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Lie symmetry group method is applied to find the Lie point symmetry group of a system of partial differential equations that
determines general form of four-dimensional Einstein Walker manifold. Also we will construct the optimal system of one-
dimensional Lie subalgebras and investigate some of its group invariant solutions.

1. Introduction

As it is well known, the symmetry group method has an
important role in the analysis of differential equations. The
theory of Lie symmetry groups of differential equations was
developed for the first time by Lie at the end of nineteenth
century [1]. By this method, we can construct new solutions
from known ones, reduce the order of ODEs, and investigate
the invariant solutions (for more information about the other
applications of Lie symmetries, see [2–4]). Lie’s method led
to an algorithmic approach to find special solutions of
differential equation by its symmetry group. These solutions
that called group invariant solutions are obtained by solving
the reduced system of differential equation having less
independent variables than the original system. The fact that
for some PDEs, the symmetry reductions are unobtainable
by the Lie symmetry method caused the creation of some
generalizations of this method. These generalizations are
called nonclassical symmetry method and was described in
these references [5–8].

In this paper, we apply the Lie symmetry method to find
the invariant solutions of a system of PDEs that determines
a spacial kind of Walker manifolds, called Einstein Walker
manifolds. We continue this section by giving the theoretical
notions needed to introduce a system of PDEs that deter-
mines Einstein Walker manifolds.

Let ⟨⋅, ⋅⟩ be a nondegenerate inner product on a vector
space 𝑉. We can choose a basis {𝑒

𝑖
} for 𝑉 so that

⟨𝑒
𝑖
, 𝑒
𝑗
⟩ = {

0 𝑖 ̸= 𝑗

±1 𝑖 = 𝑗.
(1)

We set 𝜀
𝑖
:= ⟨𝑒
𝑖
, 𝑒
𝑖
⟩. Let 𝑝 be the number of indices 𝑖 with 𝜀

𝑖
=

−1 and 𝑞 = dim𝑉−𝑝. The inner product is then said to have
signature (𝑝, 𝑞). We can extend this argument on manifolds.
Let M = (𝑀, 𝑔) where 𝑀 is an 𝑚-dimensional manifold
and 𝑔 is a symmetric nondegenerate smooth bilinear form on
𝑇𝑀 of signature (𝑝, 𝑞), such a manifold is called a pseudo-
Riemannian manifold of signature (𝑝, 𝑞). So we have 𝑝 +

𝑞 = 𝑚. If 𝑝 = 0 then 𝑔 is positive definite and M is
a Riemannian manifold. If (𝑥

1
, . . . , 𝑥

𝑚
) is a system of local

coordinates on 𝑀, we may express 𝑔 = ∑
𝑖,𝑗

𝑔
𝑖𝑗
𝑑𝑥
𝑖
∘ 𝑑𝑥
𝑗

where 𝑔
𝑖𝑗

:= 𝑔(𝜕
𝑥𝑖
, 𝜕
𝑥𝑗
) and “∘” is symmetric product. Let

𝑀 be a pseudo-Riemannian manifold of signature (𝑝, 𝑞).
Suppose that a splitting of the tangent bundle in the form
𝑇𝑀 = 𝑉

1
⊕ 𝑉
2
is given, where 𝑉

1
and 𝑉

2
are smooth

subbundles which are called distribution. This defines two
complementary projection 𝜋

1
and 𝜋

2
of 𝑇𝑀 onto 𝑉

1
and 𝑉

2
,

respectively. 𝑉
1
is called a parallel distribution if ∇𝜋

1
= 0.

Equivalently this means that if 𝑋
1
is any smooth vector field

taking values in𝑉
1
, then∇𝑋

1
again takes values in𝑉

1
. We say

that 𝑉
1
is a null parallel distribution if 𝑉

1
is parallel and if the

metric restricted to 𝑉
1
vanishes identically. Manifolds which

admit null parallel distributions are calledWalker manifolds.
Let𝐷 be a connection onmanifold𝑀.The curvature operator
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R is defined by the formula:

R (𝑋, 𝑌)𝑍 := (𝐷
𝑋
𝐷
𝑌
− 𝐷
𝑌
𝐷
𝑋

− 𝐷
[𝑋,𝑌]

) 𝑍,

𝑋, 𝑌, 𝑍 ∈ 𝐶
∞

(𝑇𝑀) .
(2)

Also the associated Ricci tensor 𝜌 is defined by

𝜌 (𝑋, 𝑌) := Tr {𝑍 → R (𝑍,𝑋) 𝑌} . (3)

AWalker manifold is said to be an Einstein Walker manifold
if its Ricci tensor is a scaler multiple of the metric at each
point; that is, there is a constant 𝑘 so that 𝜌 = 𝑘𝑔.
Walker showed that a canonical form for a 2𝑛-dimensional
pseudo-Riemannian Walker manifold which admits an 𝑛-
dimensional distribution is given by the metric tensor as

(𝑔
𝑖𝑗
) = (

0 𝐼𝑑
𝑛

𝐼𝑑
𝑛

𝐵
) , (4)

where 𝐼𝑑
𝑛
is the 𝑛 × 𝑛 identity matrix and 𝐵 is a symmetric

𝑛 × 𝑛 matrix whose entries are functions of the (𝑥
1
, . . . , 𝑥

2𝑛
)

(for more details see [9, 10]).
If 𝑛 = 2 we adopt the following result for 4-dimensional

Walker manifolds. Let 𝑀
𝑎,𝑏,𝑐

:= (O, 𝑔
𝑎,𝑏,𝑐

), where O be an
open subset of R4 and 𝑎, 𝑏, 𝑐 ∈ 𝐶

∞
(O) are smooth functions

on O. Then we can express the general form of metric tensor
for 4-dimensional Walker manifolds as follows:

(𝑔
𝑎,𝑏,𝑐

)
𝑖𝑗

= (

0 0 1 0

0 0 0 1

1 0 𝑎 𝑐

0 1 𝑐 𝑏

) , (5)

that is given in the coordinates form as

𝑔
𝑎,𝑏,𝑐

:= 2 (𝑑𝑥
1
∘ 𝑑𝑥
3
+ 𝑑𝑥
2
∘ 𝑑𝑥
4
)

+ 𝑎 (𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
) 𝑑𝑥
3
∘ 𝑑𝑥
3

+ 𝑏 (𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
) 𝑑𝑥
4
∘ 𝑑𝑥
4

+ 2𝑐 (𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
) 𝑑𝑥
3
∘ 𝑑𝑥
4
.

(6)

We can see that 𝑀
𝑎,𝑏,𝑐

is Einstein if and only if the functions
𝑎, 𝑏, and 𝑐 verify the following system of PDEs [9, page 81]:

𝑎
11

− 𝑏
22

= 0, 𝑏
12

+ 𝑐
11

= 0, 𝑎
12

+ 𝑐
22

= 0,

𝑎
1
𝑐
2
+ 𝑎
2
𝑏
2
− 𝑎
2
𝑐
1
− 𝑐
2

2
+ 2𝑐𝑎
12

+ 𝑏𝑎
22

− 2𝑎
24

− 𝑎𝑐
12

+ 2𝑐
23

= 0,

𝑎
2
𝑏
1
− 𝑐
1
𝑐
2
+ 𝑐𝑎
11

− 𝑎
14

− 𝑏
23

− 𝑎𝑐
11

− 𝑐𝑐
12

+ 𝑐
13

− 𝑏𝑐
22

+ 𝑐
24

= 0,

𝑎
1
𝑏
1
− 𝑏
1
𝑐
2
+ 𝑏
2
𝑐
1
− 𝑐
1

2
+ 𝑎𝑏
11

+ 2𝑐𝑏
12

− 2𝑏
13

− 𝑏𝑐
12

+ 2𝑐
14

= 0.

