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It is shown that the spanning set for 𝐿2([0, 1]) provided by the eigenfunctions {√2 sin(𝑛𝜋𝑥)}∞
𝑛=1

of the particle in a box in quantum
mechanics provides a very effective variational basis for more general problems.The basis is scaled to [𝑎, 𝑏], where 𝑎 and 𝑏 are then
used as variational parameters. What is perhaps a natural basis for quantum systems confined to a spherical box in 𝑅𝑑 turns out to
be appropriate also for problems that are softly confined by U-shaped potentials, including those with strong singularities at 𝑟 = 0.
Specific examples are discussed in detail, along with some bound𝑁-boson systems.

1. Introduction

We contrast two types of confinement for quantum systems,
namely, confinement in a finite impenetrable box and soft
confinement by means of a U-shaped potential. The simplest
example is provided by pair of rather different problems in
dimension 𝑑 = 1, namely, the particle in a box [−𝐿, 𝐿] and
the harmonic oscillator in 𝑅. We use the orthonormal basis
{𝜙
𝑖
}
∞

𝑖=0
of the box problem to approximate states of the

oscillator. We will refer to this basis as a sine basis since
the {𝜙

𝑖
} are scaled shifted versions of the eigenfunctions

{√2 sin(𝑛𝜋𝑥)}∞
𝑛=1

for the unit box 𝑥 ∈ [0, 1]. Although the
box functions are complete for the Hilbert space 𝐿2([−𝐿, 𝐿]),
they cannot represent the oscillator’s Hermite functions 𝜓

𝑖
∈

𝐿
2
(𝑅) exactly. However, every 𝜙

𝑖
is also a member of the

Hilbert space 𝐿2(𝑅).This observation allows us to use the sine
functions as variational trial functions for the oscillator. The
question remains as towhat box size𝐿 to use.This is answered
by treating 𝐿 as a variational parameter and minimizing the
upper energy estimates with respect to 𝐿. For example, we
show in Section 2 that by using a sine basis of dimension
𝑁 = 50, and optimizing over 𝐿, we can estimate the first 10
eigenvalues {1, 3, 5, . . . , 19} of the oscillator𝐻 = −Δ + 𝑥

2 for
𝑑 = 1 with error less than 10−9.

In this paper we demonstrate that for problems which are
softly confined, or confined to a box whose size is greater
than or equal to 𝐿, the sine functions indeed provide an
effective variational basis. In Section 2 we study the harmonic
oscillator and the quartic anharmonic oscillator in 𝑑 = 1

dimension. In Section 3, we look at spherically symmetric
attractive potentials in 𝑅

𝑑, such as the oscillator 𝑉(𝑟) = 𝑟
2,

the atom 𝑉(𝑟) = −1/𝑟, and very singular problems 𝑉(𝑟) =
𝐴𝑟
2
+𝐵𝑟
−4
+𝐶𝑟
−6, where r ∈ 𝑅𝑑, and 𝑟 = ‖r‖. Here we employ

a sine basis defined on the radial interval 𝑟 ∈ [𝑎, 𝑏], where 𝑎
and 𝑏 are both variational parameters. In Section 4 we study
problems that are themselves confined to a finite box [2–
12], such as confined oscillators [2, 4, 5] and confined atoms
[2, 3, 5, 10]. In Section 5 we apply the variational analysis two
specific many-boson systems bound by attractive central pair
potentials in one spatial dimension.

2. Problems in 𝑅

In order to work in 𝑅, we first consider the solutions to a
particle-in-a-box problem confined to the interval [0, 1]. By
applying the transformation 𝜒 = (𝑥 − 𝑎)/(𝑏 − 𝑎), we shift the
box from the interval [0, 1] to a new interval [𝑎, 𝑏]. This gives
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us new normalized wave functions:

𝜙
𝑛
(𝜒 (𝑥)) = √

2

𝑏 − 𝑎
sin(𝑛𝜋(𝑥 − 𝑎

𝑏 − 𝑎
)) . (1)

A special case of this shift is given when the endpoints of the
box take the values 𝑎 = −𝐿 and 𝑏 = 𝐿, with 𝐿 > 0. Then we
have the explicit wave functions:

𝜙
𝑛
(𝜒 (𝑥)) = √

1

𝐿
sin(𝑛𝜋(𝑥 + 𝐿

2𝐿
)) . (2)

We note that the variational basis {𝜙
𝑖
}
∞

𝑛=1
is a complete

orthonormal set for the space 𝐿
2
([𝑎, 𝑏]) ⊂ 𝐿

2
(𝑅), and a

general element 𝜓 ∈ 𝐿
2
([𝑎, 𝑏]) can be written as the general-

ized Fourier series:

