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This paper presents the study of momentum and heat transfer characteristics in a hydromagnetic
flow of dusty fluid over an inclined stretching sheet with non-uniform heat source/sink, where
the flow is generated due to a linear stretching of the sheet. Using a similarity transformation,
the governing equations of the problem are reduced to a coupled third-order nonlinear ordinary
differential equations and are solved numerically by Runge-Kutta-Fehlberg fourth-fifth-order
method using symbolic software Maple. Our numerical solutions are shown to agree with
the available results in the literature and then employ the numerical results to bring out the
effects of the fluid-particle interaction parameter, local Grashof number, angle of inclination,
heat source/sink parameter, Chandrasekhar number, and the Prandtl number on the flow and
heat transfer characteristics. The results have possible technological applications in liquid-based
systems involving stretchable materials.

1. Introduction

Investigations of boundary layer flow and heat transfer are important due to its applications
in industries, and many manufacturing processes such as aerodynamic extrusion of plastic
sheets, cooling of metallic sheets in a cooling bath, which would be in the form of
an electrolyte, and polymer sheet extruded continuously from a die are few practical
applications of moving surfaces. Glass blowing, continuous casting, and spinning of fibers
also involve the flow due to stretching surface. During its manufacturing process, a stretched
sheet interacts with the ambient fluid thermally and mechanically. The thermal interaction
is governed by the surface heat flux. This surface heat flux can either be prescribed, or it is
the output of a process in which the surface temperature distribution has been prescribed.
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Newton’s law of viscosity states that shear stress is proportional to velocity gradient. Thus,
the fluids that obey this law are known as Newtonian fluids.

Crane [3] investigated the flow due to a stretching sheet with linear surface velocity
and obtained the similarity solution to the problem. Later, this problem has been extended
to various aspects by considering non-Newtonian fluids, more general stretching velocity,
magnetohydrodynamic (MHD) effects, porous sheets, porous media, and heat or mass
transfer. Andresson et al. [4] extended the work of Crane [3] to non-Newtonian power law
fluid over a linear stretching sheet. Grubka and Bobba [5] analyzed heat transfer studies
by considering the power-law variation of surface temperature. Saffman [6] has discussed
the stability of the laminar flow of a dusty gas in which the dust particles are uniformly
distributed. Chakrabarti [7] analyzed the boundary layer flow of a dusty gas. Datta and
Mishra [8] have investigated dusty fluid in boundary layer flow over a semi-infinite flat
plate. Further, Xie et al. [9] have extended the work of [8] and studied on the hydrodynamic
stability of a particle-laden flow in growing flat plate boundary layer. Palani andGanesan [10]
have studied heat transfer effects on dusty gas flow past a semi-infinite inclined plate; in this
paper, they have nondimensionalised the governing boundary layer equations. Agranat [11]
has discussed the effect of pressure gradient on friction and heat transfer in a dusty boundary
layer. Chakrabarti and Gupta [12] have studied the hydromagnetic flow and heat transfer in a
fluid initially at rest and at uniform temperature over a stretching sheet at a different uniform
temperature. Vajravelu andNayfeh [13] analyzed the hydromagnetic flow of dusty fluid over
a stretching sheet with the effect of suction. Further, Vajravelu and Roper [1] studied the flow
and heat transfer in a second-grade fluid over a stretching sheet with viscous dissipation
and internal heat generation or absorption. Tsai et al. [2] extended the work of [1] and
studied an unsteady flow over a stretching surface with non-uniform heat source. Cortell
[14] studied the magnetohydrodynamics flow of a power-law fluid over a stretching sheet.
Abel and Mahesha [15] presented an analytical and numerical solution for heat transfer in
a steady laminar flow of an incompressible viscoelastic fluid over a stretching sheet with
power-law surface temperature, including the effects of variable thermal conductivity and
non-uniform heat source and radiation. Chen [16] studied Magnetohydrodynamic mixed
convection of a power-law fluid past a stretching surface in the presence of thermal radiation
and internal heat generation/absorption. Gireesha et al. [17] studied boundary layer flow and
heat transfer of a dusty fluid flow over a stretching sheet with non-uniform heat source/sink.
Samad and Mohebujjaman [18] investigated the case along a vertical stretching sheet in the
presence of magnetic field and heat generation.

Since the study of heat source/sink effect on heat transfer is important in some
cases, in the present paper, we studied the hydromagnetic flow and heat transfer of a dusty
fluid over an inclined stretching sheet with the effect of non-uniform heat source/sink.
The resulting governing equations are transformed into a system of nonlinear ordinary
differential equations by applying a suitable similarity transformation. These equations are
solved numerically by RKF 45 using Maple and discussed the results from the physical point
of view.

