

1
‖∇𝜍‖
2
+
𝜓𝑡


2

) 𝑑𝑠

≤
8𝐶2
1

𝑎
0

𝜓

2

+
𝑎
0

2
‖∇𝜍‖
2
+
4𝐶2
2

𝑏
0

∫
𝑡

0

𝜂𝑡

2

𝑑𝑠

+ 𝑏
0
∫
𝑡

0

‖∇𝜛‖
2
𝑑𝑠

+ 𝐶∫
𝑡

0

(𝐶
2

1
‖∇𝜍‖
2
+
𝜓𝑡


2

) 𝑑𝑠.

(20)

Using Gronwall’s lemma, we get

‖∇𝜍‖
2
+ ∫
𝑡

0

‖∇𝜛‖
2
𝑑𝑠

≤ 𝐶(
𝜓

2

+ ∫
𝑡

0

(
𝜂𝑡


2

+
𝜓

2

+
𝜓𝑡


2

) 𝑑𝑠) .

(21)

Substitute (19) into (21) to have

‖𝜍‖
2
+ ∫
𝑡

0

‖𝜛‖
2
𝑑𝑠

≤ 𝐶(
𝜓

2

+ ∫
𝑡

0

(
𝜂𝑡


2

+
𝜓

2

+
𝜓𝑡


2

) 𝑑𝑠) .

(22)

Taking w
ℎ
= 𝜃 in (14d) and using (22), we get

‖𝜃‖
2
≤ 𝐶(

𝜓

2

+ ∫
𝑡

0

(
𝜂𝑡


2

+
𝜓

2

+
𝜓𝑡


2

) 𝑑𝑠) . (23)

Choose z
ℎ
= 𝜉 in (14c) and use (22) to obtain

‖𝜉‖
2
≤ 𝐶(

𝜓

2

+ ∫
𝑡

0

(
𝜂𝑡


2

+
𝜓

2

+
𝜓𝑡


2

) 𝑑𝑠) . (24)

Combining Lemmas 5–7, (21)–(24) and using the triangle
inequality, we get the error estimates for Theorem 8.

Remark 9. FromTheorem 8, we can see that

𝑢 − 𝑢ℎ
𝐿∞(𝐿2) + ℎ

𝑢 − 𝑢ℎ
𝐿∞(𝐻1) = 𝑂 (ℎ

2
) ; (25)

that is to say, a priori error estimates in 𝐿2 and𝐻1-norms for
the scalar unknown 𝑢 are optimal.
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Theorem 10. Suppose that 𝜕𝑗𝑢/𝜕𝑡𝑗, 𝜕𝑗𝛾/𝜕𝑡𝑗 ∈ 𝐿2(𝐻2(Ω)) and
𝛾, 𝛾
𝑡
, 𝑢
𝑡
∈ 𝐿∞(𝐻2(Ω)); then there exists a constant 𝐶 > 0

independent of the spatial mesh parameter ℎ such that

𝛾 − 𝛾ℎ
 + ℎ

𝛾 − 𝛾ℎ
1

≤ 𝐶ℎ
2 [

[

𝑢𝑡
𝐿∞(𝐻2) +

𝛾
𝐿∞(𝐻2) +

𝛾𝑡
𝐿∞(𝐻2)

+ (∫
𝑡

0

(

2

∑
𝑗=0



𝜕𝑗𝑢

𝜕𝑡𝑗



2

𝐻
2

+



𝜕𝑗𝛾

𝜕𝑡𝑗



2

𝐻
2

)𝑑𝑠)

1/2

]

]

.

(26)

Proof. Differentiating (14b), (14c), and (14d) with respect to
time 𝑡, respectively, we get

(𝜍
𝑡
, V
ℎ
) + (𝑏∇𝜛, ∇V

ℎ
) = − (𝜂

𝑡
, V
ℎ
) , (27a)

(𝜛
𝑡
, 𝑔
ℎ
) + (𝜉

𝑡
, ∇𝑔
ℎ
) = − (𝜓

𝑡
, 𝑔
ℎ
) , (27b)

(𝜉
𝑡
, z
ℎ
) + (𝑎

𝑡
𝜃, z
ℎ
) + (𝑎𝜃

𝑡
, z
ℎ
) = 0, (27c)

(𝜃
𝑡
,w
ℎ
) − (∇𝜍

𝑡
,w
ℎ
) = 0. (27d)

Choose V
ℎ
= 𝜛
𝑡
, 𝑔
ℎ
= 𝜍
𝑡
, z
ℎ
= ∇𝜍
𝑡
, and w

ℎ
= ∇𝜍
𝑡
in (27a)–

(27d) to get

(𝜍
𝑡
, 𝜛
𝑡
) +

1

2

𝑑

𝑑𝑡


𝑏
1/2
∇𝜛



2

= − (𝜂
𝑡
, 𝜛
𝑡
) +

1

2
(𝑏
𝑡
∇𝜛, ∇𝜛) ,

(28a)

− (𝜛
𝑡
, 𝜍
𝑡
) − (𝜉

𝑡
, ∇𝜍
𝑡
) = (𝜓

𝑡
, 𝜍
𝑡
) , (28b)

(𝜉
𝑡
, ∇𝜍
𝑡
) + (𝑎

𝑡
𝜃, ∇𝜍
𝑡
) + (𝑎𝜃

𝑡
, ∇𝜍
𝑡
) = 0, (28c)

− (𝑎𝜃
𝑡
, ∇𝜍
𝑡
) +


𝑎
1/2
∇𝜍
𝑡



2

= 0. (28d)

Adding the four equations for (28a)–(28d), we have

1

2

𝑑

𝑑𝑡


𝑏
1/2
∇𝜛



2

+

𝑎
1/2
∇𝜍
𝑡



2

= − (𝜂
𝑡
, 𝜛
𝑡
) + (𝜓

𝑡
, 𝜍
𝑡
) − (𝑎

𝑡
𝜃, ∇𝜍
𝑡
) +

1

2
(𝑏
𝑡
∇𝜛, ∇𝜛)

= −
𝑑

𝑑𝑡
(𝜂
𝑡
, 𝜛) + (𝜂

𝑡𝑡
, 𝜛) +

𝑑

𝑑𝑡
(𝜓
𝑡
, 𝜍)

− (𝜓
𝑡𝑡
, 𝜍) − (𝑎

𝑡
𝜃, ∇𝜍
𝑡
) +

1

2
(𝑏
𝑡
∇𝜛, ∇𝜛) .