𝜓 =

∞

∑

𝑖=1

𝑐
𝑖
𝜙
𝑖
, (3)

where 𝑐
𝑖
= (𝜓, 𝜙

𝑖
) = ∫

𝑏

𝑎
𝜓(𝑥)𝜙

𝑖
(𝑥)𝑑𝑥, with 𝑖 = 1, 2, . . .. This

justifies the use of this basis for a variational analysis in
which the box endpoints {𝑎, 𝑏} are to be used as variational
parameters.We shall also use a finite basis {𝜙

𝑛
}
𝑁

𝑛=1
and include

one normalization constraint ∑𝑁
𝑛=1

𝑐
2

𝑛
= 1. This constrained

minimization of the expectation value (𝜓,𝐻𝜓) with respect
to the coefficients {𝑐

𝑛
} is equivalent to solving the matrix

eigenvalue problemHv = Ev, where

H = [(𝜙
𝑖
, 𝐻𝜙
𝑗
)] . (4)

By the Rayleigh-Ritz principle [13] for estimating the discrete
spectrum of a self-adjoint Schrödinger operator that is
bounded below, such as𝐻, the eigenvaluesE

𝑛
ofH are known

to be one-by-one upper bounds E
𝑛
≥ 𝐸
𝑛
to the eigenvalues

of 𝐻. These bounds can subsequently be further minimized
with respect to 𝑎 and 𝑏, orwith respect to𝐿 in case−𝑎 = 𝐿 = 𝑏.

Furthermore, to simplify the variational analysis we use
the linearity of the operator𝐻, in order to split the matrixH
in two parts as follows:

H = K + P, (5)

whereK = [(𝜙
𝑖
, −Δ𝜙
𝑗
)] represents the kinetic energy compo-

nent, and P = [(𝜙
𝑖
, 𝑉(𝑥)𝜙

𝑗
)] represents the potential energy

component. The kinetic component will be the same for any
potential, in fact, for the basis we have chosen; the matrix will
be diagonal, where the nonzero elements depend strictly on
the variational parameters and have analytical exact solution;
for example, if we use a box with endpoints {−𝐿, 𝐿}, the
diagonal elements of K are given by 𝑖2𝜋2/4𝐿2, for 𝑖 = 1, 2, . . ..
This reduces the total number of calculations required to
estimate the eigenvalues ofH.

2.1. The Harmonic Oscillator. It is natural to use the well-
known oscillator problem as a test for our variational analysis,
since the oscillator is not confined explicitly and moreover
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Figure 1: Graph of the eigenvalues 𝜀 of the matrixH as functions of
variational parameter 𝐿 for fixed𝑁 = 50.

its eigenfunctions span 𝐿
2
(𝑅). We take the scaled one-

dimensional harmonic oscillator with Schrödinger operator
𝐻 = −Δ + 𝑥

2. The solutions to this problem are

𝐸
𝑛
= 2𝑛 + 1,

𝜓
𝑛
(𝑥) = 𝑐

𝑛
𝐻
𝑛
(𝑥) 𝑒
−𝑥
2
/2
,

(6)

for 𝑛 = 0, 1, 2, . . ., where 𝑛 is the corresponding state, 𝐸
𝑛
the

energy of the system, 𝜙
𝑛
the wave function, 𝐻

𝑛
the Hermite

polynomial of order 𝑛, and 𝑐
𝑛
a normalization constant. For

this example, we use the basis in (2), with 𝑎 = −𝐿, 𝑏 =

𝐿, to construct the matrix H. Here, 𝐿 > 0 is regarded
as a variational parameter. We then perform a variational
analysis using a matrix of dimension𝑁 = 50, minimizing the
eigenvalues 𝜀

𝑛
over 𝐿 ∈ [5.5, 8]. We obtain the results shown

in Table 1. We note that the absolute approximation error is
less than 10

−9 for the first 11 eigenvalues. Furthermore, we
obtained an error less than 10−5 for the first 20 eigenvalues.
If we choose a larger dimension 𝑁 for the matrix H, the
approximations have smaller errors, and we can calculate 𝐸
for higher values of 𝑛 as well, but these results come with a
higher computational cost and can take a long time.

We can consider the energy levels as functions of the
parameter 𝐿 and fixed𝑁. Figure 1 represents the graph of the
eigenvalues 𝜀

𝑛
of H versus the variational parameter 𝐿 with

fixed 𝑁 = 50 again, for the first 20 states. We can see that
these graphs are 𝑈 shaped and flat near the minima. If 𝑁 is
large enough, the 𝑈-shaped graphs become even flatter; this
means that if we take any value of 𝐿 in this flat region, we will
end up with good approximations for the energy levels.

We note that for all calculations in this work, we use
the computer algebra software Maple. The advantage of
using a program such as this is that it does many of the
calculations exactly by using symbolic mathematics; it is only
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Table 1: Approximation of the energy levels of the harmonic oscillator𝐻 = −Δ + 𝑥
2 in 𝑅. Here, 𝑛 represents the energy state, 𝐸 is the exact

solution for the energy, 𝜀 is the upper bound for 𝐸 obtained by the variational analysis, with the eigenvalues 𝜀
𝑛
of Hminimized over the box

size, and 𝐿 is the optimal value obtained. The table shows the energies of the first 12 states, 𝑛 = 0, 1, . . . , 11.