(7)

This system is hard to handle, so we consider a spacial case
in this paper, where 𝑎, 𝑏, and 𝑐 only depend on 𝑥

1
and 𝑥

2
.

Therefore the following system must be solved:

𝑎
11

− 𝑏
22

= 0, 𝑏
12

+ 𝑐
11

= 0, 𝑎
12

+ 𝑐
22

= 0,

𝑎
1
𝑐
2
+ 𝑎
2
𝑏
2
− 𝑎
2
𝑐
1
− 𝑐
2

2
+ 2𝑐𝑎
12

+ 𝑏𝑎
22

− 𝑎𝑐
12

= 0,

𝑎
2
𝑏
1
− 𝑐
1
𝑐
2
+ 𝑐𝑎
11

− 𝑎𝑐
11

− 𝑐𝑐
12

− 𝑏𝑐
22

= 0,

𝑎
1
𝑏
1
− 𝑏
1
𝑐
2
+ 𝑏
2
𝑐
1
− 𝑐
1

2
+ 𝑎𝑏
11

+ 2𝑐𝑏
12

− 𝑏𝑐
12

= 0.

(8)

This work is organized as follows. In Section 2, some prelim-
inary results about Lie symmetry method are presented. In
Section 3, the infinitesimal generators of symmetry algebra
of system (8) are determined and some results will be
obtained. In Section 4, the optimal system of subalgebras is
constructed. In Section 5, we obtain the invariant solutions
corresponding to the infinitesimal symmetries of system (8).

2. Lie Symmetries Method

In this section,we recall the procedure for finding symmetries
of a system of PDEs (see [2, 11]). To begin, we start with
a general case of a system of PDEs of order 𝑛th with 𝑝

independent and 𝑞 dependent variables such as

Δ
𝜇
(𝑥, 𝑢
(𝑛)

) = 0, 𝜇 = 1, . . . , 𝑟, (9)

involving 𝑥 = (𝑥
1
, . . . , 𝑥

𝑝
) and 𝑢 = (𝑢

1
, . . . , 𝑢

𝑞
) as

independent and dependent variables, respectively and all
the derivatives of 𝑢 with respect to 𝑥 from order 0 to 𝑛. We
consider a one parameter Lie group of transformations which
acts on the all variables of (9)

𝑥
𝑖
= 𝑥
𝑖
+ 𝜀𝜉
𝑖
(𝑥, 𝑢) + 𝑜 (𝜀

2
) , 𝑖 = 1, . . . , 𝑝,

�̃�
𝑗
= 𝑢
𝑗
+ 𝜀𝜙
𝑗 (𝑥, 𝑢) + 𝑜 (𝜀

2
) , 𝑗 = 1, . . . , 𝑞,

(10)

where 𝜉
𝑖 and 𝜙

𝑗
are the infinitesimals of the transformations

for the independent and dependent variables, respectively
and 𝜀 is the parameter of transformation.

The most general form of infinitesimal generator associ-
ated with the above group of transformations is

𝑋 =

𝑝

∑
𝑖=1

𝜉
𝑖
(𝑥, 𝑢) 𝜕𝑥𝑖 +

𝑞

∑
𝑗=1

𝜙
𝑗 (𝑥, 𝑢) 𝜕𝑢𝑗 . (11)

Transformations which map solutions of a differential equa-
tion to other solutions are called symmetries of this equation.
The 𝑛th order prolongation of 𝑋 is defined by

𝑃𝑟
(𝑛)

𝑋 = 𝑋 +

𝑞

∑
𝛼=1

∑
𝐽

𝜙
𝐽

𝛼
(𝑥, 𝑢
(𝑛)

) 𝜕
𝑢
𝛼

𝐽

, (12)

where 𝐽 = (𝑗
1
, . . . , 𝑗

𝑘
), 1 ≤ 𝑗

𝑘
≤ 𝑝, 1 ≤ 𝑘 ≤ 𝑛 and the sum is

over all 𝐽’s of order 0 < #𝐽 ≤ 𝑛. If #𝐽 = 𝑘, the coefficient 𝜙𝐽
𝛼
of
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𝜕
𝑢
𝛼

𝐽

will only depend on 𝑘th and lower order derivatives of 𝑢,
and

𝜙
𝐽

𝛼
(𝑥, 𝑢
(𝑛)

) = 𝐷
𝐽
(𝜙
𝛼
−

𝑝

∑
𝑖=1

𝜉
𝑖
𝑢
𝛼

𝑖
) +

𝑝

∑
𝑖=1

𝜉
𝑖
𝑢
𝛼

𝐽,𝑖
, (13)

where 𝑢
𝛼

𝑖
:= 𝜕𝑢
𝛼
/𝜕𝑥
𝑖 and 𝑢

𝛼

𝐽,𝑖
:= 𝜕𝑢
𝛼

𝐽
/𝜕𝑥
𝑖. Now, according to

Theorem 2.36 of [2], the invariance of the system (9) under
the infinitesimal transformations leads to the invariance
conditions:

𝑃𝑟
(𝑛)

𝑋[Δ
𝜇
(𝑥, 𝑢
(𝑛)

)] = 0, 𝜇 = 1, . . . , 𝑟,

whenever Δ
𝜇
(𝑥, 𝑢
(𝑛)

) = 0.

(14)

Also, if the system (9) is a nondegenerate system which is
locally solvable and of maximal rank, we can conclude that
(14) is a necessary and sufficient condition for 𝐺 to be a
(strong) symmetry group of (9) (Theorem 2.71 of [2] and
Theorem 1 of [5]).

3. Symmetries of System (8)
In this section, we consider one parameter Lie group of
infinitesimal transformations: (𝑥1 = 𝑥, 𝑥2 = 𝑡, 𝑢1 = 𝑎, 𝑢2 = 𝑏,
𝑢
3
= 𝑐, we use 𝑥 and 𝑡 instead of 𝑥

1
and 𝑥

2
, resp., in order not

to use index)

𝑥 = 𝑥 + 𝜀𝜉
1
(𝑥, 𝑡, 𝑎, 𝑏, 𝑐) + 𝑜 (𝜀

2
) ,

�̃� = 𝑡 + 𝜀𝜉
2
(𝑥, 𝑡, 𝑎, 𝑏, 𝑐) + 𝑜 (𝜀

2
) ,

𝑎 = 𝑎 + 𝜀𝜙
1 (𝑥, 𝑡, 𝑎, 𝑏, 𝑐) + 𝑜 (𝜀

2
) ,

�̃� = 𝑏 + 𝜀𝜙
2 (𝑥, 𝑡, 𝑎, 𝑏, 𝑐) + 𝑜 (𝜀

2
) ,

𝑐 = 𝑐 + 𝜀𝜙
3 (𝑥, 𝑡, 𝑎, 𝑏, 𝑐) + 𝑜 (𝜀

2
) .