2. Flow Analysis of the Problem

Consider two-dimensional steady laminar boundary layer flow of an incompressible viscous
dusty fluid over a vertical stretching sheet which is inclined with an acute angle α and
situated in the fluid of ambient temperature T∞. The x-axis moves along the stretching surface
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Figure 1: Geometrical configuration of the flow problem.

in the direction of motion with the slot as the origin, and the y-axis is measured normally
from the sheet to the fluid. Further, the flow field is exposed to the influence of an external
transverse magnetic field of strength H0 (along y-axis) as shown in Figure 1. Both the fluid
and dust particle clouds are supposed to be static at the beginning. The dust particles are
assumed to be spherical in shape and uniform in size, and number density of the dust particle
is taken as a constant throughout the flow.

Under the above assumption and along with Boussinesq’s approximation, the basic
two-dimensional boundary layer equations are as follows [13]:

∂u

∂x
+
∂v

∂y
= 0, (2.1)
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where (u, v) and (up, vp) are the velocity components of the fluid and dust particle phases
along x and y directions, respectively. μ, ρ, ρp, and N are the coefficient of viscosity of the
fluid, density of the fluid, density of the dust particle, and number density of the particle
phase, respectively, H0 is the strength of applied magnetic field, K is the stokes’ resistance
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(drag coefficient), T and T∞ are the fluid temperature within the boundary layer and in the
free stream, respectively, g is the acceleration due to gravity, β∗ is the volumetric coefficient of
thermal expansion, andm is the mass of the dust particle. It is also assumed that the external
electric field is zero, and the electric field due to polarization of charges is negligible. In
deriving these equations, the drag force is considered for the interaction between the fluid
and dust phases.

The boundary conditions for the flow problem are given by

u = Uw(x), v = 0, at y = 0,

u −→ 0, up −→ 0, vp −→ v, ρp −→ ωρ, as y −→ ∞,
(2.6)

where Uw(x) = cx is the stretching sheet velocity, c > 0; this is known as stretching rate, and
ω is the density ratio.

To convert the governing equations into a set of similarity equations, we introduce the
following transformation:

u = cxf ′(η
)
, v = −√νc f

(
η
)
, η =

√
c

ν
y,

up = cxF
(
η
)
, vp =

√
νcG

(
η
)
, ρr = H

(
η
)
,

(2.7)

which identically satisfy (2.1), and substituting (2.7) into (2.2)–(2.5), one can obtain the
following nonlinear ordinary differential equations:

f ′′′ + ff ′′ − (
f ′)2 + l∗βH

[
F − f ′] +Gr θ cosα −Qf ′ = 0, (2.8)

GF ′ + F2 + β
[
F − f ′] = 0, (2.9)

GG′ + β
[
f +G

]
= 0, (2.10)

HF +HG′ +GH ′ = 0, (2.11)

where a prime denotes differentiation with respect to η and l∗ = mN/ρ, τ = m/K is the
relaxation time of the particle phase, β = 1/cτ is the fluid particle interaction parameter,
Gr = (gβ∗(Tw − T∞))/c2x is the local Grashof number (Kierkus [19]), Q = σH2

0/cρ is the
Chandrasekhar number, and ρr = ρp/ρ is the relative density.

The boundary conditions defined as in (2.6) will become,

f = 0, f ′ = 1, at η = 0,

f ′ = 0, F = 0, G = −f, H = ω, as η −→ ∞.
(2.12)

If β = 0, Gr = 0, the analytical solution of (2.8)with boundary condition (2.12) can be written
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Table 1: Comparison of θ′(0) for various values of Pr and B∗ when β = 0, Gr = 0,A∗ = 0,Q = 0, Ec = 0, and
N = 0.

B∗ Pr Vajravelu and Roper [1] Tsai et al. [2] Present Study θ′ (0)
−2 2 −2.4860 −2.4859 −2.4859
−3 3 −3.0281 −3.0281 −3.0281
−4 4 −3.5851 −3.5851 −3.5851

Table 2: Comparison of −f ′′(0) for various values of Q when β = 0, Gr = 0, A∗ = 0, B∗ = 0, Ec = 0, and
Pr = 0.

Q Cortell [14] Chen [16] Present study −f ′′(0)
0.0 1.000 1.000 1.001
0.2 1.095 1.095 1.095
0.5 1.224 1.224 1.224
1.0 1.414 1.414 1.414
1.2 1.483 1.483 1.483
1.5 1.581 1.581 1.581
2.0 1.732 1.732 1.732

in the form of

f =
1 − e−ξ η

ξ
, (2.13)

where ξ =
√
Q + 1.