(29)

Integrate with respect to time from 0 to 𝑡 and use (19),
Cauchy-Schwarz inequality, and Young inequality to get

𝑏
0‖∇𝜛‖

2
+ 2𝑎
0
∫
𝑡

0

∇𝜍𝑡

2

𝑑𝑠

≤ −2 (𝜂
𝑡
, 𝜛) + 2𝐶

2
∫
𝑡

0

𝜂𝑡𝑡
 ‖∇𝜛‖ 𝑑𝑠 + 2 (𝜓𝑡, 𝜍)

+ 𝐶∫
𝑡

0

(
𝜓𝑡𝑡


2

+ ‖𝜍‖
2
+ ‖𝜃‖
2
) 𝑑𝑠 + 𝑎

0
∫
𝑡

0

∇𝜍𝑡

2

𝑑𝑠

≤
8𝐶2
2

𝑏
0

𝜂𝑡

2

+
𝑏
0

2
‖∇𝜛‖
2
+
𝜓𝑡


2

+ ‖𝜍‖
2
+ 𝑎
0
∫
𝑡

0

∇𝜍𝑡

2

𝑑𝑠

+ 𝐶∫
𝑡

0

(
𝜓𝑡𝑡


2

+ ‖𝜍‖
2
+ ‖𝜃‖
2
+
𝜂𝑡𝑡


2

+ ‖∇𝜛‖
2
) 𝑑𝑠.

(30)

Substituting (22) and (23) into (30) and using Gronwall
lemma, we get

‖∇𝜛‖
2
+ ∫
𝑡

0

∇𝜍𝑡

2

𝑑𝑠

≤ 𝐶
𝜂𝑡


2

+
𝜓

2

+
𝜓𝑡


2

+ 𝐶∫
𝑡

0

(
𝜂

2

+
𝜂𝑡


2

+
𝜂𝑡𝑡


2

+
𝜓

2

+
𝜓𝑡


2

+
𝜓𝑡𝑡


2

) 𝑑𝑠.

(31)

Use (19) to obtain

‖𝜛‖
2
≤ 𝐶

𝜂𝑡

2

+
𝜓

2

+
𝜓𝑡


2

+ 𝐶∫
𝑡

0

(
𝜂

2

+
𝜂𝑡


2

+
𝜂𝑡𝑡


2

+
𝜓

2

+
𝜓𝑡


2

+
𝜓𝑡𝑡


2

) 𝑑𝑠.

(32)

Combining Lemmas 5–7, (31), and (32) and using the triangle
inequality, we obtain the error estimates forTheorem 10.

Remark 11. FromTheorem 10, we can see that

𝛾 − 𝛾ℎ
𝐿∞(𝐿2) + ℎ

𝛾 − 𝛾ℎ
𝐿∞(𝐻1) = 𝑂 (ℎ

2
) ; (33)

that is to say, a priori error estimates in 𝐿2 and𝐻1-norm for
the diffusion term 𝛾 are optimal.

4. Fully Discrete Error Estimates

In the following analysis, we will derive a priori error
estimates based on fully discrete backward Euler scheme. Let
0 = 𝑡

0
< 𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝑀
= 𝑇 be a given partition of

the time interval [0, 𝑇]with step length Δ𝑡 = 𝑇/𝑀 and nodes
𝑡
𝑛
= 𝑛Δ𝑡, for some positive integer𝑀. For a smooth function

𝜙 on [0, 𝑇], define 𝜙𝑛 = 𝜙(𝑡
𝑛
).
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For (5a), (5b), (5c), and (5d), we have the following
equivalent formulation:

(
𝑢𝑛 − 𝑢𝑛−1

Δ𝑡
, V)+(𝑏

𝑛
∇𝛾
𝑛
, ∇V)=(𝑓

𝑛
+𝑅
𝑛

1
, V) , ∀V ∈ 𝐻

1

0
(Ω) ,

(34a)

(𝛾
𝑛
, 𝑔) + (𝜎

𝑛
, ∇𝑔) = 0, ∀𝑔 ∈ 𝐻

1

0
(Ω) , (34b)

(𝜎
𝑛
, z) + (𝑎𝑛𝜆𝑛, z) = 0, ∀z ∈ (𝐿2 (Ω))

2

, (34c)

(𝜆
𝑛
,w) − (∇𝑢𝑛,w) = 0, ∀w ∈ (𝐿

2
(Ω))
2

, (34d)

where

𝑅
𝑛

1
=
𝑢𝑛 − 𝑢𝑛−1

Δ𝑡
− 𝑢
𝑡
(𝑡
𝑛
) =

1

Δ𝑡
∫
𝑡
𝑛

𝑡
𝑛−1

(𝑡
𝑛−1

− 𝑠) 𝑢
𝑡𝑡
𝑑𝑠. (35)

Now a fully discrete procedure is to find (𝑢𝑛
ℎ
, 𝛾
𝑛

ℎ
,𝜆
𝑛

ℎ
,𝜎
𝑛

ℎ
) ∈ 𝑉
ℎ
×

𝑉
ℎ
×W
ℎ
×W
ℎ
(𝑛 = 0, 1, . . . ,𝑀) such that

(
𝑢𝑛
ℎ
− 𝑢𝑛−1
ℎ

Δ𝑡
, V
ℎ
) + (𝑏

𝑛
∇𝛾
𝑛

ℎ
, ∇V
ℎ
) = (𝑓

𝑛
, V
ℎ
) , ∀V

ℎ
∈ 𝑉
ℎ
,

(36a)

(𝛾
𝑛

ℎ
, 𝑔
ℎ
) + (𝜎

𝑛

ℎ
, ∇𝑔
ℎ
) = 0, ∀𝑔

ℎ
∈ 𝑉
ℎ
, (36b)

(𝜎
𝑛

ℎ
, z
ℎ
) + (𝑎

𝑛
𝜆
𝑛

ℎ
, z
ℎ
) = 0, ∀z

ℎ
∈ W
ℎ
, (36c)

(𝜆
𝑛

ℎ
,w
ℎ
) − (∇𝑢

𝑛

ℎ
,w
ℎ
) = 0, ∀w

ℎ
∈ W
ℎ
. (36d)