(15)

The symmetry generator of the above group of transforma-
tions is of the form

𝑋 = 𝜉
1
(𝑥, 𝑡, 𝑎, 𝑏, 𝑐) 𝜕𝑥 + 𝜉

2
(𝑥, 𝑡, 𝑎, 𝑏, 𝑐) 𝜕𝑡

+ 𝜙
1 (𝑥, 𝑡, 𝑎, 𝑏, 𝑐) 𝜕𝑎 + 𝜙

2 (𝑥, 𝑡, 𝑎, 𝑏, 𝑐) 𝜕𝑏

+ 𝜙
3 (𝑥, 𝑡, 𝑎, 𝑏, 𝑐) 𝜕𝑐,

(16)

and, its second prolongation is the vector field

𝑃𝑟
(2)

𝑋 = 𝑋 + 𝜙
𝑥

1
𝜕
𝑎𝑥

+ 𝜙
𝑡

1
𝜕
𝑎𝑡

+ 𝜙
𝑥

2
𝜕
𝑏𝑥

+ 𝜙
𝑡

2
𝜕
𝑏𝑡

+ 𝜙
𝑥

3
𝜕
𝑐𝑥

+ 𝜙
𝑡

3
𝜕
𝑐𝑡
+ 𝜙
𝑥𝑥

1
𝜕
𝑎𝑥𝑥

+ 𝜙
𝑥𝑥

2
𝜕
𝑏𝑥𝑥

+ 𝜙
𝑥𝑥

3
𝜕
𝑐𝑥𝑥

+ 𝜙
𝑥𝑡

1
𝜕
𝑎𝑥𝑡

+ 𝜙
𝑥𝑡

2
𝜕
𝑏𝑥𝑡

+ 𝜙
𝑥𝑡

3
𝜕
𝑐𝑥𝑡

+ 𝜙
𝑡𝑡

1
𝜕
𝑎𝑡𝑡

+ 𝜙
𝑡𝑡

2
𝜕
𝑏𝑡𝑡

+ 𝜙
𝑡𝑡

3
𝜕
𝑐𝑡𝑡
.

(17)

Let (for convenience)𝑄
1
= 𝜙
1
− 𝜉
1
𝑎
𝑥
− 𝜉
2
𝑎
𝑡
, 𝑄
2
= 𝜙
2
− 𝜉
1
𝑏
𝑥
−

𝜉
2
𝑏
𝑡
and 𝑄

3
= 𝜙
3
− 𝜉
1
𝑐
𝑥
− 𝜉
2
𝑐
𝑡
, then by using (13), we can

compute the coefficients of (17) as

𝜙
𝑥

1
= 𝐷
𝑥
𝑄
1
+ 𝜉
1
𝑎
𝑥𝑥

+ 𝜉
2
𝑎
𝑥𝑡
,

𝜙
𝑥

2
= 𝐷
𝑥
𝑄
2
+ 𝜉
1
𝑏
𝑥𝑥

+ 𝜉
2
𝑏
𝑥𝑡
,

𝜙
𝑥

3
= 𝐷
𝑥
𝑄
3
+ 𝜉
1
𝑐
𝑥𝑥

+ 𝜉
2
𝑐
𝑥𝑡
,

𝜙
𝑡

1
= 𝐷
𝑡
𝑄
1
+ 𝜉
1
𝑎
𝑥𝑡

+ 𝜉
2
𝑎
𝑡𝑡
,

𝜙
𝑡

2
= 𝐷
𝑡
𝑄
2
+ 𝜉
1
𝑏
𝑥𝑡

+ 𝜉
2
𝑏
𝑡𝑡
,

𝜙
𝑡

3
= 𝐷
𝑡
𝑄
3
+ 𝜉
1
𝑐
𝑥𝑡

+ 𝜉
2
𝑐
𝑡𝑡
,

𝜙
𝑥𝑥

1
= 𝐷
2

𝑥
𝑄
1
+ 𝜉
1
𝑎
𝑥𝑥𝑥

+ 𝜉
2
𝑎
𝑥𝑥𝑡

,

𝜙
𝑥𝑥

2
= 𝐷
2

𝑥
𝑄
2
+ 𝜉
1
𝑏
𝑥𝑥𝑥

+ 𝜉
2
𝑏
𝑥𝑥𝑡

,

𝜙
𝑥𝑥

3
= 𝐷
2

𝑥
𝑄
3
+ 𝜉
1
𝑐
𝑥𝑥𝑥

+ 𝜉
2
𝑐
𝑥𝑥𝑡

,

𝜙
𝑡𝑡

1
= 𝐷
2

𝑡
𝑄
1
+ 𝜉
1
𝑎
𝑥𝑡𝑡

+ 𝜉
2
𝑎
𝑡𝑡𝑡

,

𝜙
𝑡𝑡

2
= 𝐷
2

𝑡
𝑄
2
+ 𝜉
1
𝑏
𝑥𝑡𝑡

+ 𝜉
2
𝑏
𝑡𝑡𝑡

,

𝜙
𝑡𝑡

3
= 𝐷
2

𝑡
𝑄
3
+ 𝜉
1
𝑐
𝑥𝑡𝑡

+ 𝜉
2
𝑐
𝑡𝑡𝑡

,

𝜙
𝑥𝑡

1
= 𝐷
𝑥
𝐷
𝑡
𝑄
1
+ 𝜉
1
𝑎
𝑥𝑥𝑡

+ 𝜉
2
𝑎
𝑥𝑡𝑡

,

𝜙
𝑥𝑡

2
= 𝐷
𝑥
𝐷
𝑡
𝑄
2
+ 𝜉
1
𝑏
𝑥𝑥𝑡

+ 𝜉
2
𝑏
𝑥𝑡𝑡

,

𝜙
𝑥𝑡

3
= 𝐷
𝑥
𝐷
𝑡
𝑄
3
+ 𝜉
1
𝑐
𝑥𝑥𝑡

+ 𝜉
2
𝑐
𝑥𝑡𝑡

,

(18)

where𝐷
𝑥
and𝐷

𝑡
are the total derivativeswith respect to𝑥 and

𝑡, respectively. By (14) the invariance condition is equivalent
with the following equations:

𝑃𝑟
(2)

𝑋[𝑎
𝑥𝑥

− 𝑏
𝑡𝑡
] = 0, 𝑎

𝑥𝑥
− 𝑏
𝑡𝑡

= 0,

𝑃𝑟
(2)

𝑋[𝑏
𝑥𝑦

+ 𝑐
𝑥𝑥

] = 0, 𝑏
𝑥𝑦

+ 𝑐
𝑥𝑥

= 0,

...

𝑃𝑟
(2)

𝑋[𝑎
𝑥
𝑏
𝑥
− 𝑏
𝑥
𝑐
𝑡
+ 𝑏
𝑡
𝑐
𝑥
− 𝑐
𝑥

2
+ 𝑎𝑏
𝑥𝑥

+ 2 𝑐𝑏
𝑥𝑡

− 𝑏𝑐
𝑥𝑡
] = 0,

𝑎
𝑥
𝑏
𝑥
− 𝑏
𝑥
𝑐
𝑡
+ 𝑏
𝑡
𝑐
𝑥
− 𝑐
𝑥

2
+ 𝑎𝑏
𝑥𝑥

+ 2 𝑐𝑏
𝑥𝑡

− 𝑏𝑐
𝑥𝑡

= 0.

(19)

After substituting 𝑃𝑟
(2)

𝑋 in the six equations above, we
obtain six polynomial equations involving the various deriva-
tives of 𝑎, 𝑏, and 𝑐, whose coefficients are certain derivatives
of 𝜉
1, 𝜉2, 𝜙

1
, 𝜙
2
, and 𝜙

3
. Since 𝜉

1, 𝜉2, 𝜙
1
, 𝜙
2
and 𝜙

3
depend

only on 𝑥, 𝑡, 𝑎, 𝑏, 𝑐 we can equate the individual coefficients
to zero, leading to the determining the following equations:

𝑎
3
𝜉
1

𝑎
= 0, 𝑏

2
𝜉
1

𝑏
= 0, 𝑎𝜉

2

𝑏
= 0,

𝑏
2
𝜉
2

𝑏
= 0, 𝑎𝑐𝜙

2𝑎
= 0, 𝑐𝑏𝜉

1

𝑏
= 0, . . .
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Table 1: The commutator table of g.