𝑛 𝐸 𝜀 𝐿

0 1 1.0000000000 6.86
1 3 3.0000000000 7.55
2 5 5.0000000000 7.09
3 7 7.0000000000 7.14
4 9 9.0000000000 7.61
5 11 11.0000000000 7.49
6 13 13.0000000000 6.85
7 15 15.0000000000 7.07
8 17 17.0000000000 7.27
9 19 19.0000000000 7.43
10 21 21.0000000003 7.46
11 23 23.0000000017 7.49

Table 2:The energy levels for the quartic anharmonic oscillator𝐻 = −Δ+𝑥
2
+𝑥
4 in dimension 𝑅. 𝑛 represents the energy state, 𝐸 represents

the accurate energy values obtained in [1], and 𝜀 is the upper bound to 𝐸 obtained using the present variational analysis in a basis of size
𝑁 = 20. The eigenvalues 𝜀

𝑛
of H were minimized over the box size, and 𝐿 is the optimal value obtained. The table shows the first 6 states,

𝑛 = 0, 1, . . . , 5.

𝑛 𝐸 𝜀 𝐿

0 1.3923516415 1.3923516415 3.4
1 4.6488127042 4.6488127042 3.4
2 8.6550499577 8.6550499586 3.4
3 13.1568038980 13.1568038994 3.7
4 18.0575574363 18.0575574558 3.4
5 23.2974414512 23.2974415625 3.4

at the end that it resorts to numerical algorithms to solve,
for example, the problem of finding the eigenvalues of the
Hamiltonian matrix. This minimizes the error obtained in
such calculations.

2.2. The Quartic Anharmonic Oscillator. The quartic anhar-
monic oscillator is another problem in quantum mechanics
that has attracted wide interest since Heisenberg studied it in
1925. We consider the special case given by the Hamiltonian
𝐻 = −Δ + 𝑥

2
+ 𝑥
4. Simon [14] wrote an extensive review of

this problem and Banerjee et al. [1] calculated the eigenvalues
of 𝐻 using specific scaled basis depending on the harmonic
properties of the corresponding eigenfunctions. Analogously
to the previous section, we have performed a variational
analysis, in this case, using a matrix of dimension 𝑁 = 20

andminimizing the eigenvalues 𝜀
𝑛
over 𝐿 ∈ [3, 4].The results

are exhibited in Table 2.
We note that with a basis of size only 𝑁 = 20, the

approximation error is of the order of 10−9 for the first five
states, and then it grows. This problem is solved by taking a
larger𝑁 in order to reduce the error.

3. Problems in 𝑅
𝑑

In order to work in higher dimensions where 𝑑 > 1, we
need to transform the problem from cartesian coordinates
into a more suitable system. This approach has been studied
in depth by Sommerfeld [15]. We let 𝑥 = (𝑥

1
, . . . , 𝑥

𝑑
) ∈ 𝑅

𝑑

and transform it into spherical coordinates obtaining 𝜌 =

(𝑟, 𝜃
1
, . . . , 𝜃

𝑑−1
) where 𝑟 = ‖𝑥‖. Then the wave function will

now be given by
Ψ (𝜌) = 𝜓 (𝑟) 𝑌

𝑙
(𝜃
1
, . . . , 𝜃

𝑑−1
) , (7)

with 𝜓(𝑟) being the spherically symmetric factor, and 𝑌
ℓ
the

hyperspherical harmonic factor, where ℓ = 0, 1, 2, . . ..
Given a spherically symmetric potential 𝑉(𝑟) in a 𝑑-

dimensional space, using the above tools and following, for
example, the work by Hall et al. [16], we get the following
radial Schrödinger equation:

−
𝑑
2
𝜓

𝑑𝑟2
−
𝑑 − 1

𝑟

𝑑𝜓

𝑑𝑟
+
𝑙 (𝑙 + 𝑑 − 2)

𝑟2
𝜓 + 𝑉 (𝑟) 𝜓 = 𝐸𝜓. (8)

Defining the radial wave function

𝑅 (𝑟) = 𝑟
(𝑑−1)/2

𝜓 (𝑟) , 𝑅 (0) = 0, (9)
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Figure 2: Graph of the effective potential 𝑈(𝑟) = 𝑟
2
− 1/4𝑟

2.

we rewrite (8) as

−
𝑑
2
𝑅

𝑑𝑟2
+ 𝑈𝑅 = 𝐸𝑅, (10)

with effective potential

𝑈 (𝑟) = 𝑉 (𝑟) +
(2ℓ + 𝑑 − 1) (2ℓ + 𝑑 − 3)

4𝑟2
. (11)

This analysis allows us to work in higher dimensions when-
ever we consider spherically symmetric potentials.