For deriving the fully discrete error estimates, we now
decompose the errors as

𝛾
𝑛
− 𝛾
𝑛

ℎ
= 𝛾
𝑛
−P
ℎ
𝛾
𝑛
+P
ℎ
𝛾
𝑛
− 𝛾
𝑛

ℎ
= 𝜓
𝑛
+ 𝜛
𝑛
;

𝑢
𝑛
− 𝑢
𝑛

ℎ
= 𝑢
𝑛
−R
ℎ
𝑢
𝑛
+R
ℎ
𝑢
𝑛
− 𝑢
𝑛

ℎ
= 𝜂
𝑛
+ 𝜍
𝑛
;

𝜆
𝑛
− 𝜆
𝑛

ℎ
= 𝜆
𝑛
−R
ℎ
𝜆
𝑛
+R
ℎ
𝜆
𝑛
− 𝜆
𝑛

ℎ
= 𝛿
𝑛
+ 𝜃
𝑛
;

𝜎
𝑛
− 𝜎
𝑛

ℎ
= 𝜎
𝑛
−R
ℎ
𝜎
𝑛
+R
ℎ
𝜎
𝑛
− 𝜎
𝑛

ℎ
= 𝜌
𝑛
+ 𝜉
𝑛
.

(37)

We will prove the theorem for the fully discrete error
estimates.

Theorem 12. Suppose that 𝛾, 𝛾
𝑡
, 𝑢
𝑡
∈ 𝐿2(𝐻2(Ω)), 𝜆,𝜎 ∈

𝐿∞((𝐻1(Ω))
2
), 𝛾 ∈ 𝐿∞(𝐻2(Ω)), and 𝑢

𝑡𝑡
∈ 𝐿2(𝐿2(Ω)); then

there exists a constant 𝐶 > 0 independent of the spatial mesh
parameter ℎ and the time step Δ𝑡 such that


𝑢
𝐽
− 𝑢
𝐽

ℎ


≤ 𝐶ℎ
2
(‖𝑢‖𝐿∞(𝐻2) + |||⧫|||) + 𝐶Δ𝑡

𝑢𝑡𝑡
𝐿2(𝐿2),


𝑢
𝐽
− 𝑢
𝐽

ℎ

1
≤ 𝐶ℎ (‖𝑢‖𝐿∞(𝐻2) + ‖𝜆‖𝐿∞((𝐻1)2) + |||⧫|||)

+ 𝐶Δ𝑡
𝑢𝑡𝑡

𝐿2(𝐿2),


𝜆
𝐽
− 𝜆
𝐽

ℎ


≤ 𝐶ℎ (‖𝜆‖

𝐿
∞
((𝐻
1
)
2
)
+ |||⧫|||) + 𝐶Δ𝑡

𝑢𝑡𝑡
𝐿2(𝐿2),


𝜎
𝐽
− 𝜎
𝐽

ℎ


≤ 𝐶ℎ (‖𝜎‖

𝐿
∞
((𝐻
1
)
2
)
+ |||⧫|||) + 𝐶Δ𝑡

𝑢𝑡𝑡
𝐿2(𝐿2),

(38)

where |||⧫||| ≜ ‖𝑢
𝑡
‖
𝐿
2
(𝐻
2
)
+ ‖𝛾‖
𝐿
∞
(𝐻
2
)
+ ‖𝛾‖
𝐿
2
(𝐻
2
)
+ ‖𝛾
𝑡
‖
𝐿
2
(𝐻
2
)
.

Proof. Using (8), (10a), (10b), (10c), (34a), (34b), (34c), (34d),
(36a), (36b), (36c), and (36d) at 𝑡 = 𝑡

𝑛
, we obtain the error

equations

(
𝜍𝑛 − 𝜍𝑛−1

Δ𝑡
, V
ℎ
) + (𝑏

𝑛
∇𝜛
𝑛
, ∇V
ℎ
)

= −(
𝜂𝑛 − 𝜂𝑛−1

Δ𝑡
, V
ℎ
) + (𝑅

𝑛

1
, V
ℎ
) , ∀V

ℎ
∈ 𝑉
ℎ
,

(39a)

(𝜛
𝑛
, 𝑔
ℎ
) + (𝜉

𝑛
, ∇𝑔
ℎ
) = − (𝜓

𝑛
, 𝑔
ℎ
) , ∀𝑔

ℎ
∈ 𝑉
ℎ
, (39b)

(𝜉
𝑛
, z
ℎ
) + (𝑎

𝑛
𝜃
𝑛
, z
ℎ
) = 0, ∀z

ℎ
∈ W
ℎ
, (39c)

(𝜃
𝑛
,w
ℎ
) − (∇𝜍

𝑛
,w
ℎ
) = 0, ∀w

ℎ
∈ W
ℎ
. (39d)

Take V
ℎ
= 𝜛𝑛 in (39a), 𝑔

ℎ
= (𝜍𝑛 − 𝜍𝑛−1)/Δ𝑡 in (39b), z

ℎ
=

(∇𝜍𝑛−∇𝜍𝑛−1)/Δ𝑡 in (39c), andw
ℎ
= (∇𝜍𝑛−∇𝜍𝑛−1)/Δ𝑡 in (39d)

to get


(𝑏
𝑛
)
1/2

∇𝜛
𝑛


2

= −(
𝜍𝑛 − 𝜍𝑛−1

Δ𝑡
, 𝜛
𝑛
) − (

𝜂𝑛 − 𝜂𝑛−1

Δ𝑡
, 𝜛
𝑛
) + (𝑅

𝑛

1
, 𝜛
𝑛
)

= (𝜉
𝑛
,
∇𝜍𝑛 − ∇𝜍𝑛−1

Δ𝑡
) − (

𝜂𝑛 − 𝜂𝑛−1

Δ𝑡
, 𝜛
𝑛
) + (𝑅

𝑛

1
, 𝜛
𝑛
)

+ (𝜓
𝑛
,
𝜍𝑛 − 𝜍𝑛−1

Δ𝑡
)

= −(𝑎
𝑛
𝜃
𝑛
,
∇𝜍𝑛 − ∇𝜍𝑛−1

Δ𝑡
) − (

𝜂𝑛 − 𝜂𝑛−1

Δ𝑡
, 𝜛
𝑛
)

+ (𝑅
𝑛

1
, 𝜛
𝑛
) + (𝜓

𝑛
,
𝜍𝑛 − 𝜍𝑛−1

Δ𝑡
)