[ , ] 𝑋
1

𝑋
2

𝑋
3

𝑋
4

𝑋
5

𝑋
6

𝑋
7

𝑋
1

0 0 𝑋
1

𝑋
2

0 0 0

𝑋
2

0 0 0 0 𝑋
1

𝑋
2

0

𝑋
3

−𝑋
1

0 0 𝑋
4

−𝑋
5

0 0

𝑋
4

−𝑋
2

0 −𝑋
4

0 𝑋
3
− 𝑋
6
+ 2𝑋
7

𝑋
4

0

𝑋
5

0 −𝑋
1

𝑋
5

−𝑋
3
+ 𝑋
6
− 2𝑋
7

0 −𝑋
5

0

𝑋
6

0 −𝑋
2

0 −𝑋
4

𝑋
5

0 0

𝑋
7

0 0 0 0 0 0 0

Table 2: Lie invariants and similarity solutions.

𝑖 𝑉
𝑖

𝑤
𝑖

𝑓
𝑖
(𝑤) ℎ

𝑖
(𝑤) 𝑘

𝑖
(𝑤) 𝑎

𝑖
𝑏
𝑖

𝑐
𝑖

1 𝑋
1

𝑡 𝑎 𝑏 𝑐 𝑓(𝑤) ℎ(𝑤) 𝑘(𝑤)

2 𝑋
2

𝑥 𝑎 𝑏 𝑐 𝑓(𝑤) ℎ(𝑤) 𝑘(𝑤)

3 𝑋
6

𝑥 𝑎 𝑏𝑡
−2

𝑐𝑡
−1

𝑓(𝑤) 𝑡
2
ℎ(𝑤) 𝑡𝑘(𝑤)

4 𝑋
1
+ 𝑋
7

𝑡 𝑎𝑒
−𝑥

𝑏𝑒
−𝑥

𝑐𝑒
−𝑥

𝑒
𝑥
𝑓(𝑤) 𝑒

𝑥
ℎ(𝑤) 𝑒

𝑥
𝑘(𝑤)

5 𝑋
2
+ 𝑋
7

𝑥 𝑎𝑒
−𝑡

𝑏𝑒
−𝑡

𝑐𝑒
−𝑡

𝑒
𝑡
𝑓(𝑤) 𝑒

𝑡
ℎ(𝑤) 𝑒

𝑡
𝑘(𝑤)

6 𝑋
6
+ 𝑋
7

𝑥 𝑎𝑡
−1

𝑏𝑡
−3

𝑐𝑡
−2

𝑡𝑓(𝑤) 𝑡
3
ℎ(𝑤) 𝑡

2
𝑘(𝑤)

𝑎𝑏𝑐 (−3𝜉
1

𝑡
− 𝜙
3𝑏
) + 2𝑐

2
𝑎 (−𝜉
2

𝑡
+ 𝜉
1

𝑥
)

+ 𝑏𝑎
2
(𝜙
2𝑏

− 𝜙
3𝑐

− 𝜉
1

𝑥
+ 𝜉
2

𝑡
)

+ 𝑐𝑎
2
(−2𝜉
2

𝑥
+ 𝜙
2𝑐
) + 𝜙
1
(𝑎𝑏 − 2𝑐

2
)

− 𝑎
2
𝜙
2
+ 2𝑐𝑎𝜙

3
+ 4𝑐
3
𝜉
1

𝑡
= 0.

(20)

We write some of these equations whereas the number of the
whole is 410. By solving this system of PDEs, we have the
following.

Theorem 1. The Lie group of point symmetries of system (8)
has the Lie algebra generated by (16), which its coefficient
functions are

𝜉
1
= 𝑘
3
𝑥 + 𝑘
1
𝑡 + 𝑘
2
, 𝜙
2
= (2𝑘
4
− 2𝑘
3
+ 𝑘
7
) 𝑏 + 2𝑘

6
𝑐,

𝜙
1
= 2𝑘
1
𝑐 + 𝑘
7
𝑎, 𝜉

2
= 𝑘
6
𝑥 + 𝑘
4
𝑡 + 𝑘
5
,

𝜙
3
= (𝑘
7
+ 𝑘
4
− 𝑘
3
) 𝑐 + 𝑘

6
𝑎 + 𝑘
1
𝑏,

(21)

where 𝑘
𝑖
’s, 𝑖 = 1, . . . , 7 are arbitrary constants.

Corollary 2. Infinitesimal generator of any one-parameter Lie
group of point symmetries of (8) is anR-linear combination of

𝑋
1
= 𝜕
𝑥
, 𝑋

2
= 𝜕
𝑡
, 𝑋

3
= 𝑥𝜕
𝑥
− 2𝑏𝜕
𝑏
− 𝑐𝜕
𝑐
,

𝑋
4
= 𝑥𝜕
𝑡
+ 2𝑐𝜕
𝑏
+ 𝑎𝜕
𝑐
, 𝑋

5
= 𝑡𝜕
𝑥
+ 2𝑐𝜕
𝑎
+ 𝑏𝜕
𝑐
,

𝑋
6
= 𝑡𝜕
𝑡
+ 2𝑏𝜕
𝑏
+ 𝑐𝜕
𝑐
, 𝑋

7
= 𝑎𝜕
𝑎
+ 𝑏𝜕
𝑏
+ 𝑐𝜕
𝑐
.

(22)

It is worthwhile to note that, the Lie group obtained from
this method, is a strong symmetry group of system (8). So we
can transform solutions of the system to other solutions as
well as reduce the system and obtain 𝐺-invariant solutions.

Let g be the Lie algebra generated by (22). The commuta-
tor table of g is given in Table 1, where the entry in the 𝑖th row
and 𝑗th column is [𝑋

𝑖
, 𝑋
𝑗
] = 𝑋

𝑖
𝑋
𝑗
− 𝑋
𝑗
𝑋
𝑖
, 𝑖, 𝑗 = 1, . . . , 7.

The group transformation which is generated by 𝑋
𝑖

=

𝜉
1

𝑖
𝜕
𝑥
+ 𝜉
2

𝑖
𝜕
𝑡
+ 𝜙
1𝑖
𝜕
𝑎
+ 𝜙
2𝑖
𝜕
𝑏
+ 𝜙
3𝑖
𝜕
𝑐
for 𝑖 = 1, . . . , 7 is obtained

by solving the seven systems of ODEs:

𝑑𝑥 (𝑠)

𝑑𝑠
= 𝜉
1

𝑖
(𝑥 (𝑠) , �̃� (𝑠) , 𝑎 (𝑠) , �̃� (𝑠) , 𝑐 (𝑠)) , 𝑥 (0) = 𝑥,

𝑑�̃� (𝑠)

𝑑𝑠
= 𝜉
2

𝑖
(𝑥 (𝑠) , �̃� (𝑠) , 𝑎 (𝑠) , �̃� (𝑠) , 𝑐 (𝑠)) , �̃� (0) = 𝑡,

𝑑𝑎 (𝑠)

𝑑𝑠
= 𝜙
1𝑖
(𝑥 (𝑠) , �̃� (𝑠) , 𝑎 (𝑠) , �̃� (𝑠) , 𝑐 (𝑠)) , 𝑎 (0) = 𝑎,

𝑑�̃� (𝑠)

𝑑𝑠
= 𝜙
2𝑖
(𝑥 (𝑠) , �̃� (𝑠) , 𝑎 (𝑠) , �̃� (𝑠) , 𝑐 (𝑠)) , �̃� (0) = 𝑏,

𝑑𝑐 (𝑠)

𝑑𝑠
= 𝜙
3𝑖
(𝑥 (𝑠) , �̃� (𝑠) , 𝑎 (𝑠) , �̃� (𝑠) , 𝑐 (𝑠)) , 𝑐 (0) = 𝑐.

𝑖 = 1, . . . , 7.