3.1. The Harmonic Oscillator. Using the transformation
above, we can work with the harmonic oscillator in higher
dimensions, 𝑑 ≥ 2. A radial Schrödinger operator is given
now by 𝐻 = −(𝑑

2
/𝑑𝑟
2
) + 𝑈(𝑟), where 𝑈(𝑟) is defined as in

(11) and 𝑉(𝑟) = 𝑟
2. The energy values for this problem are

given by

𝐸
𝑛ℓ𝑑

= 4𝑛 + 2ℓ + 𝑑 − 4, (12)

where ℓ = 0, 1, . . . denotes the angular-momentum quantum
number for the 𝑑-dimensional problem. The effective poten-
tial for this problem has a weak singularity andwe have found
that the variational basis (1) is suitable for such problems,with
𝑎 = 0 fixed and 𝑏 > 0 as the remaining variational parameter.
However, we do find some difficulty in dimension𝑑 = 2when
ℓ = 0: for this specific case, we obtain the effective potential
𝑈(𝑟) = 𝑟

2
−1/4𝑟

2.The singular termmakes the potential tend
to −∞ when 𝑟 is close to 0 as shown in Figure 2. This is not
an inherent feature of the problem but indicates a failure of
the effective potential representation when 𝑑 = 2 and ℓ = 0:
the solution to the difficulty is simply to use (8) as the radial
differential equation for this particular case.

We approximate the energy values for the harmonic
oscillator in dimensions 𝑑 = 3, 4, 5 and quantum number

𝑙 = 0, 1, 2, 3. We use a matrix of dimension 𝑁 = 40 and
minimize the eigenvalues of H over 𝐿 ∈ [3, 12]. The results
are shown in Table 3.

If we increase the dimension of the matrix, we see that
the error in the calculations decreases, although the computer
time spent increases considerably. Another example is that of
approximating the energy values for the harmonic oscillator
in dimensions 𝑑 = 3, 4, 5 and quantum number 𝑙 = 0, 1, 2, 3

this time for a larger dimension 𝑁. We used a matrix of
dimension𝑁 = 500 andminimized the eigenvalues ofH over
𝐿 ∈ [4, 12]. The results are shown in Table 4.

3.2. The Hydrogenic Atom. We consider now a special case
of the hydrogenic atom in dimension 𝑑 = 3, that is to say a
Schrödinger operator given by 𝐻 = −(𝑑

2
/𝑑𝑟
2
) + 𝑈(𝑟), with

𝑈(𝑟) as in (11) and 𝑉(𝑟) = −(𝑒
2
/𝑟). The energy levels for the

model hydrogenic atom in this case are given by

𝐸
𝑛ℓ
= −

𝑒
4

4(𝑛 + ℓ)
2
, (13)

where ℓ = 0, 1, 2, . . ., and 𝑛 = 1, 2, 3, . . .. Since this problem
is weakly singular, we use the same basis as in the previous
example. We calculate approximations to the energy values
for the case when 𝑒 = 1, using amatrix of dimension𝑁 = 250

minimizing the eigenvalues ofH over𝐿 ∈ [3, 190].The results
are shown in Table 5.

We see here that the approximation error is larger than
10
−4. There are two problems that arise in this analysis. First,

computations are very slow in this problem due to its singular
nature and the number of calculations needed. Second, the
hydrogen atom has energy levels that are squeezed together
as 𝑛 grows; meanwhile its wave functions are very spread-
out and quite different from those of the particle-in-a-box
problem. This confirms what we would expect on general
grounds that the sine basis is not suitable for unconfined
atomic problems.

3.3. Some Very Singular Problems in 𝑅3. Problems involving
highly singular potentials are difficult to solve exactly, but
they often provide soft confinement and may be expected to
yield to a variational analysis in the sine basis. Test problems
are provided by quasiexactly solvable problems. By this it is
meant that it is possible to find a part of the energy spectrum
exactly, provided that some parameters of the potential satisfy
certain conditions. Dong and Ma [17] and Hall et al. [16]
studied the potential

𝑉 (𝑟) = 𝐴𝑟
2
+ 𝐵𝑟
−4
+ 𝐶𝑟
−6 (14)

in 𝑑 = 3. For this work we assume the case where 𝐴 = 1,
𝐶 > 0 and ℓ = 0. Then, for this anharmonic singular problem
we have the explicit Hamiltonian operator defined by

𝐻 = −
𝑑
2

𝑑𝑟2
+ 𝑟
2
+
𝐵

𝑟4
+
𝐶

𝑟6
. (15)

The exact solution for the ground state is given [16] by

𝐸
0
= 4 +

𝐵

√𝐶

, (16)
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Table 3: Approximation of the energy levels of the harmonic oscillator in dimensions 𝑑 = 3, 4, 5. 𝑛 represents the energy state, 𝐸 is the exact
solution for the energy given by (12), and 𝜀 is the upper bound to 𝐸 obtained using the present variational analysis. The eigenvalues 𝜀

𝑛
of H

are minimized over 𝐿.