= −(𝑎
𝑛∇𝜍
𝑛 − ∇𝜍𝑛−1

Δ𝑡
, ∇𝜍
𝑛
) − (

𝜂𝑛 − 𝜂𝑛−1

Δ𝑡
, 𝜛
𝑛
)

+ (𝑅
𝑛

1
, 𝜛
𝑛
) + (𝜓

𝑛
,
𝜍𝑛 − 𝜍𝑛−1

Δ𝑡
)

= −
1

2Δ𝑡
(

(𝑎
𝑛
)
1/2

∇𝜍
𝑛


2

−

(𝑎
𝑛−1

)
1/2

∇𝜍
𝑛−1



2

)

−
1

2Δ𝑡


𝑎
𝑛
(∇𝜍
𝑛
− ∇𝜍
𝑛−1

)


2

+
1

2
(
𝑎
𝑛 − 𝑎𝑛−1

Δ𝑡
∇𝜍
𝑛−1

, ∇𝜍
𝑛−1

) − (
𝜂𝑛 − 𝜂𝑛−1

Δ𝑡
, 𝜛
𝑛
)

+ (𝑅
𝑛

1
, 𝜛
𝑛
) + (𝜓

𝑛
,
𝜍𝑛 − 𝜍𝑛−1

Δ𝑡
) .

(40)
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By (40), we have


(𝑏
𝑛
)
1/2

∇𝜛
𝑛


2

+
1

2Δ𝑡


𝑎
𝑛
(∇𝜍
𝑛
− ∇𝜍
𝑛−1

)


2

+
1

2Δ𝑡
(

(𝑎
𝑛
)
1/2

∇𝜍
𝑛


2

−

(𝑎
𝑛−1

)
1/2

∇𝜍
𝑛−1



2

)

=
1

2
(
𝑎
𝑛 − 𝑎𝑛−1

Δ𝑡
∇𝜍
𝑛−1

, ∇𝜍
𝑛−1

) − (
𝜂
𝑛
− 𝜂
𝑛−1

Δ𝑡
, 𝜛
𝑛
)

+ (𝑅
𝑛

1
, 𝜛
𝑛
) + (𝜓

𝑛
,
𝜍𝑛 − 𝜍𝑛−1

Δ𝑡
)

=
1

2
(
1

Δ𝑡
∫
𝑡
𝑛

𝑡
𝑛−1

𝑎
𝑡
(𝑠) 𝑑𝑠∇𝜍

𝑛−1
, ∇𝜍
𝑛−1

) − (
𝜂𝑛 − 𝜂𝑛−1

Δ𝑡
, 𝜛
𝑛
)

+ (𝑅
𝑛

1
, 𝜛
𝑛
) +

(𝜓𝑛, 𝜍𝑛) − (𝜓𝑛−1, 𝜍𝑛−1)

Δ𝑡

− (𝜍
𝑛−1

,
𝜓𝑛 − 𝜓𝑛−1

Δ𝑡
) .

(41)

Multiplying by 2Δ𝑡, summing (41) from 𝑛 = 1 to 𝐽, and using
(19), the resulting equation becomes

𝑎
0


∇𝜍
𝐽

2

+ 2𝑏
0
Δ𝑡

𝐽

∑
𝑛=1

∇𝜛
𝑛
2

≤ 2Δ𝑡

𝐽

∑
𝑛=1

(



𝜂𝑛 − 𝜂𝑛−1

Δ𝑡


+
𝑅
𝑛

1

)
𝜛
𝑛

+ sup
𝑡∈[𝑡𝑛−1 ,𝑡𝑛]

𝑎𝑡 (𝑡)
 Δ𝑡

𝐽−1

∑
𝑛=1

∇𝜍
𝑛
2

+ Δ𝑡

𝐽

∑
𝑛=1

(

𝜍
𝑛−1

2

+



𝜓𝑛 − 𝜓𝑛−1

Δ𝑡



2

) +

𝜓
𝐽


𝜍
𝐽

≤ 𝐶Δ𝑡

𝐽

∑
𝑛=1

(



𝜂𝑛 − 𝜂𝑛−1

Δ𝑡



2

+
𝑅
𝑛

1


2

) + 𝑏
0
Δ𝑡

𝐽

∑
𝑛=1

∇𝜛
𝑛
2

+ 𝐶Δ𝑡

𝐽

∑
𝑛=1

(

∇𝜍
𝑛−1

2

+



𝜓𝑛 − 𝜓𝑛−1

Δ𝑡



2

) + 𝐶

𝜓
𝐽

2

+
𝑎
0

2


∇𝜍
𝐽

2

.

(42)

Use (42) and Gronwall lemma to get


∇𝜍
𝐽

2

+ Δ𝑡

𝐽

∑
𝑛=1

∇𝜛
𝑛
2

≤ 𝐶

𝜓
𝐽

2

+ 𝐶Δ𝑡

𝐽

∑
𝑛=1

(



𝜂𝑛 − 𝜂𝑛−1

Δ𝑡



2

+



𝜓𝑛 − 𝜓𝑛−1

Δ𝑡



2

+
𝑅
𝑛

1


2

) .

(43)

Note that

𝑅
𝑛

1


2

≤ 𝐶Δ𝑡∫
𝑡
𝑛

𝑡
𝑛−1

𝑢𝑡𝑡

2

𝑑𝑠,



𝜂𝑛 − 𝜂𝑛−1

Δ𝑡



2

≤
1

Δ𝑡
∫
𝑡
𝑛

𝑡
𝑛−1

𝜂𝑡(𝑠)

2

𝑑𝑠,



𝜓𝑛 − 𝜓𝑛−1

Δ𝑡



2

≤
1

Δ𝑡
∫
𝑡
𝑛

𝑡
𝑛−1

𝜓𝑡 (𝑠)

2

𝑑𝑠.

(44)

Substitute (44) into (43) to get


∇𝜍
𝐽

2

+ Δ𝑡

𝐽

∑
𝑛=1

∇𝜛
𝑛
2

≤ 𝐶(

𝜓
𝐽

2

+ ∫
𝑡
𝐽

𝑡
0

(
𝜂𝑡 (𝑠)


2

+
𝜓𝑡 (𝑠)


2

) 𝑑𝑠

+ (Δ𝑡)
2
∫
𝑡
𝐽

𝑡
0

𝑢𝑡𝑡

2

𝑑𝑠) .