(23)

By exponentiating the infinitesimal symmetries (22), we
obtain the one-parameter groups 𝑔

𝑘
(𝑠) generated by 𝑋

𝑘
, 𝑘 =

1, . . . , 7 as follows:

𝑔
1 (𝑠) : (𝑥, 𝑡, 𝑎, 𝑏, 𝑐) → (𝑥 + 𝑠, 𝑡, 𝑎, 𝑏, 𝑐) ,

𝑔
2 (𝑠) : (𝑥, 𝑡, 𝑎, 𝑏, 𝑐) → (𝑥, 𝑡 + 𝑠, 𝑎, 𝑏, 𝑐) ,

𝑔
3 (𝑠) : (𝑥, 𝑡, 𝑎, 𝑏, 𝑐) → (𝑥𝑒

𝑠
, 𝑡, 𝑎, 𝑏𝑒

−2𝑠
, 𝑐𝑒
−𝑠
) ,

𝑔
4 (𝑠) : (𝑥, 𝑡, 𝑎, 𝑏, 𝑐) → (𝑥, 𝑠𝑥 + 𝑡, 𝑎, 𝑎𝑠

2
+ 2𝑐𝑠 + 𝑏, 𝑎𝑠 + 𝑐) ,
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𝑔
5 (𝑠) : (𝑥, 𝑡, 𝑎, 𝑏, 𝑐) → (𝑡𝑠 + 𝑥, 𝑡, 𝑏𝑠

2
+ 2𝑐𝑠 + 𝑎, 𝑏, 𝑏𝑠 + 𝑐) ,

𝑔
6 (𝑠) : (𝑥, 𝑡, 𝑎, 𝑏, 𝑐) → (𝑥, 𝑡𝑒

𝑠
, 𝑎, 𝑏𝑒
2𝑠
, 𝑐𝑒
𝑠
) ,

𝑔
7 (𝑠) : (𝑥, 𝑡, 𝑎, 𝑏, 𝑐) → (𝑥, 𝑡, 𝑎𝑒

𝑠
, 𝑏𝑒
𝑠
, 𝑐𝑒
𝑠
) .

(24)

Consequently, we can state the following theorem.

Theorem 3. If 𝑎 = 𝑓 = 𝑓(𝑥, 𝑡), 𝑏 = ℎ = ℎ(𝑥, 𝑡), and 𝑐 = 𝑘 =

𝑘(𝑥, 𝑡), is a solution of (8), so are the functions

𝑔
1 (𝑠) ⋅ 𝑓 = 𝑓 (𝑥 − 𝑠, 𝑡) , 𝑔

1 (𝑠) ⋅ ℎ = ℎ (𝑥 − 𝑠, 𝑡) ,

𝑔
1 (𝑠) ⋅ 𝑘 = 𝑘 (𝑥 − 𝑠, 𝑡) , 𝑔

2 (𝑠) ⋅ 𝑓 = 𝑓 (𝑥, 𝑡 − 𝑠) ,

𝑔
2 (𝑠) ⋅ ℎ = ℎ (𝑥, 𝑡 − 𝑠) , 𝑔

2 (𝑠) ⋅ 𝑘 = 𝑘 (𝑥, 𝑡 − 𝑠) ,

𝑔
3 (𝑠) ⋅ 𝑓 = 𝑓 (𝑥𝑒

−𝑠
, 𝑡) , 𝑔

3 (𝑠) ⋅ ℎ = ℎ (𝑥𝑒
−𝑠
, 𝑡) 𝑒
−2𝑠

,

𝑔
3 (𝑠) ⋅ 𝑘 = 𝑘 (𝑥𝑒

−𝑠
, 𝑡) 𝑒
−𝑠
, 𝑔

6 (𝑠) ⋅ 𝑓 = 𝑓 (𝑥, 𝑡𝑒
−𝑠
) ,

𝑔
6 (𝑠) ⋅ ℎ = ℎ (𝑥, 𝑡𝑒

−𝑠
) 𝑒
2𝑠
, 𝑔

6 (𝑠) ⋅ 𝑘 = 𝑘 (𝑥, 𝑡𝑒
−𝑠
) 𝑒
𝑠
,

𝑔
7 (𝑠) ⋅ 𝑓 = 𝑓 (𝑥, 𝑡) 𝑒

𝑠
, 𝑔

7 (𝑠) ⋅ ℎ = ℎ (𝑥, 𝑡) 𝑒
𝑠
,

𝑔
7 (𝑠) ⋅ 𝑘 = 𝑘 (𝑥, 𝑡) 𝑒

𝑠
, 𝑔

4 (𝑠) ⋅ 𝑓 = 𝑓 (𝑥, 𝑡 − 𝑠𝑥) ,

𝑔
4 (𝑠) ⋅ ℎ = 𝑓 (𝑥, 𝑡 − 𝑠𝑥) 𝑠

2
+ 2𝑘 (𝑥, 𝑡 − 𝑠𝑥) 𝑠 + ℎ (𝑥, 𝑡 − 𝑠𝑥) ,

𝑔
4 (𝑠) ⋅ 𝑘 = 𝑓 (𝑥, 𝑡 − 𝑠𝑥) 𝑠 + 𝑘 (𝑥, 𝑡 − 𝑠𝑥) ,

𝑔
5 (𝑠) ⋅ 𝑓 = ℎ (𝑥 − 𝑠𝑡, 𝑡) 𝑠

2
+ 2𝑘 (𝑥 − 𝑠𝑡, 𝑡) 𝑠 + 𝑓 (𝑥 − 𝑠𝑡, 𝑡) ,

𝑔
5 (𝑠) ⋅ ℎ = ℎ (𝑥 − 𝑠𝑡, 𝑡) ,

𝑔
5 (𝑠) ⋅ 𝑘 = ℎ (𝑥 − 𝑠𝑡, 𝑡) 𝑠 + 𝑘 (𝑥 − 𝑠𝑡, 𝑡) .

(25)

This theorem is applied to obtain new solutions from
known ones.

Example 4. Let

𝑎 = 𝑓 (𝑥, 𝑡) = 𝑟
1
𝑥 + 𝑟
2
,

𝑏 = ℎ (𝑥, 𝑡) =
𝑟
2

3

𝑟
1

𝑥 −
𝑟
2
𝑟
2

3

𝑟2
1

ln (𝑟
1
𝑥 + 𝑟
2
) ,

𝑐 = 𝑘 (𝑥, 𝑡) = 𝑟
3
𝑥 + 𝑟
4
,

(26)

be a solution of (8), where 𝑟
1
, 𝑟
2
, 𝑟
3
, 𝑟
4

∈ R are arbitrary
constants, we conclude that the functions𝑔

𝑖
(𝑠)⋅𝑓, 𝑔

𝑖
(𝑠)⋅ℎ, and

𝑔
𝑖
(𝑠) ⋅ 𝑘 are also solutions of (8) for 𝑖 = 1, . . . , 7. For example,

𝑔
5 (𝑠) ⋅ 𝑓 = (

𝑟
2

3

𝑟
1

(𝑥 − 𝑡𝑠) −
𝑟
2
𝑟
2

3

𝑟2
1

ln (𝑟
1 (𝑥 − 𝑡𝑠) + 𝑟

2
)) 𝑠
2

+ 2 (𝑟
3 (𝑥 − 𝑡𝑠) + 𝑟

4
) 𝑠 + 𝑟

1 (𝑥 − 𝑡𝑠) + 𝑟
2
,

𝑔
5 (𝑠) ⋅ ℎ =

𝑟
2

3

𝑟
1

(𝑥 − 𝑡𝑠) −
𝑟
2
𝑟
2

3

𝑟2
1

ln (𝑟
1 (𝑥 − 𝑠𝑡) + 𝑟

2
) ,

𝑔
5 (𝑠) ⋅ 𝑘 = (

𝑟
2

3

𝑟
1

(𝑥 − 𝑡𝑠) −
𝑟
2
𝑟
2

3

𝑟2
1

ln (𝑟
1 (𝑥 − 𝑡𝑠) + 𝑟

2
)) 𝑠

+ 𝑟
3 (𝑥 − 𝑡𝑠) + 𝑟

4

(27)

is a set of new solutions of (8) and we can obtain many other
solutions by arbitrary combination of 𝑔

𝑖
(𝑠)’s for 𝑖 = 1, . . . , 7.

