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An anisotropic Bianchi type-III cosmological model is investigated in the presence of a bulk viscous fluid within the framework of
Lyra geometry with time-dependent displacement vector. It is shown that the field equations are solvable for any arbitrary function
of a scale factor. To get the deterministic model of the universe, we have assumed that (i) a simple power-law form of a scale factor
and (ii) the bulk viscosity coefficient are proportional to the energy density of the matter. The exact solutions of the Einstein’s
field equations are obtained which represent an expanding, shearing, and decelerating model of the universe. Some physical and
kinematical behaviors of the cosmological model are briefly discussed.

1. Introduction

After Einstein (1916) proposed his theory of general rel-
ativity which provided a geometrical description of grav-
itation, many physicists attempted to generalize the idea
of geometrizing the gravitation to include a geometrical
description of electromagnetism. One of the first attempts
was made by Weyl [1] who proposed a more general theory
by formulating a new kind of gauge theory involving metric
tensor to geometrize gravitation and electromagnetism. But
Weyl theory was criticized due to the nonintegrability of
length of vector under parallel displacement. Later, Lyra
[2] suggested a modification of Riemannian geometry by
introducing a gauge function into the structureless manifold
which removed the nonintegrability condition.Thismodified
geometry is known as Lyra geometry. Subsequently, Sen [3]
formulated a new scalar-tensor theory of gravitation and
constructed an analogue of the Einstein’s field equations
based on Lyra geometry. He investigated that the static model
with finite density in Lyra manifold is similar to the static
model in Einstein’s general relativity. Halford [4] has shown
that the constant displacement vector field in Lyra geometry
plays the role of cosmological constant in general relativity.
He has also shown that the scalar-tensor treatment based in

Lyra geometry predicts the same effects, within observational
limits, as in Einstein’s theory (Halford, [5]).

Soleng [6] has investigated cosmologicalmodels based on
Lyra geometry and has shown that the constant gauge vector
field either includes a creation field and be identical to Hoyle’s
creation cosmology (Hoyle, [7], Hoyle, andNarlikar [8, 9]) or
contains a special vacuumfieldwhich together with the gauge
vector termmay be considered as a cosmological term. In the
latter case, solutions are identical to the general relativistic
cosmologies with a cosmological term.

The cosmological models based on Lyra geometry with
constant and time-dependent displacement vector fields have
been investigated by a number of authors, namely, Beesham
[10], T. Singh and G. P. Singh [11], Chakraborty and Ghosh
[12], Rahaman and Bera [13], Rahaman et al. [14, 15], Pradhan
and Vishwakarma [16], Ram and Singh [17], Pradhan et al.
[18, 19], Ram et al. [20], Pradhan [21, 22], Mohanty et al. [23],
Bali and Chandnani [24], and so forth.

Bali and Chandnani [25] have investigated a Bianchi
type-III bulk viscous dust filled universe in Lyra geometry
under certain physical assumptions. Recently, V. K. Yadav
and L. Yadav [26] have presented Bianchi type-III bulk
viscous and barotropic perfect fluid cosmological models
in Lyra’s geometry with the assumption that the coefficient
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of viscosity of dissipative fluid is a power function of the
energy density. In this paper, we investigate a Bianchi type-III
universe filled with a bulk viscous fluid within the framework
of Lyra geometry with time-dependent displacement vector
field without assuming the barotropic equation of state for
thematter field.The organization of the paper is as follows. In
Section 2, we present themetric andEinstein’s field equations.
In Section 3, we deal with the solution of the field equations.
We first show that the field equations are solvable for any
arbitrary scale function.There after, we obtain exact solutions
of the field equation by assuming (i) a power-law form of a
scale factor and (ii) the bulk viscosity coefficient is directly
proportional to the energy density of the matter. In Section 4,
we discuss the physical and dynamical behaviors of the
universe. Section 5 summarizes the main results presented in
the paper.

2. Metric and Field Equations

The diagonal form of the Bianchi type-III space-time is
considered in the form
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where 𝛼 is a constant and𝐴, 𝐵, and𝐶 are functions of cosmic
time 𝑡.

Einstein’s field equations in normal gauge for Lyra’s
geometry given by Sen [3] are
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where 𝜙
𝜇
is the displacement vector field defined as 𝜙
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where𝜌 is the energy density and𝑢
] is the four-velocity vector

of the fluid satisfying 𝑢
𝜇
𝑢
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= 1. The effective pressure 𝑝 is
given by
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where 𝑝 is the isotropic pressure, 𝛽 is the gauge function, and
𝜉 is the bulk viscosity coefficient.

For themetric (1), the field equations (2) together with (3)
and (4) lead to
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where an overhead dot denotes differentiation with respect
to time 𝑡. Here, we have used the geometrized unit in which
8𝜋𝐺 = 1 and 𝑐 = 1.