3. Heat Transfer Analysis

The governing boundary layer heat transport equations for a dusty fluid in the presence of
non-uniform internal heat source/sink for two-dimensional flows are given by [17]
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(3.1)

where T and Tp are the temperature of the fluid and temperature of the dust particle,
respectively, cp and cm are the specific heat of fluid and dust particles, τT is the thermal
equilibrium time, that is, the time required by the dust cloud to adjust its temperature to
the fluid, τv is the relaxation time of the dust particle, that is, the time required by a dust
particle to adjust its velocity relative to the fluid, and k is the thermal conductivity. q′′′ is the
space- and temperature-dependent internal heat generation/absorption (non-uniform heat
source/sink) which can be expressed as

q′′′ =
(
kUw(x)

xν

)
[
A∗(Tw − T∞)f ′ + B∗(T − T∞)

]
, (3.2)

where Tw and T∞ denote the temperature at the wall and at large distance from the wall,



6 Advances in Mathematical Physics

Table 3: Values of wall velocity gradient −f ′′(0) temperature gradient −θ′(0) for different values of β, α,Q,
Gr, A∗, B∗, Pr, and Ec.

β Ec Pr Gr α A∗ B∗ Q −θ′(0) −f ′′(0)
0.2 2.0 1.0 0.5 30◦ 0.5 0.5 3.0 −0.29336 1.96310
0.5 0.32170 1.98318
0.9 0.48237 1.99059
0.5 0.0 1.0 0.5 30◦ 0.5 0.5 3.0 0.71588 1.98532

1.0 0.51878 1.98425
2.0 0.32170 1.98318

0.5 2.0 1.0 0.5 30◦ 0.5 0.5 3.0 0.32170 1.98318
2.0 1.19511 1.99348
3.0 1.66299 1.99689

0.5 2.0 1.0 0.0 30◦ 0.5 0.5 3.0 0.23283 2.01714
0.5 0.32170 1.98318
1.0 0.37466 1.95115

0.5 2.0 1.0 0.5 0◦ 0.5 0.5 3.0 1.01930 1.85135
30◦ 0.98397 1.99098
90◦ 0.94359 2.09512

0.5 2.0 1.0 0.5 30◦ −0.5 0.5 3.0 0.79070 1.98753
0.0 0.55715 1.98537
0.5 0.32170 1.98318

0.5 2.0 1.0 0.5 30◦ 0.5 −0.5 3.0 1.12197 1.99266
0.0 0.85246 1.99013
0.5 0.32170 1.98318

0.5 2.0 1.0 0.5 30◦ 0.5 0.5 1.0 0.53643 1.39971
2.0 0.44219 1.71607
3.0 0.32170 1.98318

respectively. A∗ and B∗ are the parameters of the space- and temperature-dependent internal
heat source/sink. It is to be noted that A∗ and B∗ are positive to internal heat source and
negative to internal heat sink; ν is the kinematic viscosity.

In order to solve the (3.1), the nondimensional temperature boundary conditions are
defined in a quadratic form as

T = Tw = T∞ +A
(x
l

)2
, at y = 0,

T −→ ∞, Tp −→ T∞, as y −→ ∞,

(3.3)

where Tw and T∞ denote the temperature at the wall and at large distance from the wall,
respectively, A is a positive constant, and l =

√
ν/c is a characteristic length.

Now, we define the nondimensional fluid-phase temperature θ(η) and dust-phase
temperature θp(η) as

θ
(
η
)
=

T − T∞
Tw − T∞

, θp
(
η
)
=

Tp − T∞
Tw − T∞

, (3.4)

where T − T∞ = A(x/l)2θ(η).
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Using (3.4) into (3.1), we get the following non-linear ordinary differential equations:

θ′′ + Pr
[
fθ′ − 2f ′θ

]
+
NPr
ρcτT

[
θp − θ

]
+
N PrEc
ρτv

[
F − f ′]2 +A∗f ′ + B∗θ = 0, (3.5)

2Fθp +Gθ′
p +

cp

ccmτT

(
θp − θ

)
= 0, (3.6)

where Pr = μcp/k is the Prandtl number, and Ec = cl2/Acp is the Eckert number.
The corresponding boundary conditions for θ and θp are

θ = 1, at η = 0,

θ −→ 0, θp −→ 0, as η −→ ∞.
(3.7)

The physical quantities of interest are the skin friction coefficient Cf and the local Nusselt
number Nux which are defined as

Cf =
τw

ρU2
w

, Nux =
xqw

k(Tw − T∞)
, (3.8)

where the surface shear stress τw and the surface heat flux qw are given by

τw = μ

(
∂u

∂y

)

y=0
, qw = −k

(
∂T

∂y

)

y=0
. (3.9)

Using the nondimensional variables, we obtain

CfRe1/2x = f ′′(0),
Nux

Re1/2x

= −θ′(0). (3.10)