So we obtain infinite number of Einstein Walker manifolds
just from this example.

4. One-Dimensional Optimal System of (8)
In this section, we obtain the one-parameter optimal system
of (8) by using symmetry group. Since every linear combina-
tion of infinitesimal symmetries is an infinitesimal symmetry,
there is an infinite number of one-dimensional subalgebras
for the differential equation. So it is important to determine
which subgroups give different types of solutions. Therefore,
we must find invariant solutions which are not related by
transformation in the full symmetry group. This procedure
led to the concept of optimal system for subalgebras. For one-
dimensional subalgebras, this classification problem is the
same as the problem of classifying the orbits of the adjoint
representation [2]. This problem is solved by the simple
approach of taking a general element in the Lie algebra and
simplify it as much as possible by imposing various adjoint
transformation on it ([12, 13]). Optimal set of subalgebras is
obtaining from taking only one representative from each class
of equivalent subalgebras. Adjoint representation of each 𝑋

𝑖
,

𝑖 = 1, . . . , 7 is defined as follows:

Ad (exp (𝑠 ⋅ 𝑋
𝑖
) ⋅ 𝑋
𝑗
)

= 𝑋
𝑗
− 𝑠 ⋅ [𝑋

𝑖
, 𝑋
𝑗
] +

𝑠
2

2
⋅ [𝑋
𝑖
, [𝑋
𝑖
, 𝑋
𝑗
]] − ⋅ ⋅ ⋅ ,

(28)

where 𝑠 is a parameter and [𝑋
𝑖
, 𝑋
𝑗
] is the commutator of g

defined in Table 1, for 𝑖, 𝑗 = 1, . . . , 7 [2, page 199]. We can
write the adjoint action for g and show the following.

Theorem 5. A one-dimensional optimal system of (8) is given
by

(1) 𝑋
7
, (2) 𝑋

1
+ 𝑎𝑋
7
, (3) 𝑋

2
+ 𝑎𝑋
7
,

(4) 𝜀𝑋
1
+ 𝑋
6
+ 𝑎𝑋
7
, (5) 𝜀𝑋

2
+ 𝑋
5
+ 𝑎𝑋
6
+ 𝑏𝑋
7
,

(6) 𝜀𝑋
1
+ 𝑋
4
+ 𝑎𝑋
5
+ 𝑏𝑋
6
+ 𝑐𝑋
7
,

(7) 𝜀𝑋
2
+ 𝑋
3
+ 𝜀

𝑋
4
+ 𝑎𝑋
5
+ 𝑏𝑋
6
+ 𝑐𝑋
7
,

(29)

where 𝜀 and 𝜀
 are ±1 or zero and 𝑎, 𝑏, 𝑐 ∈ R are arbitrary

numbers.

Proof. Attending to Table 1, we understand that the center of
g is the subalgebra ⟨𝑋

7
⟩, so it is enough to specify the algebras
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of ⟨𝑋
1
, 𝑋
2
, 𝑋
3
, 𝑋
4
, 𝑋
5
, 𝑋
6
⟩. Each adjoint transformation is a

linearmap𝐹
𝑠

𝑖
: g → g that defined by𝑋 → Ad(exp(𝑠𝑋

𝑖
)⋅𝑋),

for 𝑖 = 1, . . . , 7.Thematrix𝑀
𝑠

𝑖
of 𝐹𝑠
𝑖
, 𝑖 = 1, . . . , 7, with respect

to basis {𝑋
1
, . . . , 𝑋

7
} is

𝑀
𝑠

1
=

[
[
[
[
[
[
[
[
[

[

1 0 0 0 0 0 0

0 1 0 0 0 0 0

−𝑠 0 1 0 0 0 0

0 −𝑠 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

]
]
]
]
]
]
]
]
]

]

,

𝑀
𝑠

2
=

[
[
[
[
[
[
[
[
[

[

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

−𝑠 0 0 0 1 0 0

0 −𝑠 0 0 0 1 0

0 0 0 0 0 0 1

]
]
]
]
]
]
]
]
]

]

,

𝑀
𝑠

3
=

[
[
[
[
[
[
[
[
[

[

𝑒
𝑠

0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 𝑒
−𝑠

0 0 0

0 0 0 0 𝑒
𝑠

0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

]
]
]
]
]
]
]
]
]

]

,

𝑀
𝑠

4
=

[
[
[
[
[
[
[
[
[

[

1 𝑠 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 𝑠 0 0 0

0 0 0 1 0 0 0

0 0 −𝑠 −𝑠
2

1 𝑠 −2𝑠

0 0 0 −𝑠 0 1 0

0 0 0 0 0 0 1

]
]
]
]
]
]
]
]
]

]

,

𝑀
𝑠

5
=

[
[
[
[
[
[
[
[
[

[

1 0 0 0 0 0 0

𝑠 1 0 0 0 0 0

0 0 1 0 −𝑠 0 0

0 0 𝑠 1 −𝑠
2

−𝑠 2𝑠

0 0 0 0 1 0 0

0 0 0 0 𝑠 1 0

0 0 0 0 0 0 1

]
]
]
]
]
]
]
]
]

]

,

𝑀
𝑠

6
=

[
[
[
[
[
[
[
[
[

[

1 0 0 0 0 0 0

0 𝑒
𝑠

0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 𝑒
𝑠

0 0 0

0 0 0 0 𝑒
−𝑠

0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

]
]
]
]
]
]
]
]
]

]

,

(30)

respectively and 𝑀
𝑠

7
is the 7 × 7 identity matrix. Let 𝑋 =

∑
7

𝑖=1
𝑎
𝑖
𝑋
𝑖
, then

𝐹
𝑠7

7
∘ ⋅ ⋅ ⋅ ∘ 𝐹

𝑠1

1
: 𝑋

→ ((1 + 𝑠
5
𝑠
4
) 𝑒
𝑠3𝑎
1
+ 𝑒
𝑠6+𝑠3𝑠
4
𝑎
2
) ⋅ 𝑋
1
+ ⋅ ⋅ ⋅

+ (−𝑠
5
𝑠
2
𝑎
1
− 𝑒
𝑠6𝑠
2
𝑎
2
+ ⋅ ⋅ ⋅

+ (1 + 𝑠
5
𝑠
4
) 𝑎
6
− 2𝑠
5
𝑠
4
𝑎
7
)𝑋
6
+ 𝑎
7
𝑋
7
.

(31)

Now, we can simplify 𝑋 as follows.

If 𝑎
1

= 𝑎
2

= ⋅ ⋅ ⋅ = 𝑎
6

= 0, then 𝑋 is reduced to the
case (1), that is center of g.
If 𝑎
3
= ⋅ ⋅ ⋅ = 𝑎

6
= 0 and 𝑎

1
̸= 0, then we can make the

coefficient of 𝑋
2
vanish by 𝐹

𝑠4

4
; by setting 𝑠

4
= 𝑎
2
/𝑎
1
.