(45)

Combining (19) and (45), we obtain


𝜍
𝐽

2

+ Δ𝑡

𝐽

∑
𝑛=1

𝜛
𝑛
2

≤ 𝐶(

𝜓
𝐽

2

+ ∫
𝑡
𝐽

𝑡
0

(
𝜂𝑡 (𝑠)


2

+
𝜓𝑡 (𝑠)


2

) 𝑑𝑠

+ (Δ𝑡)
2
∫
𝑡
𝐽

𝑡
0

𝑢𝑡𝑡

2

𝑑𝑠) .

(46)

Taking w
ℎ
= 𝜃
𝑛 in (39d) and z

ℎ
= 𝜉
𝑛 in (39c) and using (45),

we have

𝜃
𝐽

2

+

𝜉
𝐽

2

≤ 𝐶(

𝜓
𝐽

2

+ ∫
𝑡
𝐽

𝑡
0

(
𝜂𝑡 (𝑠)


2

+
𝜓𝑡 (𝑠)


2

) 𝑑𝑠

+(Δ𝑡)
2
∫
𝑡
𝐽

𝑡
0

𝑢𝑡𝑡

2

𝑑𝑠) .

(47)

Combining Lemmas 5–7, (45), (46), and (47)with the triangle
inequality, we accomplish the proof for Theorem 12.

In the following analysis, we will derive the optimal a
priori error estimates in 𝐿2 and𝐻1-norm for 𝛾.
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Table 1: 𝐿2 and𝐻1-norms and convergence order for 𝑢.

(ℎ, Δ𝑡) ‖𝑢 − 𝑢
ℎ
‖
𝐿
∞
(𝐿
2
(Ω))

Order ‖𝑢 − 𝑢
ℎ
‖
𝐿
∞
(𝐻
1
(Ω))

Order

(√2/8, 1/8) 2.8933𝑒 − 002 2.3766𝑒 − 001

(√2/16, 1/16) 8.2158𝑒 − 003 1.8162 1.2986𝑒 − 001 0.8719

(√2/32, 1/32) 2.1012𝑒 − 003 1.9672 6.8466𝑒 − 002 0.9235

(√2/64, 1/64) 5.3511𝑒 − 004 1.9733 3.5245𝑒 − 002 0.9580

Table 2: 𝐿2 and𝐻1-norms and convergence order for 𝛾.

(ℎ, Δ𝑡) ‖𝛾 − 𝛾
ℎ
‖
𝐿
∞
(𝐿
2
(Ω))

Order ‖𝛾 − 𝛾
ℎ
‖
𝐿
∞
(𝐻
1
(Ω))

Order

(√2/8, 1/8) 3.4238𝑒 − 001 4.5457𝑒 + 000

(√2/16, 1/16) 9.2701𝑒 − 002 1.8849 2.5429𝑒 + 000 0.8381

(√2/32, 1/32) 2.3840𝑒 − 002 1.9592 1.3493𝑒 + 000 0.9143

(√2/64, 1/64) 5.8649𝑒 − 003 2.0232 6.9558𝑒 − 001 0.9559
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Figure 1: Surface for exact solution 𝑢.
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0 0

𝑢ℎ at 𝑡 = 1, Δ𝑡 = 1/16

Figure 2: Surface for numerical solution 𝑢
ℎ
.

Theorem 13. Suppose that 𝛾, 𝛾
𝑡
, 𝑢
𝑡
∈ 𝐿2(𝐻2(Ω)), 𝜕2𝑢/𝜕𝑡2,

𝜕
4
𝑢/𝜕𝑡
4

∈ 𝐿
2
(𝐿
2
(Ω)), 𝛾 ∈ 𝐿

∞
(𝐻
2
(Ω)), and 𝜕

3
𝑢/𝜕𝑡
3

∈

𝐿∞(𝐿2(Ω)); then there exists a constant 𝐶 > 0 independent of
the spatialmesh parameter ℎ and time discretization parameter
Δ𝑡 such that


𝛾
𝐽
− 𝛾
𝐽

ℎ

𝑗
≤ 𝐶ℎ
2−𝑗

(
𝛾
𝐿∞(𝐻2) +

𝛾
𝐿2(𝐻2)

+
𝑢𝑡

𝐿2(𝐻2) +
𝛾𝑡

𝐿2(𝐻2))

+ Δ𝑡(



𝜕
2
𝑢

𝜕𝑡2

𝐿2(𝐿2)
+



𝜕
3
𝑢

𝜕𝑡3

𝐿∞(𝐿2)

+



𝜕4𝑢

𝜕𝑡4

𝐿2(𝐿2)
) , 𝑗 = 0, 1.

(48)

Proof. Use (39a)–(39d) to get

(
𝜍𝑛 − 𝜍𝑛−1

Δ𝑡
, V
ℎ
) + (𝑏

𝑛
∇𝜛
𝑛
, ∇V
ℎ
)

= −(
𝜂𝑛 − 𝜂𝑛−1

Δ𝑡
, V
ℎ
) + (𝑅

𝑛

1
, V
ℎ
) , ∀V

ℎ
∈ 𝑉
ℎ
,

(49a)

(
𝜛
𝑛 − 𝜛𝑛−1

Δ𝑡
, 𝑔
ℎ
) + (
𝜉
𝑛
− 𝜉
𝑛−1

Δ𝑡
, ∇𝑔
ℎ
)

= −(
𝜓𝑛 − 𝜓𝑛−1

Δ𝑡
, 𝑔
ℎ
) , ∀𝑔

ℎ
∈ 𝑉
ℎ
,

(49b)

(
𝜉
𝑛
− 𝜉
𝑛−1

Δ𝑡
, z
ℎ
) + (

𝑎𝑛𝜃
𝑛
− 𝑎𝑛−1𝜃

𝑛−1

Δ𝑡
, z
ℎ
)

= 0, ∀z
ℎ
∈ W
ℎ
,

(49c)

(
𝜃
𝑛
− 𝜃
𝑛−1

Δ𝑡
,w
ℎ
) − (

∇𝜍
𝑛
− ∇𝜍
𝑛−1

Δ𝑡
,w
ℎ
)

= 0, ∀w
ℎ
∈ W
ℎ
.