The energy conservation equation 𝑇
]
𝜇;] = 0 leads to
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The conservation of left-hand side of (2) yields (Bali and
Chandnani [25])
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The physical quantities that are important in cosmology are
proper volume 𝑉, average scale factor 𝑅, expansion scalar 𝜃,
shear scalar 𝜎, and Hubble parameter 𝐻. For the metric (1),
they have the following form:
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An important observational quantity in cosmology is the
deceleration parameter 𝑞 which is defined as

𝑞 = −
𝑅�̈�

�̇�
2
. (16)

The sign of 𝑞 indicates whether the model inflates or not.
The positive sign of 𝑞 corresponds to a standard decelerating
model, whereas negative sign indicates inflation.

3. Exact Solutions

Wenow solve the field equations (5)–(11) by using themethod
developed byMazumdar [27] and further used by Verma and
Ram [28].

From (9), we obtain

𝐴 = 𝑘𝐵, (17)
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where 𝑘 is an integration constant. Without loss of generality,
we take 𝑘 = 1. Using (17), (5)–(11) reduce to
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This is an equation involving two unknown functions𝐵 and𝐶

which will admit solution if one of them is a known function
of 𝑡. To get a physically realistic model, Bali and Chandanani
[25] and V. K. Yadav and L. Yadav [26] have assumed
a supplementary condition 𝐵 = 𝐶

𝑛 between the metric
potentials 𝐵 and 𝐶. This condition is based on the physical
assumption that the shear scalar 𝜎 is proportional to the
expansion scalar 𝜃. In order to obtain a simple but physically
realistic solution, wemake themathematical assumption that

𝐶 = 𝑡
𝑛
, (24)

where 𝑛 is positive real number. For this, we first show that
(23) is solvable for an arbitrary choice of 𝐶. Multiplying (23)
by 𝐵
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following form:
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The general solution of (28) is given by
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is a constant of integration. Note that in this case the

solution of Einstein’s field equations reduces to the integration
of (30) if 𝐶 is explicitly known function of 𝑡. Making use of
(24) in (29) and (30), we obtain the general solution 𝐵
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For further discussion of the solutions, we take 𝑘
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Hence, the metric of our solutions can be written in the form
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where 0 < 𝑛 < 1.

4. Some Physical and Kinematical
Properties of the Model

The model (33) represents an anisotropic Bianchi type-III
cosmological universe filled with a bulk viscous fluid in the
framework of Lyra geometry.

From (22), (24), and (32), the gauge function 𝛽 has the
expression given by
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It is clear that, given 𝜉(𝑡), we can determine isotropic pressure
𝑝. In most of the investigations involving bulk viscosity, 𝜉(𝑡)
is assumed to be simple power function of energy density
(Weinberg, [29]):

𝜉 (𝑡) = 𝜉
0
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𝑚
, (37)

where 𝜉
0
and 𝑚 > 0 are constants. The case 𝑚 = 1 has been

considered by Murphy [30] which corresponds to a radiating
fluid. We take𝑚 = 1 so that

𝜉 = 𝜉
0
𝜌. (38)
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From (4), (13), (36), (37), and (38), we obtain
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Clearly, the viscosity contributes significantly to the isotropic
pressure of the fluid.

The physical and kinematical parameters of the model
(33) have the following expressions:
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Thedeceleration parameter is positive which shows the decel-
erating behavior of the cosmological model. It is worthwhile
to mention the work of Vishwakarma [31], where he has
shown that the decelerating model is also consistent with
recent CMB observations model by WNAP, as well as with
the high-redshift supernovae Ia data including 1997ff at 𝑍 =

1.755.
We observe that the spatial volume𝑉 is zero at 𝑡 = 0, and

it increases with the cosmic time. This means that the model
starts expanding with a big bang at 𝑡 = 0. All the physical and
kinematical parameters 𝜌, 𝑝, 𝜃, and 𝜎 diverge at this initial
singularity. The physical and kinematical parameters are well
defined and are decreasing functions for 0 < 𝑡 < ∞, and
ultimately tend to zero for large time.The gauge function 𝛽(𝑡)

and bulk viscosity coefficient 𝜉(𝑡) are infinite at the beginning
and gradually decrease as time increases and ultimately tend
to zero at late times. Since 𝜎/𝜃 = (1 − 𝑛)/√3(𝑛 + 2) = const,
the anisotropy in the universe is maintained throughout the
passage of time.

5. Conclusions

Wehave presented an anisotropic Bianchi type-III cosmolog-
ical model in the presence of a bulk viscous fluid within the
framework of Lyra’s geometry with time-dependent displace-
ment vector. The model describes an expanding, shearing,
and decelerating universe with a big-bang singularity at 𝑡 = 0.
All the physical and kinematical parameters start off with
extremely large values, which continue to decrease with the
expansion of the universe and ultimately tend to zero for large
time. As 𝜌 tends to zero as 𝑡 tends to infinity, themodel would
essentially give an empty space-time for large time.
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