𝑑 ℓ 𝑛 𝐸 𝜀 𝐿

3

1 3 3.00000000 6.00
0 5 19 19.00000001 7.00

10 39 39.00000001 8.75
1 5 5.00007348 4.50

1 5 21 21.00167944 6.25
10 41 41.00907276 7.75
1 7 7.00000000 6.00

2 5 23 23.00000001 7.75
10 43 43.00000001 9.25
1 9 9.00000001 6.00

3 5 25 25.00000076 7.25
10 45 45.00002070 8.50

4

0
1 4 4.00073469 4.25
5 20 20.00745550 6.00
10 40 40.02454449 7.50

1
1 6 6.00000262 5.00
5 22 22.00011370 6.50
10 42 42.00094014 8.00

2
1 8 8.00000002 6.00
5 24 24.00000248 7.25
10 44 44.00004592 8.50

3
1 10 10.00000000 6.00
5 26 26.00000008 7.50
10 46 46.00000274 8.75

5

0
1 5 5.00007348 4.50
5 21 21.00167944 6.25
10 41 41.00907276 7.75

1
1 7 7.00000000 6.00
5 23 23.00000001 7.75
10 43 43.00000001 9.25

2
1 9 9.00000001 6.00
5 25 25.00000076 7.25
10 45 45.00002070 8.50

3
1 11 11.00000001 6.00
5 27 27.00000000 8.00
10 47 47.00000001 10.00

subject to the constraint (2√𝐶 + 𝐵)
2

= 𝐶(1 + 8√𝐶). In order
to test the sine basis by using a variational analysis for this
problem, we considered the exact solutions for the ground-
state energy in two particular cases: first when𝐴 = 𝐵 = 𝐶 = 1

and second, when 𝐴 = 1, 𝐵 = 𝐶 = 9. Since these problems
are highly singular, and we are considering radial functions,
we need to consider two variational parameters, namely, the
boundaries of the basis interval, [𝑎, 𝑏]. Thus, we use the basis
given by (1) to obtain the matrix H. In this case we need to
minimize the eigenvalues with respect to 𝑎 > 0 and 𝑏 > 0.
For 𝐴 = 𝐵 = 𝐶 = 1 we have the potential

𝑉 (𝑟) = 𝑟
2
+ 𝑟
−4
+ 𝑟
−6
. (17)

The ground-state energy is given by 𝐸
0
= 5. We used a

matrix of size 𝑁 = 100 and found that the best result
was the approximation 𝜀

0
= 5.00000003, with minimizing

parameters 𝑎 = 0.01 and 𝑏 = 5.2. For the case where 𝐴 = 1

and 𝐵 = 𝐶 = 9 we now have the potential

𝑉 (𝑟) = 𝑟
2
+ 9𝑟
−4
+ 9𝑟
−6
. (18)

The ground-state energy is given by 𝐸
0

= 7. And our
approximation is 𝜀

0
= 7.00000110, where 𝑁 = 100, and

the variational parameters that give the minimum value are
𝑎 = 0.01 and 𝑏 = 5.1. Even if we have a singular problem, if its
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Table 4: Approximation of the energy levels of the harmonic oscillator in dimensions 𝑑 = 3, 4, 5. 𝑛 represents the energy state, 𝐸 is the
exact solution for the energy given by (12), and 𝜀 is the upper bound to 𝐸 obtained using the variational analysis. The eigenvalues 𝜀

𝑛
of H are

minimized over 𝐿. This table shows specific examples of energy values for the quantum numbers ℓ = 0, 1, 2, 3 and energy states 𝑛 = 1, 5, 10.
Note that the approximation error has diminished compared with those of Table 3. In the worst case it is of 10−5, while in others cases the
upper bounds are almost exact.

𝑑 ℓ 𝑛 𝐸 𝜀 𝐿

3

0
1 3 3.00000000 5.4
5 19 19.00000000 7.4
10 39 39.00000001 8.7

1
1 5 5.000000119 5.4
5 21 21.00000234 6.9
10 41 41.00001129 8.4

2
1 7 7.000000002 6.0
5 23 23.00000000 9.0
10 43 43.00000001 9.0

3
1 9 9.000000003 6.0
5 25 25.00000000 8.1
10 45 45.00000000 10.0

4

0
1 4 4.000009387 4.7
5 20 20.00008831 6.5
10 40 40.00027064 8.1

1
1 6 6.000000003 7.7
5 22 22.00000002 7.4
10 42 42.00000014 8.8

2
1 8 8.000000002 6.0
5 24 24.00000001 7.4
10 44 44.00000000 10.0

3
1 10 10.00000000 6.6
5 26 26.00000000 7.6
10 46 46.00000000 10.0

5

0
1 5 5.000000119 5.4
5 21 21.00000234 6.9
10 41 41.00001129 8.4

1
1 7 7.000000002 6.0
5 23 43.00000001 9.0
10 43 43.00000001 9.25

2
1 9 9.000000003 6.0
5 25 25.00000000 8.1
10 45 45.00000000 10.0

3
1 11 1.00000000 6.5
5 27 27.00000000 7.6
10 47 46.99999999 10.3

potential is𝑈-shaped, we can get upper bounds for the energy
levels with a small error. For the sine variational basis, the
approximations obtained for the upper bound have smaller
errors than some of the accurate calculations obtained in the
references mentioned above.