(49d)
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Figure 3: Surface for exact solution 𝜎 = (𝜎
1
,𝜎
2
).
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𝜎1ℎ (left) and 𝜎2ℎ (right) at 𝑡 = 1, Δ𝑡 = 1/16

Figure 4: Surface for numerical solution 𝜎
ℎ
= (𝜎
1ℎ
,𝜎
2ℎ
).

Taking V
ℎ
= (𝜛𝑛 −𝜛𝑛−1)/Δ𝑡, 𝑔

ℎ
= (𝜍𝑛 − 𝜍𝑛−1)/Δ𝑡, z

ℎ
= (∇𝜍𝑛 −

∇𝜍𝑛−1)/Δ𝑡, andw
ℎ
= (∇𝜍𝑛 −∇𝜍𝑛−1)/Δ𝑡, respectively, in (49a)–

(49d), we get

1

2Δ𝑡
(

(𝑏
𝑛
)
1/2

∇𝜛
𝑛


2

−

(𝑏
𝑛−1

)
1/2

∇𝜛
𝑛−1



2

)

+
1

2Δ𝑡


𝑏
𝑛
(∇𝜛
𝑛
− ∇𝜛
𝑛−1

)


2

= (𝑏
𝑛
∇𝜛
𝑛
, ∇

𝜛𝑛 − 𝜛𝑛−1

Δ𝑡
)

+
1

2
(
𝑏
𝑛
− 𝑏
𝑛−1

Δ𝑡
∇𝜛
𝑛−1

, ∇𝜛
𝑛−1

)

= −(
𝜍
𝑛 − 𝜍𝑛−1

Δ𝑡
,
𝜛
𝑛 − 𝜛𝑛−1

Δ𝑡
)
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Figure 5: Surface for exact solution 𝜆 = (𝜆
1
,𝜆
2
).

Table 3: (𝐿2)2-norm and convergence order for 𝜆 and 𝜎.

(ℎ, Δ𝑡) ‖𝜎 − 𝜎
ℎ
‖
𝐿
∞
((𝐿
2
(Ω))
2
)

Order ‖𝜆 − 𝜆
ℎ
‖
𝐿
∞
((𝐿
2
(Ω))
2
)

Order

(√2/8, 1/8) 2.3958𝑒 − 001 2.3589𝑒 − 001

(√2/16, 1/16) 1.3011𝑒 − 001 0.8808 1.2960𝑒 − 001 0.8641

(√2/32, 1/32) 6.8501𝑒 − 002 0.9255 6.8434𝑒 − 002 0.9213

(√2/64, 1/64) 3.5250𝑒 − 002 0.9585 3.5242𝑒 − 002 0.9574

− (
𝜂𝑛 − 𝜂𝑛−1

Δ𝑡
,
𝜛
𝑛 − 𝜛𝑛−1

Δ𝑡
)

+ (𝑅
𝑛

1
,
𝜛𝑛 − 𝜛𝑛−1

Δ𝑡
) +

1

2
(
𝑏
𝑛 − 𝑏𝑛−1

Δ𝑡
∇𝜛
𝑛−1

, ∇𝜛
𝑛−1

)

= (
𝜉
𝑛
− 𝜉
𝑛−1

Δ𝑡
,
∇𝜍
𝑛 − ∇𝜍𝑛−1

Δ𝑡
)+(

𝜓
𝑛
− 𝜓
𝑛−1

Δ𝑡
,
𝜍
𝑛 − 𝜍𝑛−1

Δ𝑡
)

+ (𝑅
𝑛

1
,
𝜛𝑛 − 𝜛𝑛−1

Δ𝑡
) − (

𝜂𝑛 − 𝜂𝑛−1

Δ𝑡
,
𝜛
𝑛 − 𝜛𝑛−1

Δ𝑡
)

+
1

2
(
𝑏
𝑛 − 𝑏𝑛−1

Δ𝑡
∇𝜛
𝑛−1

, ∇𝜛
𝑛−1

)

= −(
𝑎𝑛 (𝜃
𝑛
− 𝜃
𝑛−1

)

Δ𝑡
,
∇𝜍
𝑛 − ∇𝜍𝑛−1

Δ𝑡
)

− (
𝑎
𝑛 − 𝑎𝑛−1

Δ𝑡
𝜃
𝑛−1

,
∇𝜍𝑛 − ∇𝜍𝑛−1

Δ𝑡
)

+ (
𝜓𝑛 − 𝜓𝑛−1

Δ𝑡
,
𝜍
𝑛 − 𝜍𝑛−1

Δ𝑡
)

+ (𝑅
𝑛

1
,
𝜛𝑛 − 𝜛𝑛−1

Δ𝑡
) − (

𝜂𝑛 − 𝜂𝑛−1

Δ𝑡
,
𝜛
𝑛 − 𝜛𝑛−1

Δ𝑡
)

+
1

2
(
𝑏
𝑛 − 𝑏𝑛−1

Δ𝑡
∇𝜛
𝑛−1

, ∇𝜛
𝑛−1

)

= −


(𝑎
𝑛
)
1/2∇𝜍
𝑛 − ∇𝜍𝑛−1

Δ𝑡



2

− (
𝑎𝑛 − 𝑎𝑛−1

Δ𝑡
𝜃
𝑛−1

,
∇𝜍𝑛 − ∇𝜍𝑛−1

Δ𝑡
)

+ (
𝜓𝑛 − 𝜓𝑛−1

Δ𝑡
,
𝜍
𝑛 − 𝜍𝑛−1

Δ𝑡
)

+ (𝑅
𝑛

1
,
𝜛𝑛 − 𝜛𝑛−1

Δ𝑡
)

− (
𝜂𝑛 − 𝜂𝑛−1

Δ𝑡
,
𝜛
𝑛 − 𝜛𝑛−1

Δ𝑡
)

+
1

2
(
𝑏
𝑛 − 𝑏𝑛−1

Δ𝑡
∇𝜛
𝑛−1

, ∇𝜛
𝑛−1

) .

(50)
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Figure 6: Surface for numerical solution 𝜆
ℎ
= (𝜆
1ℎ
,𝜆
2ℎ
).