Scaling𝑋 if necessary, we can assume that 𝑎
1
= 1. So,

𝑋 is reduced to the case (2).
If 𝑎
1
= 𝑎
3
= ⋅ ⋅ ⋅ = 𝑎

6
= 0, then we can make 𝑎

2
= ±1

by 𝐹
𝑠6

6
; by setting 𝑠

6
= ln |𝑎

2
|. So, 𝑋 is reduced to case

(3).
If 𝑎
3
= ⋅ ⋅ ⋅ = 𝑎

5
= 0 and 𝑎

6
̸= 0, then we can make the

coefficient of𝑋
2
vanish by 𝐹

𝑠2

2
; by setting 𝑠

2
= −𝑎
2
/𝑎
6
.

Also the coefficient of𝑋
1
can be vanished or be ±1 by

𝐹
𝑠3

3
; by setting 𝑠

3
= ln |𝑎

1
|. Scaling 𝑋 if necessary, we

can assume that 𝑎
6

= 1. So, 𝑋 is reduced to the case
(4).
If 𝑎
3

= 𝑎
4

= 0 and 𝑎
5

̸= 0, then we can make the
coefficient of𝑋

1
vanish by 𝐹

𝑠2

2
; by setting 𝑠

2
= −𝑎
1
/𝑎
5
.

Also the coefficient of𝑋
2
can be vanished or be ±1 by

𝐹
𝑠6

6
; by setting 𝑠

6
= ln |𝑎

2
|. Scaling 𝑋 if necessary, we

can assume that 𝑎
5

= 1. So, 𝑋 is reduced to the case
(5).
If 𝑎
3
= 0 and 𝑎

4
̸= 0, then we can make the coefficient

of 𝑋
2
vanish by 𝐹

𝑠1

1
; by setting 𝑠

1
= −𝑎
2
/𝑎
4
. Also the

coefficient of 𝑋
1
can be vanished or be ±1 by 𝐹

𝑠3

3
; by

setting 𝑠
3

= ln |𝑎
1
|. Scaling 𝑋 if necessary, we can

assume that 𝑎
4
= 1. So, 𝑋 is reduced to the case (6).

If 𝑎
3

̸= 0, thenwe canmake the coefficient of𝑋
1
vanish

by 𝐹
𝑠1

1
; by setting 𝑠

1
= −𝑎
1
/𝑎
3
. Also the coefficients of

𝑋
2
and 𝑋

4
can be vanished or be ±1 by 𝐹

𝑠3

3
and 𝐹

𝑠6

6
;

by setting 𝑠
3
= − ln |𝑎

4
| and 𝑠

6
= ln |𝑎

2
|, respectively.

Scaling𝑋 if necessary, we can assume that 𝑎
3
= 1. So,

𝑋 is reduced to the case (7).

5. Similarity Reduction of System (8)
The system (8) is expressed in the coordinates (𝑥, 𝑡, 𝑎, 𝑏, 𝑐),
so for reducing this system we must search for its form in
suitable coordinates. Those coordinates will be obtained by
searching for independent invariants𝑤,𝑓,ℎ, 𝑘 corresponding
to the infinitesimal generator. Hence by using the chain rule,
the expression of the system in the new coordinate leads to the
reduced system. Now, we find some of nontrivial solution of
system (8). First, consider the operator𝑋

3
= 𝑥𝜕
𝑥
−2𝑏𝜕
𝑏
−𝑐𝜕
𝑐
.

For determining independent invariants 𝐼, we ought to solve
the homogeneous first-order PDE 𝑋

3
(𝐼) = 0, that is,

(𝑥𝜕
𝑥
− 2𝑏𝜕
𝑏
− 𝑐𝜕
𝑐
) 𝐼 = 𝑥

𝜕𝐼

𝜕𝑥
+ 0

𝜕𝐼

𝜕𝑡
+ 0

𝜕𝐼

𝜕𝑎
− 2𝑏

𝜕𝐼

𝜕𝑏
− 𝑐

𝜕𝐼

𝜕𝑐
.

(32)
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(1
)

ℎ
𝑡
𝑡
=

0

𝑘
𝑡
𝑡
=

0

𝑓
𝑡
ℎ
𝑡
−

𝑘
2 𝑡
+

ℎ𝑓
𝑡
𝑡
=

0

ℎ
𝑘
𝑡
𝑡
=

0

𝑓
=

𝑓
(𝑡
)

𝑓
=

(
𝑟 1
𝑟 3

−
𝑟 4
𝑟2 5

𝑟2 3
)
ln

(𝑟
3
𝑡
+

𝑟 4
)
+

𝑟2 5
𝑡

𝑟 3
+

𝑟 2

ℎ
=

0
ℎ

=
𝑟 3
𝑡
+

𝑟 4
𝑘

=
𝑟 1

𝑘
=

𝑟 5
𝑡
+

𝑟 6

(2
)

𝑓
𝑥
𝑥
=

0

𝑘
𝑥
𝑥
=

0

𝑓
𝑥
ℎ
𝑥
−

𝑘
2 𝑥
+

𝑓
ℎ
𝑥
𝑥
=

0

𝑘𝑓
𝑥
𝑥
−

𝑓
𝑘
𝑥
𝑥
=

0

𝑓
=

0
𝑓

=
𝑟 3
𝑥

+
𝑟 4

ℎ
=

ℎ
(𝑥

)
ℎ

=
(

𝑟 1
𝑟 3

−
𝑟 4
𝑟2 5

𝑟2 3
)
ln

(𝑟
3
𝑥

+
𝑟 4
)
+

𝑟2 5
𝑥

𝑟 3
+

𝑟 2

𝑘
=

𝑟 1
𝑘

=
𝑟 5
𝑥

+
𝑟 6

(3
)

𝑓
𝑥
𝑥
−

2
ℎ

=
0

2
𝑘
𝑥
𝑘
−

𝑘𝑓
𝑥
𝑥
+

𝑓
𝑘
𝑥
𝑥
=

0

2
ℎ
𝑥
+

𝑘
𝑥
𝑥
=

0

𝑓
𝑥
𝑘
−

𝑘
2
−

𝑓
𝑘
𝑥
=

0

𝑘
2 𝑥
−

𝑓
𝑥
ℎ
𝑥
−

3
ℎ
𝑥
𝑘
−

ℎ
𝑘
𝑥
−

𝑓
ℎ
𝑥
𝑥
=

0

𝑘
=

𝑟 2
𝑥

+
𝑟 3

𝑘
=

1
2
8
−

𝑟 1

3
(𝑥

+
𝑟 2
)2

+
𝑟 3
𝑥

+
𝑟 4

𝑓
=

𝑘
(𝑥

+
𝑟 1
)

𝑓
=

−
4
𝑘
𝑘
𝑥
𝑥

𝑘
𝑥
𝑥
𝑥

ℎ
=

𝑟 2
ℎ

=
𝑘
𝑥
𝑘
𝑥
𝑥
𝑥
−

2
𝑘
2 𝑥
𝑥

𝑘
𝑥
𝑥
𝑥

(4
)

ℎ
𝑡
𝑡
−

𝑓
=

0
,ℎ
𝑡
+

𝑘
=

0
,𝑓
𝑡
+

𝑘
𝑡
𝑡
=

0

𝑓
𝑡
ℎ
𝑡
+

𝑓
𝑡
𝑘
−

𝑘
2 𝑡
+

ℎ𝑓
𝑡
𝑡
=

0

ℎ
𝑘
𝑡
𝑡
−

𝑓
𝑡
ℎ
+

2
𝑘
𝑘
𝑡
=

0

2
𝑓
ℎ
−

2
ℎ
𝑘
𝑡
+

3
ℎ
𝑡
𝑘
−

𝑘
2
=

0

𝑘
=

0
𝑘

=
𝑟 2
𝑒𝑟
1
𝑡

ℎ
=

𝑟 1
ℎ

=
−
𝑟 2 𝑟 1

𝑒𝑟
1
𝑡

𝑓
=

0
𝑓

=
−
𝑟 1
𝑟 2
𝑒𝑟
1
𝑡

(5
)