4. Confined Quantum Systems

We can think of this variational approach as if we were
confining the system we wish to study in a box, in fact, the
same box as the particle-in-a-box problem that generates the

basis. We need only to choose the optimal size to find the
best approximations to the energy levels. This opens up the
possibility to study confined systems themselves, provided
the basis box size 𝐿 is less than or equal to the size 𝐵 of the
confining box. The study of these confined quantum systems
has been of interest in recent years, for example, in the early
work of Aguilera-Navarro et al. [2], Michels et al. [6], Ciftci
et al. [10], Al-Jaber [8], and Fernández and Castro [9]. The
sine basis yields upper bounds for the energy eigenvalues for
all 𝐿 ≤ 𝐵. However, we found best results when 𝐿 = 𝐵. This is
because the box confinement was dominant for the problems
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Table 5: Approximation of the energy levels of the hydrogen atom in dimension 𝑑 = 3, for quantum numbers ℓ = 0, 1, 2. Note that the
variational parameter that minimizes the upper bound tends to be very large for all the states. The error is of the order of 10−4 in the “best”
cases.

ℓ 𝑛 𝐸 𝜀 𝑏

0

1 −0.2500000000 −0.2499790730 17.5
2 −0.06250000000 −0.06246859682 40.5
3 −0.02777777778 −0.02773301831 70.5
4 −0.01562500000 −0.01556528040 107

1

1 −0.06250000000 −0.06231120892 33
2 −0.02777777778 −0.02747649731 60
3 −0.01562500000 −0.01526320869 94
4 −0.01000000000 −0.009656788911 143

2

1 −0.02777777778 −0.02777640178 75
2 −0.01562500000 −0.01561644406 108
3 −0.01000000000 −0.009970374676 146
4 −0.006944444444 −0.006872824074 189

Table 6: Approximation of the energy levels of the harmonic oscillator 𝐻 = −(1/2)Δ + (1/2)𝑥
2 in dimension 𝑑 = 1. For the state 𝑛, 𝐸

𝑛
is

a highly accurate solution for the energy provided by Aguilera-Navarro et al. [2], 𝜀
𝑛
is the upper bound for 𝐸

𝑛
obtained using the present

variational analysis with basis size𝑁 = 250, and 𝐿 = 0.5. This table shows the energies of the first 12 states 𝑛 = 0, 1, . . . , 11.

𝑛 𝐸 𝜀

0 4.951123323264 4.951129323244
1 19.774534178560 19.774534179209
2 44.452073828864 44.452073829725
3 78.996921150976 78.996921150748
4 123.410710456832 123.410710456280
5 177.693843822080 177.693843818558
6 241.846458758144 241.846458765623
7 315.868612673536 315.868612686280
8 399.760332976128 399.760332979135
9 493.521634054144 493.521634068796
10 597.152524107776 597.152524136545
11 710.653008064512 710.653008103290

studied. Clearly, with potential confinement and a very large
𝐵, using an 𝐿 less than 𝐵 would be advantageous, as it is for
unconfined problems.

4.1. The Confined Oscillator. The confined oscillator was
studied by Aguilera-Navarro et al. [2] who also used the sine
basis, with basis box size equal to that of the confining box,
𝐿 = 𝐵. We confirm their results, as shown in Table 6 for a box
size 𝐵 = 0.5.

4.2. The Confined Sine-Squared Potential. Various confined
trigonometric potentials have been studied earlier, for exam-
ple, in [18, 19]. We have found that these problems can be
treated very effectively by a variational analysis in the sine
basis. We consider one case here, namely, the sine-squared
potential 𝑉(𝑥) given [19] by

𝑉 (𝑥) =

{{{

{{{

{

𝑉
0
sin2 (𝑥) , for 𝑥 ∈ [−𝜋

2
,
𝜋

2
] ,

∞, for |𝑥| >
𝜋

2
.

(19)

This potential is confined to a box with base of size 𝜋 and
height of size 𝑉

0
, as shown in Figure 3.