By using (50), we obtain

1

2Δ𝑡
(

(𝑏
𝑛
)
1/2

∇𝜛
𝑛


2

−

(𝑏
𝑛−1

)
1/2

∇𝜛
𝑛−1



2

)

+
1

2Δ𝑡


𝑏
𝑛
(∇𝜛
𝑛
− ∇𝜛
𝑛−1

)


2

+


(𝑎
𝑛
)
1/2∇𝜍
𝑛 − ∇𝜍𝑛−1

Δ𝑡



2

= −(
𝑎𝑛 − 𝑎𝑛−1

Δ𝑡
𝜃
𝑛−1

, ∇
𝜍𝑛 − 𝜍𝑛−1

Δ𝑡
)

+ (
𝜓𝑛 − 𝜓𝑛−1

Δ𝑡
,
𝜍
𝑛 − 𝜍𝑛−1

Δ𝑡
)

+
(𝜛𝑛, 𝑅𝑛

1
) − (𝜛𝑛−1, 𝑅𝑛−1

1
)

Δ𝑡

− (
𝑅𝑛
1
− 𝑅𝑛−1
1

Δ𝑡
, 𝜛
𝑛−1

)

−
((𝜂𝑛 − 𝜂𝑛−1) /Δ𝑡, 𝜛𝑛) − ((𝜂𝑛−1 − 𝜂𝑛−2) /Δ𝑡, 𝜛𝑛−1)

Δ𝑡

+ (
𝜂𝑛 − 2𝜂𝑛−1 + 𝜂𝑛−2

(Δ𝑡)
2

, 𝜛
𝑛−1

)

+
1

2
(
𝑏
𝑛 − 𝑏𝑛−1

Δ𝑡
∇𝜛
𝑛−1

, ∇𝜛
𝑛−1

) .

(51)

Multiply (51) by 2Δ𝑡, sum from 𝑛 = 1 to 𝐽, and use (19) to get

𝑏
0


∇𝜛
𝐽

2

+ 2𝑎
0
Δ𝑡

𝐽

∑
𝑛=1



∇𝜍𝑛 − ∇𝜍𝑛−1

Δ𝑡



2

≤ 2Δ𝑡

𝐽

∑
𝑛=1

(



𝑎𝑛 − 𝑎𝑛−1

Δ𝑡
𝜃
𝑛−1





∇𝜍𝑛 − ∇𝜍𝑛−1

Δ𝑡



+



𝜓𝑛 − 𝜓𝑛−1

Δ𝑡





𝜍𝑛 − 𝜍𝑛−1

Δ𝑡


)

+ 2

𝜛
𝐽


𝑅
𝐽

1


+ 2Δ𝑡

𝐽

∑
𝑛=1



𝑅
𝑛

1
− 𝑅
𝑛−1

1

Δ𝑡




𝜛
𝑛−1

+ 2



𝜂𝐽 − 𝜂𝐽−1

Δ𝑡
𝑐




𝜛
𝐽

+ 2Δ𝑡

𝐽

∑
𝑛=1



𝜂𝑛 − 2𝜂𝑛−1 + 𝜂𝑛−2

(Δ𝑡)
2




𝜛
𝑛−1

+ 𝐶Δ𝑡

𝐽

∑
𝑛=1


∇𝜛
𝑛−1

2

≤ 𝐶Δ𝑡

𝐽

∑
𝑛=1

(

𝜃
𝑛−1

+



𝜓𝑛 − 𝜓𝑛−1

Δ𝑡



2

+



𝜂
𝑛
− 2𝜂
𝑛−1

+ 𝜂
𝑛−2

(Δ𝑡)
2



2

+



𝑅𝑛
1
− 𝑅𝑛−1
1

Δ𝑡



2

)

+ 𝑎
0
Δ𝑡

𝐽

∑
𝑛=1



∇𝜍𝑛 − ∇𝜍𝑛−1

Δ𝑡



2
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+ 𝐶(

𝑅
𝐽

1



2

+



𝜂𝐽 − 𝜂𝐽−1

Δ𝑡



2

) +
𝑏
0

2


∇𝜛
𝐽

2

+ 𝐶Δ𝑡

𝐽

∑
𝑛=1


∇𝜛
𝑛−1

2

.

(52)

Use Gronwall lemma to obtain


∇𝜛
𝐽

2

≤ 𝐶Δ𝑡

𝐽

∑
𝑛=1

(

𝜃
𝑛−1

+



𝜓𝑛 − 𝜓𝑛−1

Δ𝑡



2

+



𝑅𝑛
1
− 𝑅𝑛−1
1

Δ𝑡



2

+



𝜂𝑛 − 2𝜂𝑛−1 + 𝜂𝑛−2

(Δ𝑡)
2



2

)

+ 𝐶(

𝑅
𝐽

1



2

+



𝜂𝐽 − 𝜂𝐽−1

Δ𝑡



2

) .

(53)

Note that



𝑅𝑛
1
− 𝑅𝑛−1
1

Δ𝑡



2

=



𝑢
𝑛
− 2𝑢
𝑛−1

+ 𝑢
𝑛−2

(Δ𝑡)
2

−
𝑢
𝑡
(𝑡
𝑛
) − 𝑢
𝑡
(𝑡
𝑛−1

)

Δ𝑡



2

=



𝑢𝑛 − 2𝑢𝑛−1 + 𝑢𝑛−2

(Δ𝑡)
2

− 𝑢
𝑡𝑡
(𝑡
Δ
∗

)



2

≤ 𝐶[Δ𝑡∫
𝑡
𝑛

𝑡
𝑛−2



𝜕4𝑢

𝜕𝑡4


𝑑𝑠 + Δ𝑡



𝜕3𝑢

𝜕𝑡3

𝐿∞(𝐿2)
]

2

≤ 𝐶(Δ𝑡)
2
∫
𝑡
𝑛

𝑡
𝑛−2



𝜕4𝑢

𝜕𝑡4



2

𝑑𝑠 + (Δ𝑡)
2



𝜕3𝑢

𝜕𝑡3



2

𝐿
∞
(𝐿
2
)

,

where 𝑡
Δ
∗

∈ (𝑡
𝑛−1

, 𝑡
𝑛
) .

(54)

Substitute (44), (47) and (54) into (53) to obtain


∇𝜛
𝐽

2

≤ 𝐶(
𝜓

2

𝐿
∞(𝐿2) + ∫

𝑡
𝐽

𝑡
0

(
𝜂𝑡 (𝑠)


2

+
𝜓𝑡 (𝑠)


2

) 𝑑𝑠

+ (Δ𝑡)
2
[



𝜕3𝑢

𝜕𝑡3



2

𝐿
∞(𝐿2)

+



𝜕2𝑢

𝜕𝑡2



2

𝐿
2(𝐿2)

+



𝜕4𝑢

𝜕𝑡4



2

𝐿
2(𝐿2)

]) .