4. Results and Discussion

The transformed (2.8) to (2.11) and (3.5) to (3.6) subjected to boundary conditions (2.12)
and (3.7) were solved numerically using RKF45 methods with the help of symbolic algebra
software Maple, using a procedure used by Aziz [20]. It is very efficient in using the
well-known Runge-Kutta-Fehlberg fourth-fifth-order method (RKF45 method) to obtain the
numerical solutions of a boundary value problem. The RKF45 algorithm in Maple has been
well tested for its accuracy and robustness. In order to validate the numerical results obtained,
we compare our results with those reported by Vajravelu and Roper [1] and Tsai et al. [2] for
various values of Prandtl number and Cortell [14] and Chen [16] for various values of Q as
shown in Tables 1 and 2, and they are found to be in a favorable agreement. The results of
velocity gradient f ′′(0) and temperature gradient function −θ′(0) at the wall are examined for
the values of the parameters which are tabulated in Table 3.

Figure 2 depicts the variation in the velocity profiles for different values of fluid
particle interaction parameter β. This figure indicates that as fluid-particle interaction
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Figure 2: Velocity profile for different values of fluid-particle interaction parameter.
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Figure 3: Velocity profile for different values of Chandrasekhar number.

parameter increases, we can see that fluid phase velocity decreases and dust phase velocity
increases. Further observation shows that if the dust is very fine, that is, mass of the dust
particles is negligibly small, then the relaxation time of dust particle decreases, and ultimately
as τ → 0, the velocities of fluid and dust particles will be the same.

The variation of velocity profiles for various values of the Chandrasekhar number Q
is plotted in Figure 3. It is found that the increase in the value of Q is to decrease the velocity
profile in the boundary layer. This is due to the fact that the presence of a magnetic field
normal to the flow in an electrically conducting fluid produces a Lorentz force, which acts
against the flow.
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Figure 5: Temperature profile for different values of angle of inclination.

The graph of velocity profiles for typical angles of inclination (α = 0◦, 30◦, 90◦) versus
η is plotted in Figure 4. It is noted that the angle of inclination increases, and the velocities
of fluid and dust phase decrease. This is the fact that the angle of inclination increases the
effect of the buoyancy force due to thermal decrease by a factor of cosα. From this figure, it
is also noticed that the effect of buoyancy force (which is maximum for α = 0) overshoots
the main stream velocity significantly. It is also observed that the fluid-phase temperature
and dust-phase temperature increase as the angle of inclination increases which are shown in
Figure 5.

The graph of local Grashof number Gr on the velocity field is shown in Figure 6. From
this plot, it is observed that the effect of increasing values of local Grashof number is to
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increase the velocity distribution of both the fluid and dust phases. Physically saying that
if Gr is positive, it means heating of the fluid or cooling of the boundary surface, and if Gr is
negative, it means cooling of the fluid or heating of the boundary surface, and in the absence
of Gr, it corresponds to the absence of free convection current. It is evident from Figure 7 that
increasing values of Gr decreases the fluid- and dust-phase temperature; this result shows
the thinning of the thermal boundary layer.

Figure 8 presents the temperature profiles for different values of space-dependent heat
source/sink parameter A∗. It is observed from this figure that the fluid- and dust-phase
temperature in the thermal boundary layer increase with the increase in A∗. It can be seen
that the thermal boundary layer generates the energy, and the heat sink leads to decrease in
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the thermal boundary layer, whereas the boundary layer thickness increases with increase in
A∗. The explanation on the effect of B∗ is similar to that given for A∗, and the graph is shown
in Figure 9.

The effect of Prandtl number Pr on both fluid- and dust-phase temperature
distributions is displayed in Figure 10. It can be seen that the fluid-phase temperature and
dust-phase temperature decrease with increase of Prandtl number, which implies momentum
boundary layer is thicker than the thermal boundary layer. This is due to the fact that
for higher Prandtl number, fluid has a relatively low thermal conductivity, which reduces
conduction. From Figures 2 to 10, we can observe that fluid phase is higher than the dust
phase, and also it indicates that the fluid phase is parallel to that of dust phase.
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Figure 10: Temperature profile for different values of Prandtl number.

5. Conclusions

In this paper, we have investigated the steady boundary flow and heat transfer of a dusty over
an inclined stretching sheet with heat source/sink. Numerical solutions are obtained through
Maple. It is very interesting to note that when β increases, clean fluid velocity decreases and
dust-fluid velocity increases, and also it is found that the velocity profile decreases as Q and
α increase. The thermal boundary layer thickness decreases with increasing Gr and Pr, but
increases with increasing α, A∗, and B∗. The values of θ′(0) increase with the increase Q, Ec,
A∗, and B∗; however, they decrease with the increase of β, Gr, and Pr, whereas the values of
f ′′(0) increase with the increase of Gr, Ec, A∗, and B∗ and decrease with the increase of β, α,
Q, and Pr.
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