By using our variational approach, we immediately obtain
the energy eigenvalues exhibited in Table 7 here, correspond-
ing to those inTable 1 of [19]. For a basis of dimension𝑁 = 25,
the result differs by at most 10−9. We tabulate the relevant
results for𝑉

0
= 0.1, 1, 5. We have studied both a Hamiltonian

Matrix of dimension𝑁 = 10 and another of dimension𝑁 =

25: the difference in the results between these two variational
bases was found to be of order 10−13 at most for 𝑉

0
= 0.1, 1

and the order of 10−8 at most for 𝑉
0
= 5.
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Table 7: Approximate energy levels for a confined sine squared potential𝐻 = −Δ +𝑉
0
sin2(𝑥) in dimension 𝑑 = 1. For the state 𝑛, 𝐸 denotes

the upper bound for the energies obtained using the present variational analysis with basis size𝑁 = 25 and fixed 𝐿 = 𝜋/2. The table shows
the energies of the first 6 states 𝑛 = 0, 1, . . . , 5.

𝑛 𝐸(𝑉
0
= 0.1) 𝐸(𝑉

0
= 1) 𝐸(𝑉

0
= 5)

0 1.024922118883 1.242428825987 2.082985293205
1 4.049947916808 4.494793078632 6.370661125009
2 9.050038818610 9.503664867046 11.569339156939
3 16.050020833189 16.502081901038 18.551201398403
4 25.050013020839 25.501302132228 27.532566336109
5 36.050008928573 36.500892873766 38.522331587359

Table 8: Approximation of the energy levels of a confined hydrogenic atom in dimension 𝑑 = 3.The angular-momentum quantum number is
ℓ, 𝑛 is 1 plus the number of nodes of the radial wave function, 𝑏 is the radius of the box, 𝐸 is the exact value of the energy, 𝐸

𝑓
is the expression

in floating point arithmetic, and 𝜀 is the variational approximation obtained from the matrixH of dimension𝑁 = 250.

ℓ 𝑛 𝑏 𝐸 𝐸
𝑓

𝜀

0 1 4 −1/16 −0.06250000000 −0.0624999668
1 1 12 −1/36 −0.02777777778 −0.0277777498
2 1 24 −1/64 −0.01562500000 −0.0156250000
3 1 40 −1/100 −0.01000000000 −0.0100000000

0 1 3(3 − √3) −1/36 −0.02777777778 −0.0277777466
2 3(3 + √3) −1/36 −0.02777777778 −0.0277775785

1 1 4(5 − √5) −1/64 −0.01562500000 −0.0156249729
2 4(5 + √5) −1/64 −0.01562500000 −0.0156248833

2 1 5(7 − √7) −1/100 −0.01000000000 −0.0100000000
2 5(7 + √7) −1/100 −0.01000000000 −0.00999999997

3 1 36 −1/144 −0.006944444444 −0.006944444438
2 72 −1/144 −0.006944444444 −0.006944444431

−0.5π 0 0.5π

1

χ

Figure 3: Graph of the sine-squared potential for 𝑉
0
= 1.

4.3. The Confined Atom. In the case of the unconfined
hydrogen atomwe found that we needed ever bigger boxes for

each following state because the wave functions are spread-
out. However, the present variational basis is very appropriate
for the analysis of confined problems themselves. A hydrogen
atom confined to a spherical box has been studied by Varshni
[7] and by Ciftci et al. [10]. In [10], the authors found exact
solutions for the confined problem given by the Schrödinger
equation:

−
𝑑
2

𝑑𝑟2
𝜓 (𝑟) + (

ℓ (ℓ + 1)

𝑟2
−
𝐴

𝑟
)𝜓 (𝑟) = 𝐸𝜓 (𝑟) , (20)

with boundary conditions 𝜓(0) = 𝜓(𝑏) = 0, and 𝐴 >

0. These exact solutions are special for the 3-dimensional
case. For different quantum numbers, there are specific radii
of confinement for which exact solutions are known. These
problems provide ideal tests for the effectiveness of the sine
basis. Details of these exact solutionsmay be found in [10].We
obtain the results shown in Table 8 for 𝐴 = 1 and the radii 𝑏
required by the available exact solutions. As opposed to what
we found in the case of unconfined atomic models, it is clear
that the sine basis is very well suited to the corresponding
confined problems.

5. The 𝑁-Body Problem

We show in this section that the sine basis can also be effective
for the many-body problem. We consider a system of 𝑁
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identical bosons that are bound by attractive pair potentials
𝑉(𝑥
𝑖
− 𝑥
𝑗
) in one spatial dimension. In units in which ℎ = 1

and 𝑚 = 1/2, the Hamiltonian 𝐻 for this system, with the
centre-of-mass kinetic energy removed, may be written:

𝐻 = −(

𝑁

∑

𝑖=1

𝜕
2

𝑖
−
1

𝑁
(

𝑁

∑

𝑖=1

𝜕
𝑖
)

2

) +

𝑁

∑

1=𝑖<𝑗

𝑉(𝑥
𝑖
− 𝑥
𝑗
) . (21)

By algebraic rearrangement𝐻may be written in the compact
form:

𝐻 =

𝑁

∑

1=𝑖<𝑗

[

[

−

(𝜕
𝑖
− 𝜕
𝑗
)
2

𝑁
+ 𝑉(𝑥

𝑖
− 𝑥
𝑗
)]