(55)

Use (55) and Poincaré inequality (19) to get


𝜛
𝐽

2

≤ 𝐶(
𝜓

2

𝐿
∞(𝐿2) + ∫

𝑡
𝐽

𝑡
0

(
𝜂𝑡 (𝑠)


2

+
𝜓𝑡 (𝑠)


2

) 𝑑𝑠

+ (Δ𝑡)
2
[



𝜕3𝑢

𝜕𝑡3



2

𝐿
∞(𝐿2)

+



𝜕2𝑢

𝜕𝑡2



2

𝐿
2(𝐿2)

+



𝜕4𝑢

𝜕𝑡4



2

𝐿
2(𝐿2)

]) .

(56)

Combining Lemmas 6-7, (55), (56) and using the triangle
inequality, we complete the proof.

5. Numerical Results

In this section, we would like to give some numerical
results for the coupling method of EMFE method and FE
method proposed and analyzed in this paper. We consider
the following initial-boundary value problem of fourth-order
parabolic system:

𝑢
𝑡
+ ∇ ⋅ (𝑏∇ (∇ ⋅ (𝑎 (𝑡) ∇𝑢))) = 𝑓 (x, 𝑡) , (x, 𝑡) ∈ Ω × 𝐽,

𝑢 (x, 𝑡) = Δ𝑢 (x, 𝑡) = 0, (x, 𝑡) ∈ 𝜕Ω × 𝐽,

𝑢 (x, 0) = sin (𝜋𝑥
1
) sin (𝜋𝑥

2
) , x = (𝑥

1
, 𝑥
2
) ∈ Ω,

(57)

where Ω = [0, 1] × [0, 1], 𝐽 = (0, 1], 𝑎(𝑡) = 1 + 𝑡2, 𝑏 = 1,
and 𝑓(x, 𝑡) is chosen so that the exact solution for the scalar
unknown function is

𝑢 (x, 𝑡) = 𝑒
−2𝑡 sin (𝜋𝑥

1
) sin (𝜋𝑥

2
) , (58)

its exact gradient is

𝜆 = ∇𝑢 = 𝑒
−2𝑡
𝜋[

cos (𝜋𝑥
1
) sin (𝜋𝑥

2
)

sin (𝜋𝑥
1
) cos (𝜋𝑥

2
)
] , (59)

its exact flux function is

𝜎 = −𝑎𝜆 = 𝑒
−2𝑡

(1 + 𝑡
2
) 𝜋[

cos (𝜋𝑥
1
) sin (𝜋𝑥

2
)

sin (𝜋𝑥
1
) cos (𝜋𝑥

2
)
] ,

(60)

and the diffusion term is

𝛾 = ∇ ⋅ 𝜎 = 2𝜋
2
𝑒
−2𝑡

(1 + 𝑡
2
) sin (𝜋𝑥

1
) sin (𝜋𝑥

2
) . (61)

Dividing the domain Ω into the triangulations of mesh
size ℎ uniformly and choosing the piecewise linear space 𝑉

ℎ

with index 𝑘 = 1 and ℎ = √2Δ𝑡 = √2/8,√2/16, √2/32,
√2/64, we obtain the optimal a priori error estimates in 𝐿2

and𝐻1-norm for the scalar unknown 𝑢 in Table 1. Similarly,
from Table 2, we can find that both ‖𝛾 − 𝛾

ℎ
‖
𝐿
∞
(𝐻
1
(Ω))

and
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Figure 7: Surface for exact solution 𝛾.

6

4

2

0
1

0.8
0.6

0.4
0.2

0

1
0.8

0.6
0.4

0.2
0

𝛾ℎ at 𝑡 = 1, Δ𝑡 = 1/16

Figure 8: Surface for numerical solution 𝛾
ℎ
.

‖𝛾 − 𝛾
ℎ
‖
𝐿
∞
(𝐿
2
(Ω))

for the diffusion term 𝛾 are optimal, too. At
the same time, we take the corresponding piecewise constant
space W

ℎ
with index 𝑘 = 0 for the gradient 𝜆 and the flux

𝜎 and obtain some convergence results in (𝐿2)
2-norm with

ℎ = √2Δ𝑡 = √2/8,√2/16, √2/32, √2/64 in Table 3.
Taking 𝑡 = 1 with ℎ = √2Δ𝑡 = √2/32, we show the

surfaces of the exact solution 𝑢, 𝜎, 𝜆, and 𝛾 in Figures 1, 3, 5,
and 7, respectively. Figures 2, 4, 6, and 8 show the surfaces
of the numerical solution 𝑢

ℎ
, 𝜎
ℎ
, 𝜆
ℎ
and 𝛾

ℎ
at 𝑡 = 1 with

ℎ = √2Δ𝑡 = √2/16, respectively.
From the convergence results in Tables 1–3 and Figures 1–

8, we can find that the numerical results verify our theoretical
analysis.

6. Concluding Remarks

In this article, we study a new coupling method of new
EMFE scheme [29] and FE scheme for fourth-order partial
differential equation of parabolic type. The new EMFE
method’s gradient belongs to the simple square integrable

(𝐿
2(Ω))
2 space; therefore, the regularity requirement on the

gradient solution 𝜆 = ∇𝑢 is reduced. We obtain the optimal
priori error estimates in 𝐿2 and 𝐻1-norm for both the
scalar unknown 𝑢 and the diffusion term 𝛾 and the priori
error estimates in (𝐿2)

2-norm for its gradient 𝜆 and its flux
𝜎. Finally, a numerical example is provided to verify the
efficiency of our methods. At the same time, we apply the
new coupling method based on new EMFE method and
FE method to solving the fourth-order eigenvalue problems,
which will be shown in another article.

In the near future, we will study the new expandedmixed
finite element method for other partial differential equations,
such as fourth-order wave equations. Moreover, we will apply
some new techniques based on the combination of two-grid
methods [36, 37] and new (expanded) mixed methods [29–
32, 38] for solving fourth-order nonlinear elliptic equation
and fourth-order nonlinear parabolic equations.
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