𝑓
𝑥
𝑥
−

ℎ
=

0
,ℎ
𝑥
+

𝑘
𝑥
𝑥
=

0
,𝑓
𝑥
+

𝑘
=

0

2
ℎ𝑓

−
2
𝑓
𝑘
𝑥
+

3
𝑓
𝑥
𝑘
−

𝑘
2
=

0

𝑓
ℎ
𝑥
−

2
𝑘
𝑥
𝑘
+

𝑘𝑓
𝑥
𝑥
−

𝑓
𝑘
𝑥
𝑥
−

ℎ
𝑘

=
0

ℎ
𝑥
𝑓
𝑥
+

ℎ
𝑥
𝑘
−

𝑘
2 𝑥
+

𝑓
ℎ
𝑥
𝑥
=

0

𝑘
=

0
𝑘

=
𝑟 2
𝑒𝑟
1
𝑥

𝑓
=

𝑟 1
𝑓

=
−
𝑟 2 𝑟 1

𝑒𝑟
1
𝑥

ℎ
=

0
ℎ

=
−
𝑟 1
𝑟 2
𝑒𝑟
1
𝑥

(6
)

𝑓
𝑥
𝑥
−

6
ℎ

=
0
,𝑓
𝑥
+

2
𝑘

=
0

3
𝑓
𝑘
𝑥
−

4
𝑓
𝑥
𝑘
−

3
𝑓
ℎ
+

4
𝑘
2
=

0

3
ℎ
𝑥
+

𝑘
𝑥
𝑥
=

0

4
𝑘
𝑥
𝑘
−

𝑓
ℎ
𝑥
−

𝑘𝑓
𝑥
𝑥
+

𝑓
𝑘
𝑥
𝑥
+

2
ℎ
𝑘

=
0

𝑓
𝑥
ℎ
𝑥
+

4
ℎ
𝑥
𝑘
+

ℎ
𝑘
𝑥
−

𝑘
2 𝑥
+

𝑓
ℎ
𝑥
𝑥
=

0

𝑘
=

0
𝑘

=
−

2
7

(𝑟
1
𝑥

+
𝑟 2
)3

ℎ
=

0
ℎ

=
−
1 3
𝑘
𝑥

𝑓
=

𝑟 1
𝑓

=
−
3
𝑘
2

𝑘
𝑥

w
he
re
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,..
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ar
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So we must solve the associated characteristic ODE

𝑑𝑥

𝑥
=

𝑑𝑡

0
=

𝑑𝑎

0
=

𝑑𝑏

−2𝑏
=

𝑑𝑐

−𝑐
. (33)

Hence, four functionally independent invariants 𝑤 = 𝑡, 𝑓 =

𝑎, ℎ = 𝑏𝑥
2, and 𝑘 = 𝑐𝑥 are obtained. If we treat 𝑓, ℎ, and 𝑘 as

functions of 𝑤, we can compute formulae for the derivatives
of 𝑎, 𝑏, and 𝑐 with respect to 𝑥 and 𝑡 in terms of 𝑤, 𝑓, ℎ, 𝑘,
and the derivatives of 𝑓, ℎ, and 𝑘 with respect to 𝑤. We have
𝑎 = 𝑓(𝑤) = 𝑓(𝑡), 𝑏 = 𝑥

−2
ℎ(𝑤) = 𝑥

−2
ℎ(𝑡) and 𝑐 = 𝑥

−1
𝑘(𝑤) =

𝑥
−1

𝑘(𝑡). So by using the chain rule, we have

𝑎
1
=

𝜕𝑎

𝜕𝑥
=

𝜕𝑓

𝜕𝑤

𝜕𝑤

𝜕𝑥
=

𝜕𝑓

𝜕𝑡

𝜕𝑡

𝜕𝑥
= 0, 𝑎

2
= 𝑎
𝑡
= ⋅ ⋅ ⋅ = 𝑓

𝑡
,

𝑏
1
= −2𝑥

−3
ℎ, 𝑏

2
= 𝑥
−2

ℎ
𝑡
, 𝑐

1
= −𝑥
−2

𝑘,

𝑐
2
= 𝑥
−1

𝑘
𝑡
, 𝑎

11
= 𝑎
𝑥𝑥

= 0, 𝑎
12

= 0,

𝑎
22

= 𝑓
𝑡𝑡
, 𝑏

11
= 6𝑥
−4

ℎ, 𝑏
12

= −2𝑥
−3

ℎ
𝑡
,

𝑏
22

= 𝑥
−2

ℎ
𝑡𝑡
, 𝑐

11
= 2𝑥
−3

𝑘, 𝑐
12

= −𝑥
−2

𝑘
𝑡
,

𝑐
22

= 𝑥
−1

𝑘
𝑡𝑡
.

(34)

Substituting these in the system (8), the reduced system is
obtained as follows:

ℎ
𝑡𝑡

= 0, 3ℎ𝑘
𝑡
− 5ℎ
𝑡
𝑘 − 𝑘
2
+ 6𝑓ℎ = 0,

𝑓
𝑡
ℎ
𝑡
+ 𝑓
𝑡
𝑘 − 𝑘
2

𝑡
+ ℎ𝑓
𝑡𝑡

+ 𝑓𝑘
𝑡
= 0,

𝑘
𝑡𝑡

= 0, ℎ
𝑡
− 𝑘 = 0,

2𝑓
𝑡
ℎ − 2𝑘𝑘

𝑡
+ 2𝑓𝑘 + ℎ𝑘

𝑡𝑡
= 0,

(35)

which is a system of ODEs. Two types of solutions are
obtained by solving this system

(1)

{{

{{

{

𝑓 = 𝑓 (𝑡)

ℎ = 0

𝑘 = 0,

(2)

{{{{

{{{{

{

𝑓 =
𝑟
2

2

𝑟
2
𝑡 + 𝑟
1

ℎ = 𝑟
2
𝑡 + 𝑟
1

𝑘 = 𝑟
2
,

(36)

where 𝑟
1
and 𝑟
2
are arbitrary constants and𝑓(𝑡) is an arbitrary

function. We can compute all of invariant solutions for other
symmetry generators in a similar way. Some of infinitesimal
symmetries and their Lie invariants are listed in Table 2.

In Table 3, we list the reduced form of system (8) cor-
responding to infinitesimal generators of Table 2 and obtain
some of its invariant solutions.

Now by using the information of Table 2, we can obtain
corresponding solutions for system (8). For example, con-
sider the second invariant solution of case 5. Attending to the
Table 2, the following solution is obtained:

𝑎 = −
𝑟
2

𝑟
1

𝑒
𝑟1𝑥𝑒
𝑡
, 𝑏 = −𝑟

1
𝑟
2
𝑒
𝑟1𝑥𝑒
𝑡
, 𝑐 = 𝑟

2
𝑒
𝑟1𝑥𝑒
𝑡
, (37)

for system (8). Consequently by substituting 𝑎, 𝑏, and 𝑐 in
(6), we can determine the general form for metric of Einstein
Walker manifolds for case 5. In addition, we can construct
many other solutions from this one, by using Theorem 3, as
we did in Example 4.

6. Conclusion

In this paper, by applying the method of Lie symmetries,
we find the Lie point symmetry group of system (8). This
work has been done by applying the criterion of invariance
for the system under the prolonged infinitesimal generators.
Also, we have obtained the one-parameter optimal system of
subalgebras for system (8). Then the Lie invariants and simi-
larity reduced systems and some of the invariant solutions are
obtained. In conclusion, we specified a large class of Einstein
Walker manifolds.
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