]

. (22)

If Ψ is the exact normalized ground state for the system
corresponding to the energy 𝐸, then boson symmetry allows
the reduction [20, 21] to the expectation of a one-body
operator whose spectral bottom, in turn, provides an energy
lower bound 𝐸

𝐿
. We have in general

𝐸 = (Ψ,𝐻Ψ) = (𝑁 − 1) (Ψ, [−2𝜕
2

𝑥
+ (

𝑁

2
)𝑉 (𝑥)]Ψ) ,

(23)

where 𝑥 = (𝑥
1
−𝑥
2
). Thus for the harmonic oscillator𝑉(𝑥) =

𝑐𝑥
2, we find immediately that 𝐸

𝐿
= 𝑐
1/2
(𝑁 − 1)√𝑁, which

result coincides in this case with the known [22, 23] exact𝑁-
body solution 𝐸 = 𝑐

1/2
(𝑁 − 1)√𝑁. In order to estimate the

ground-state energy from above, we employ a single-product
trial functionΦ of the form

Φ(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
) =

𝑁

∏

𝑖

𝜙 (𝑥
𝑖
) ,

𝜙 (𝑥
𝑖
) = √

2

𝑎
cos (𝜋𝑥

𝑖
/𝑎) .

(24)

This wave function vanishes outside a box of volume 𝑎𝑁 in
𝑅
𝑁. Before we optimize with respect to the box size 𝑎, we have

in general 𝐸
𝑈
= (Φ,𝐻Φ), where

𝐸
𝑈
= (𝑁 − 1)

×[(
𝜋

𝑎
)

2

+
𝑁

2
(𝜙 (𝑥
1
) 𝜙 (𝑥
2
)𝑉(𝑥
1
−𝑥
2
) , 𝜙 (𝑥

1
) 𝜙 (𝑥
2
))] .

(25)

If we apply (25) to the harmonic oscillator 𝑉(𝑥) = 𝑐𝑥
2, we

find

𝐸
𝑈
= (𝑁 − 1)min

𝑎>0

[(
𝜋

𝑎
)

2

+
𝑁𝑐𝑎
2

4
(
1

3
−

2

𝜋2
)] , (26)

that is to say,

𝐸
𝑈
= 𝑐
1/2
𝐴 (𝑁 − 1)√𝑁, (27)

where 𝐴 = (
𝜋
2

3
− 2)

1/2

≈ 1.13572. (28)

Another soluble 𝑁-boson problem is that of the attractive
delta potential 𝑉(𝑥) = −𝑐𝛿(𝑥). The exact ground-state ener-
gy was found byMcGuire [24, 25] and is given by the formula
𝐸 = −(1/48)𝑐

2
𝑁(𝑁
2
− 1). Meanwhile the lower and upper

bounds we obtain, respectively, from (23) and (25) are given
by

𝐸
𝐿
= −

1

32
𝑐
2
(𝑁 − 1)𝑁

2
< 𝐸

< −
9

64𝜋2
𝑐
2
(𝑁 − 1)𝑁

2
= 𝐸
𝑈
.

(29)

The lower bound of course agrees with the exact solution for
𝑁 = 2. For other numbers of particles, the estimates, just
as for the corresponding Coulomb one-particle problem, are
weaker than those for the tightly bound harmonic oscillator.
It is also curious that neither bound manages to reproduce
the correct 𝑁 dependence exhibited by the exact formula of
McGuire and Mattis.

6. Conclusion

If we compare the harmonic oscillator𝐻 = −Δ + 𝑟
2 with the

hydrogenic atom 𝐻 = −Δ − 1/𝑟 in three dimensions we see
two very different systems from the point of view of stability
and the spatial distribution of the respective wave functions.
The oscillator is tightly bound and hardly exists outside a
ball of radius 6, whereas the atom is loosely bound and must
be considered out to a radius of 50 or more. It is therefore
not surprising that the more confined problem, the oscillator,
yields to a variational analysis in terms of the sine basis, but
the atom does not. The particle in a box is the quintessential
confined problem. It generates a basis that at first sight might
appear inappropriate for more general problems. We have
shown that it is in fact very effective for problems that are
either confined by the nature of the potentials involved or
are in any case confined by the given boundary conditions.
For systems of 𝑁 identical bosons interacting by attractive
pair potentials, the boson permutation symmetry induces
behaviour close to that of a scaled two-body problem in
which the kinetic-energy term is multiplied by (𝑁 − 1) and
the potential-energy term is multiplied by 𝑁(𝑁 − 1)/2. We
show that the ground state of this many-body problem can
be effectivelymodelled by a product of particle-in-a-boxwave
functions optimized over the box size 𝐿.

Acknowledgments

The partial financial support of his research under Grant no.
GP3438 from the Natural Sciences and Engineering Research
Council of Canada is gratefully acknowledged by R. L. Hall,
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